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ASYMPTOTICALLY OPTIMUM KERNELS FOR DENSITY
ESTIMATION AT A POINT

BY JEROME SACKS' AND DONALD YLVISAKER?
Northwestern University and University of California, Los Angeles

Kernel estimation of f(0) is considered where f is a density in some class
Z of d-dimensional densities, described in terms of a Taylor series expansion.
A sequence of kernels which asymptotically minimizes the maximum mean
square error of estimation over & is given. The shape of the kernel is fixed,
‘the size of the window depends on f(0), and an easily computed estimate is
obtained to efficiently adapt the sequence to the unknown value of f(0).

0. Introduction. Let Xi, ..., X, be a sample of n independent observations from a
distribution F on R with density /. The problem of interest is that of estimating f(0) (or
f(xo) for some xo). The focus of the paper is on kernel estimation, i.e., on estimates of the

form T = rlL ¥ =1 I'(X;) where I is called the kernel. Estimates of this type were introduced

by Rosenblatt [6] and subsequently studied by a number of authors, e.g., Parzen [5] and
Epanechnikov [2].
For a general estimate £,,(0) of f(0), let the risk be given by

(0.1) Q(f, /2(0), n) = E[£.(0) — f(0)]~.

Our concern is with the asymptotic behavior of @ as n — « and we produce an easily
calculated sequence of estimators which possesses asymptotically optimal properties in
terms of the risk @ for certain families of f’s. The asymptotic behavior of @ has been
previously studied, and the relationship of the present results to those in the literature is
most easily seen in the following context. Suppose the class of possible densities on R' is

(0.2) Fi={fIf=0, f f=1f€ %, sup: f(x) < a1, sup:| f"(x) |= 1)}.
For each n let the class of available kernels be

%= {T'|T'(x) = b," W(xb;"), b, >0, 5,0, W=0,

(0.3)
J’W=1,fo=O,fx2W<oo}.

IfT, € %1, n = 1, it is straightforward to calculate (Rosenblatt [7], Equation (19)) that
for b, = Kn™5,

(0.4) sup#Q(f, Tr,, n) ~ q(bn, W) = O(n™*").
Epanechnikov [2] showed thatinf, wq(b., W) = q (bon, Wo) ~ % (15)7° .a¥°n~*°  where

2 1/5 1/5
(0.5) Wo(x) = % 5-1/2<1 - %) . bon= <%) (J’ W&)
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(This can be seen in [7] but in Equation (21) remove the factor 4 and in Equation (22)
replace 2*° by %.)
If

(0.6) F={fIf=0, J’ f=1,sup.f(x) < oy, sup:|f"(x)| = 1},

Farrell [3] has shown that the best attainable rate for sup#Q(f, Ty, n) is O (n™*°) for any
sequence {7} of estimators. Epanechnikov’s kernel sequence retains its optimal character
over % among nonnegative kernels but it is not minimax when kernels with negative
values are permitted. Over % the best attainable rate is also O(n~*/%) as recently shown by
Stone [9] and again Epanechnikov‘s kernel loses its optimal character when the restriction
to nonnegative kernels is removed.

To clarify the situation further, consider

%={f|fzo,ff= L f(x) =

(0.7)
f(0) + xf/(0) + r(x), fO) < ay, | r(x) | =% x* for |x|= s},

where s and a; are positive numbers subject to the technical conditions [*,(a; + x%/2) =
1 and a1 — 5%/2 = 0. It follows from Theorem 1 in Section 1 that

(0.8) infy sups, Q(f, Tr, n) ~ % (15)™"/° ai/®* n™*°

where ¥ is the collection of all (measurable) kernels, and that Iy, defined by (0.5) is
asymptotically minimax in the sense that

(0.9) supy, Q(f, Tr,,, n) ~ infy sups Q(f, TIr, n).

Thus, after enlarging the class of possible densities from % to 45, we are able to provide an
explicit constant together with a rate in n which bounds the performance of all kernel
estimates over the class, while demonstrating the asymptotic minimax character of a
particular sequence of kernels.

The arguments used to get (0.8) and (0.9) require that O be an interior point of the
support of f; if 0 is an endpoint of this support, the constant in (0.8) is different and I'o.
does not have the property (0.9). For the latter situation a different sequence {I'o.} can be
found to satisfy (0.9), see Section 3.

Theorem 1 is somewhat stronger than the statements at (0.8) and (0.9) indicate. If £,
= {fE€ F|f(0) =a} for 0 < ap = a = a1 < w and {I',} is any sequence of kernels with
sups Q(f, Tr,, n) = 0(n"*%), then

(0.10) sups, Q(f, Tr,, n) = sups, Q(f, Tr,,, n) ~qi n™*".

Here g% can be determined (and is given by (0.8) if a = a1), T'an(x) = b Wo(xbzh) where
W is given by (0.5), and the sequence {b,,.} depends in an explicit way on a. This suggests
the use of an adaptive two-stage estimation procedure which at the first stage estimates
a by a, and at the second stage uses the estimate provided by I'; . The result of Theorem
2 is that for a suitable a,

(0.11) sups, Q(f, Tan, n) ~ g n™°

for all ap = a < a;. The simplicity of « and I'; ., together with (0.11), serves to recommend
this procedure. Woodroofe [11] has shown that adaptive estimates can be useful for density
estimation and Theorem 2 confirms this fact.

The theorems proved apply to classes like % for any dimension d and any order Taylor
expansion. The bound on r is given a specific form (e.g., (0.7)) but the results can be proved
for more general bounds with changes in the constant at (0.8). The estimation of a
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derivative of f at 0 can be analyzed by the methods in Sections 1 and 2 in order to obtain
asymptotically optimum kernels, but we do not carry out such an analysis here. The kernel
sequences found in Section 1 and those which can be obtained for estimation of derivatives
all possess optimal rates of convergence (Stone [9]), but it is not known whether the
constants we produce would allow improvement by using other than kernel estimates.

In Section 3B there is a listing of examples of optimal kernels. Entry 4 there is equivalent
to (0.5) by rescaling. This kernel was shown by Epanechnikov to be optimal among d-
dimensional kernels which are products of one-dimensional kernels. From Entry 11 in
Table 1 it can be seen that the optimality of (0.5) does not carry over to dimension d > 1
since the optimal kernel is of the form (a — b| x||*)+ rather than[[¢ (a — bx? ).

When 0 is an interior point of the support of f, the asymptotically optimal kernels may
not give substantial improvement over standard kernels. Thus, for practical purposes, it
would seem that one kernel is as good as another, an opinion which is generally held. The
calculations in Section 3C give some explicit information on this point and does tend to
support such an opinion at least when 0 is an interior point and the dimension of the space
isn’t large. However, the kernels of Section 3A do give explicitly useful methods for
estimating the density when 0 is at or near an endpoint in which situation the standard
kernels break down because they induce a large “bias” term.

1. The optimal kernels. For a d-tuple of nonnegative integers j = (ji, ..., ja), set
|/l =/i+ ...+ jaand j! = ji! ... jq! For x € RY take x/ =x{'...x!f and | x| =x} +
...+ x2% Let D’ denote the operatord” . .. 8"¢/(ax{ ... ax¥).

Suppose m is a fixed positive number and Sy = {x ||| x || < so} is a fixed sphere about 0.
For 0 < ap < a; <  and a € [ao, a1], let Z be the set of probability densities f on R which
satisfy

@) =a+ S, DO 5+ r(x), xER?

(11)
|r(x) | = m] x|, x €S,

Thus a function in %, is suitably approximated by its Taylor series expansion at the origin.
There is the complication at (1.1) that such an f be nonnegative and integrate to 1, and to
ensure that these conditions are not overly restrictive we make

AssuMPTION A. For each a € [ao, 1] there are numbers d; = dj(a), 1 <|j|<k —1,s0
that f € &, if
J

aX

7 + r(x), xER?

f(x)=a+ )

1=|j|=k-1
(1.2)

|r(x)|5m"x"k7 xESo.
Note that Assumption A is already satisfied if, for example, ap —msé = 0 andfs, [a:1 +

m| x||*] =1 (take di(a) = d; = 0). Assumption A guarantees that 0 is an interior point of
the support of f—see Section 3A in this connection.

A useful consequence of the fact that %, consists of densities is the following.

LEMMA 1. Sups |D'f(0)| =B, <o, 1=<|j|sk- 1.

PROOF. Suppose B; = + « for some j. Then there is a sequence { f»} in &% and a jo, 1
= |Jo| = & — 1, so that D°f,(0) — * oo,| D’f,(0)/D”£.(0) | = 1 all j, n, and Lim,_.(D’f,(0)/
D”f,(0)) = §, all j.
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Suppose D’f,(0) — . Then for x € S,,

fulx) x’

0=l i) ~ Zasvizst ¥ 51

while Fatou’s lemma gives

x falx)
0= L Zicpions % 57 =l | 57 = 0.

Hence all §, must be zero. This contradicts§,, = 1 and the lemma follows from a similar
argument applied to the case D’°f, (0) —» — oo.
Now consider kernel estimation of f(0) assuming f € & =U iL,, %. Thatis, if Xy, ...,

X, is a sample from f, take f(0) =% Yi—1 I'(X,) for some (measurable) kernel I". Set

Qu.r(T') = sups, E(% ¥ T(X) - f(O))

(1.3) =supgﬂ{E<%Z:‘=ll"(X,-) —fI‘f) + <J' I‘f—f(O)) }
= Lire_L([r 2+ Tf — f(0 2
= sups, |~ f o f) f—f( )) ,

(14) Qn(F) = Supn(,SnSal Qa,n(P)~

Note that the infimum over I'’s of @,,(I') is 0 since one could select the kernel I" with
T'(x) = a. To avoid such unsatisfactory estimates, let A2 = A%n =2+ gnd set

(1.5) Qo = inf(r|q,r)=a2) Qun(T),

Our results pertain to the asymptotic behavior as n — ® of g, and it will follow from
Lemma 2 that the condition @,(I") < A2 is satisfied for some I if A is taken large enough.

The first objective is an asymptotic upper bound on g, This is accomplished by
evaluating Q..(T") along a specific sequence {I},}. Let {I',} be a sequence of kernels with
I, supported on S, = {x|| x| < s}, so = s, — 0, and satisfying

(1.6) fP,,=1,fI‘,,x’=0, 1=s|j|=k-1, n=1

For a given € > 0, if n is large enough, | f(x) —‘al =<eon S, for f€E % (Lemma 1). Then

—_ 2 2
Qur(T>) < sups. {"‘ +e f rz_lez9 ( f I‘,.r) }
s, n S

+ +e)? ?
s"——ffri—(“ &) +(f|1‘n|m||x||k)
n n

LEMMA 2. For all sufficiently large A, q.. < g% n™*®*3(1 + o(1)) where q* is given
at (1.9).

(L.7)

ProOF. Write
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mzn 1/2
M) = (28]l = sl

Q(F)=JF2+(J|F|M)2.

The problem of minimizing @ over I"’s satisfying (1.6) is solved in [8]; the solution is

and set

I'(x) = (ZOS|j|sk—1 bx/ — )\M(JC)) - (ZOSUIS]H bix’ + AM(x)) .

where the coefficients b,, A are determined from (1.6) and the additional equation [ | M
= A. Moreover, Q(I') = ;. The situation is better described as follows: Make the change

of variables

—2/(2k+d) 2(]]]+d)/(2k+d)cj , }\ = 0pd/(2k+d)

X=p ui, bi=p
and let
(1.8a) Gw) = (Tou — 0| ul®)+ = (Tou’ + 6| ul®)-.

The equations which determine the ¢,’s and 6 are

(1.8b) fG=1, JGuj=0 for 1=<|j|<k-1, JG||u||k=0.

Then I'(x) = ['a(x) = p*¥**G(p****x) and Q(I') = bo = (m’n/(a + €))”***?V¢,. Since
I", has bounded support and satisfies (1.6), it follows from (1.7) that

a+ e

. (a — €)? _ (@ —¢)?
Q(Fn) _ = C()((X + €)Zle/(ZIe+¢:l)'n2«:1/(2k+1:l}n 2k/(2k+d) __ .
n n n

Qun(Tn) =

Now by = bo(e) is a continuous function of (the arbitrary) e. Therefore, if ¢§ is determined
from (1.8) with e = 0,

Qa,n(Fn) < c(;)ka2k/(2k+d)m2d/(2k+d}n—-2k/(2k+d)(1 + 0(1))

It is straightforward to show that @,(I', ) = O(n~2*/?*?) and thus for suitably large A in
(1.5), the desired result holds with

(19) q: = C:aZk/(2k+d)m2d/(2k+d}.

The main result (Theorem 1 below) establishes the optimum rate achievable by kernel
estimates as the one determined in Lemma 2. Examples of G satisfying (1.8a) and (1.8b)
are given in Section 3.

THEOREM 1. Suppose Assumption A holds. Then for all sufficiently large A and all
a € [, a1],
Qon ~ QX 2/ 2hrd)
Moreover, if G satisfies (1.8a) and (1.8b) with € = 0 and Ty, (x) = p>Y DG (xp ¥ ®+D),
then

Qa,n(f‘a,n) ~ Qan-.

ProoF. Because of Lemma 2 it is necessary to show that q., = g %n*®*9(1 + o(1)).
To accomplish this we first obtain a lower bound on q,. (see (1.16)). An analysis of the
bound then gives the desired result.

Let {I'»} be a sequence of kernels satisfying @,(I',) < A2 and therefore
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(1.10) ‘ J'I‘,.f— £(0) ‘ =A.,, fEF

Take f at (1.2) with a = ao, 7(x) =0on Spand fs, f=(1—-p) <1 Theng=(1+ 7)fon
Sp is in %, for 7 positive and sufficiently small. Let_ f be any density with support on
S¢. Extend f to pfon SS and extend g to (p(1 + 1) — 7) fon S5. Then with the use of (1.10)

2+ 1A, = ’ 1+ ’T)(J' Inf - f(0)> - (J I‘,,g—g(O))
j r.7l.
s¢

=lp(1+7)f an— (P(1+T)—T)J' an
S S5
Since f is an arbitrary density on S; it follows that ess supsg | Tn| = ((2 + 1)/ 7)As.

=7

Write
j T.f| - f Pnf—f<0>.|s|frnf—f<o>|
S5 S,
and find
(L11) J'an— f<0)‘s(2+’+ 1)A,,=2<1-:T>A,. for fEF
SU

Given € > 0, choose S = {x ||| x || = s} C So so that

(1.12) [f(x) —a|<e€ on S, fE%.

This is possible by Lemma 1. From (1.10)

frs

Let fbe a density concentrated on S5 and write [T.f= Yn SO that y, € [essinfs; I'», ess
sups; I'»]. If f is any density in %, which is conditionally fon S5, then

Jf‘nf— f(O)’ =\JPnf— f(0)+<1—j f)vn

(1.14) ¢
J' (Pn_yn)f+Yn_f(0).-
SU

(1.13) <A, +a, fEF, n=1

Take r(x) = +Is sgn(l’» — v.)m || x||* in (1.2) and use (1.14) to obtain

jl‘,,f— f(0) . zmax{ j (Tn — Yn)<a +Z%x’)
s, !

+f|rn—yn|m||xuk+yn— f<o>],
S

J (T _'Yn)<a + Z%x-’)
s, J:

supz,

(1.15)
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—J | Tn = yulm | x||* + v — f(0)|}
S

zf|n—yn|m||x||k.
S

It follows from (1.12), (1.13) and (1.15) that

Qa.,,(mzsup@{% f I‘?.f—%( f an) + < f T, f- f(O)) }
S

. - A + a)? ?
(1.16) qu’I‘ﬁ—(———“)+(Jll‘n—ynlmllxllk)
S S

n n

2
a—€ _ 2 _ & l
- Lm yo) +(L|n mmuxu) +0(n),

where the last equality follows simply from the fact that | y.| = ((2 + 7)/7)A, which was
noted before (1.11).

If T, = Is(T', — v.) satisfied (1.6) for each n, the result of Theorem 1 would follow easily
from (1.16). It will be shown that (1.6) is nearly satisfied by I, (see (1.23)), and that this
is sufficient to conclude the proof.

The first step is to get the estimates at (1.21) and (1.22). Take r(x) = Is,-s(sgn
I.)m || x ||* in (1.2) and use the triangle inequality in conjunction with (1.11) to get

1+
(1.17) f |Tm|x|*= 2( T)A,,.
S,—S T

o

ForO0=|j|<k—1and x €S, — S write
, R AN 2. .
[%/| = |max x|V = s = | = |ms* = | = |m | x|%,
ms ms

and use (1.17) to get

j
S,—-S

It is an easily checked consequence of Assumption A that for any 1 < | j,| < %k — 1 there
are densities f € %, with

(1.18)

syl 1+7 .
< . — L.
_(W>2 ( . )An, O0<|j|l=k-1

J
(1.19) f@)=a+Y d,% +8x0, x€ES,,

1=|y|=k-1

provided § is chosen sufficiently small. Use the f’s at (1.19) in (1.11) and the triangle
inequality to find

f T’

S,

o

From (1.18) and (1.20) it follows that

Yl 1+ .
JF,,xf s(s k+8“>2< T)An, 1=|j|sk-1
s ms T

Finally, use (1.2) in (1.11) with r = 0, apply (1.18) and (1.20) and get

1+7 a . |d|
-1 1 ]
J;Fn - 1| =a 2. < - )An(l +_msk + 8 215|J|5k—1 j—!>.

(1.20)

+
= 8‘12<1 T)A,,, 1<|j|<k-1
T

(1.21)

(1.22)
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Let T, = Is(T, — v») and g, = [T.x/, 0= |j| =k — 1. It follows directly from (1.21),
(1.22) and the fact that v, = O(A,) = O(n % @**®) that

(1.23) 8 = f [,=1+0@m "Dy g = J' T.x/ = O(n~%/@k+d)y,

l1=s|jl=sk-1

Take M(x) = (m’n/(a — €))?|| x||* = 5 || x||* and again set

Q(I‘)=J'I‘2+(J’|I‘|M)2.

The problem of minimizing @ over I's satisfying (1.23) has been solved in [8] with the
result that

T'(x) = bix’ — XM(x)). — bx/ + XM(x))-,

(205| J|=<k-1 (205| jl=k—1

where the coefficients b;, A are determined from the equations
ff‘xf=gj, o<ljl=k-1, J|F|M=X.

Moreover, Q(I') = Yo<i<s-1 & b;. Make the change of variables

x, = Y+

o 22(|]|+d)/(2k+d) 5
U, bf =p g Cj,

X = éﬁd/(2k+d)’ hl = -2|j|/(2k+d}gj
and set G(u) = (¥ Gu’ — || u||*)+ — (T Gu’ + §|| u||+)-. The equations that determine é,,

4 are

(1.24) J’Guf=h,, 0<|j|=k-1, J'G||u||’e=0~

From (1.23), h, = g, = 1 + O(n™%®**®) and h, = p2V/**+D g = Q(uVI-P/@+d)y ) < | f)
=<k — 1. Then if the ¢; are determined from (1.24) and ¢,’s are determined by (1.8) with p
= p there, | ¢ — ¢,| = o(1) for all j. Therefore

Q(f\ = Zgjb':, = [)2d/(2k+d} Zgjf‘/ _ (co + Ol))ﬁ?d/(?k-rd)A
From (1.16)

oa—€ 1
Qa,n(Fn) = T Q(Fn - Yn) + 0<;>

a—Ee€ m’n U/ @krd) 1
= (co + 0(1))< ) + O(—).
n a—€ n

Now ¢, = ¢,(€) is continuous in (the arbitrary) € so this lower bound, together with Lemma
2, establishes the theorem.

REMARK 1. A slightly simpler approach to the result in Theorem 1 is possible if the
class of kernels used is %, = {I'|0 € [essinfs, I, esssups, I']}. The kernel I" with I'(x) =
a is then automatically ruled out and if q., is defined by

(1.5') Qan = infy Qo n(T),

the proof of the theorem can proceed as before with y, = 0, and it does not require the
argument leading to (1.11).
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COROLLARY. If Assumption A holds, then

inffﬁ SupaSal Qa,n(r) ~ Qﬂl,ﬂ(Falﬂ).

ProoF. It is easy to show that g increases with a and then, from Theorem 1, that
Supae[ao,al] Qa,n(F) = Supae[ao,al] q:n_2k/(2k+d)(l + 0(1))
= q¥n @D (1 4 o(1)).

If 0 = a =< @, one gets from (1.7) that

- 2
N <+ N .
Quillen) = j ré,,,+( f |r.;,,|m||x||’z) +0(,1L)

= gan(1 + o(1)),

and this is enough to establish the corollary.

2. Adaptive estimate. The asymptotically optimum sequence {I',.} given in Theo-
rem 1 depends on the unknown value of a = f(0). In this section we show that a two-stage
procedure which first estimates « can give the convergence rate associated with I, , for all
0 =o=aqa.

Suppress the dependence on n and write Iy, = I', and £,(0) =% ¥r, TulXi). A two-

stage adaptive procedure is defined as follows: Take a starting value a € [a, a; ], compute
a by
if f30) <ao

&=do :
=0 if fx0) € [a0, a]
—a i 0= a,

i=1

and then define :(0) =rll T T4(X;) to be the estimate of £(0).

THEOREM 2. SupmE(f(0) — f(0))2 = qXn 2%+ (1 + 0(1)) for all a € [ao, 1] and
any starting value a € [ao, ;).
Proor. It is enough to show that

2.1) supz E(f(0) — £u(0))* = o(n /) o € [ap, 1]

because of the asymptotic optimality of f£,(0) proved in Theorem 1.

Consider the function G defined at (1.8a) and (1.8b). G vanishes outside some sphere
| x|l < o1, | G(x) | is bounded by some constant o for all x € R and, for some constant o3,
|G(x) — G(y) | < 03| x —y| for all x, y € R%'If B € [0, a1] and ['s(x) = (m?n/(B))Y*+o-
G((m®n/(B))"/**?x), then I';(x) vanishes outside the sphere || x || < (a1/(m?n))"** g, =

Sn, Say. For B’ Y € [aO’ al]y
mln\ V@D 2\ V2D
o) <)o) )
B Y :

min d/(2k+d)
Iyx) - T =
| Ta(x) — I'y(x) | ( B )
d/(2k+d) 9\ d/(2k+d) 2\ 1/(2k+d)
@ |G- (el )

d/(2k+d) l .B —

=o4n YI

for || x|| < s.. For large n, s, < s, and then (2.2) implies
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’ j (f‘ﬁ_r‘y)f = J' (r‘B_r‘y)f = J’ (f‘,g—f‘y)r
(2.3) llxll=s, IIxl=s,
<on? g~y | mx|* s on D g~y
Il xll=sp
for any f€ %,.
For a fixed f € %, write
(2.4) E(f(0) - ful0))* = ;11—2 %, T, E(Ca(X:) — LalX)(Fa(X) — Fa(X)))

and consider an individual term in the sum, with i # j. Let a = (1/(n — 2)) Y, JTa(X)) if
this average is in [ao, a1], @ = ay if the average is <ao, and a = a; otherwise. Then

E(F(X,) — Fu(X)) (Te(X,) = Ta(X,))
(2.5) = E{([(I'«(X) — F'u(X)) + (Ta(X,) — Ta(X.))]
X [(Fa(X,) — Tu(X)) + (Fa(X,) = (Ca(X;))].

To evaluate E(I';(X:) — I.(X.))(£s(X;) — T'a(X))), condition on X;, I 5 i, j, and the
expectation is bounded by o%n2/®**?| 5 — «|? because of (2.3). According to Lemma 2,
E(& — a)? = O(n~/**9) 50 the unconditional expectation is O(n~*/@*%) One can
calculate directly with the use of (2.2) that |& — &| = aen™**/®*®_ Observe that ifI, =
Tx, s,

| E(Ca(X,) — Ta(X.)(Ta(X,) — Ta(X.)) |
= | E(C4(X,) — TaX)(Fe(X,) — La(X)))LL)|
< ainZd/(2k+d)ogn—4k/(2k+d)EI’IJ < o7n—4k/(2k+d)

with the last inequality coming from the estimate [}.)=, f < 0sn~%®*%, a consequence of

Lemma 1. Therefore the term at (2.5) is O(n~**#*®)_ Since the diagonal terms in (2.4)
can be bounded in the same way, (2.4) is bounded by a term of order n~**/®*? =
o(n~2/@k+d)y yniformly over %,. The theorem is proved.

3. Remarks and examples.

A. ESTIMATING f AT OR NEAR A BOUNDARY POINT. Under Assumption A of Section 1,
0 is an interior point of the support of f. If the S; at (1.1) and (1.2) is taken to be a “one-
sided” interval it is possible to obtain corresponding results when 0 is a boundary point of
this support set. The situation is most easily described in dimension 1, with 0 a left
endpoint of the support of f, say. The asymptotics governing the development to (1.8) will
now produce integrals over [0, ®) rather than (—, ) and the resulting G will differ
accordingly (see the table in Section 3B). Similar changes occur in higher dimensional
settings and there one can find asymptotically optimum kernels that depend on the shape
of the boundary of the support set near 0.

If 0 is again a left endpoint and the problem is to estimate f(x) for some x, > 0, the
estimator from Section 1 is

3.1) ) =2 5 OGO, — x,))

Suppose then that x, varies with n so that p¥®*?x, — ¢ as n — «. An analysis like that
in Section 1 would now determine an asymptotically minimax estimator having the form
(3.1), but with G satisfying (1.8) with integration extending over the interval [—¢, ®). For
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a finite sample size illustration of this effect, suppose d = 1, k=2, xo = %, m =%, a =%
and n = 32. A simple calculation gives ¢ = 1 and one might therefore employ the G listed
as Entry 7 in Table 1. For the same values of d, &, m, a and n, x, = 1 would not be judged
as near the boundary since, with ¢ = 2, Entry 4 of Table 1 now applies.

B. EXAMPLES OF G. (1.8) can be solved by hand in some simple cases, and generally
one can resort to a computer and the algorithm of [8] in order to obtain a solution. In
Table 1 the column “Interval” should be understood in the sense of Section 3A. By
“Positive part of G” is meant the function Yc,u’ — 8 || u ||* that appears in (1.8a) —G itself
is easily obtained when this is given. In this connection note that the kernels given as
entries 1, 2, 3, 4, 7, 10 and 11 do not have a negative part (e.g., for Entry 7, .586 — .056 u
+ .308 u? is never negative). Entry 3 can be obtained as follows: For 0 < ¢ < 3"° solve [,
(co — @|ul|)+ du = 0 and obtain c,/6 as the unique real root of z° + 32£% — 2¢% — 6 = 0.

Then [/? (% —lu 1) du = 1/ determines 6.

C. ASYMPTOTIC EFFICIENCIES. To compare the asymptotic behavior of the optimal
kernels with some standard ones, we will only deal with the important case & = 2.
According to Theorem 1, the kernels I', have asymptotic mean square error

4/(d+4)
(3.2) Qun(T) ~ m2<n:z?) cx,

where (see (1.8) and remarks following) ¢} is given by the constant coefficient in Table 1
and, from Entry 11 (which is the pertinent one), we obtain

(3.3) oX = poi/(d+d) d+ 2\ g\
. *=y; . 4

The Epanechnikov kernel I, is given at (0.5) when d = 1 and, for general d,I'Y =
[I%1 Ton(x;,). It is straightforward to calculate that

TABLE 1
Entry Dnn((:ir;smn Degree (k) Interval Positive Part of G
1 1 1 (—00, @) or 371 =3 | u|)=.693— 481 | u |
[-§ w), £=3"
2 1 1 [0, ) 2671 -6 | u|)=111-6.06 | u |
3 1 1 [—£ =), £ < 31/3 (see text in Section 3B)
3(4)” 1 AN = 576 — .339u*
4 1 2 (—o0, o) ) i\ 3 u'l=. .
5 1 2 [0, ) 2.81 — 3.01u — .75u°
6 1 2 [—.5, ) 902 — .766u — .159u*
7 1 2 [—1, ) 586 — .056u — .308u*
8 1 3 (—o0, o) 901 — .945u% — .359|u|®
9 1 4 (—00, o0) 96 — 1.2u% — .33u*
_ d/(d+2)
10 d 1 R % (1= (01 = 0a) /2 ] *
0 — VUl
_ d/(d+4)
11 d 2 R® (©2 — va) (1= (v2 = v)¥ " |lu)?)*

(vo —v2)

* U = [ || ul d -4 v —ﬂifdiseven v = m'¥ 12 a-1 !/d! if d is odd
U = fjup|| e U= d o T @ , Vo 5—)!/d! :
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4/(d+4) 4d/(d+4).
3
(34) Qa,n(rgn) ~ m2<n:lz) (d + 4)dd/(d+4)4—4/(d+4) <53_/2)

The ratio of (3.2) to (3.4) produces the asymptotic relative efficiencies given as the entries
in the column of Table 2 headed by Epanechnikov.
The other kernel we compare is Rosenblatt’s kernel which is obtained by taking Wi(u)

1/5
= 1 on [-%, %], W(u) = 0 otherwise, b, = <% %2) and forming the 1-dimensional
kernel I'(u) = b, W(ub;') (see (0.3)). For d-dimensions we use 'z, = T'(u;) - -+ I'ua).
Another straightforward calculation shows that

i 4/(d+4)
(3.5) Qun(Trp) ~m? « dd/(d+4)ﬂ(36)—d/(d+4)
R nm? 4
The ratio of (3.2) to (3.5) produces the last column of Table 2.

D. OTHER CLASSES OF f’s. For the special setting discussed in the introduction the
assumption | f” | < 1 leads to a problem different from those of the present paper, as well
as from those considered in [2] and [7]. For simplicity in the present discussion suppose
this is the relevant assumption and that 0 is a left endpoint of the support of f with f(0)
= 1. For T satisfying [ ' = 1 and [ «T" = 0, the bias term [ I'f — f(0) can be rewritten as
J T(x)(f(x) — f(0) — xf'(0)) dx. After an integration by parts the minimax problem can be
related to that of

w o 2
. 1
(3.6) mlnHlH(0)=0,H‘(0)=l{_J’ H" + ( J' |H|> }
nJo o

with H” = I'. Variational problems of this type are characterized by considerble mathe-
matical difficulty and rather complicated solutions, as is evidenced by the work of Berkovitz
and Pollard [1] and Hestenes and Redheffer [4]. For the present case, Theorem 1 of [4]
implies that the minimizing I' has a continuous derivative and this smoothness means the
kernel given as Entry 5 in Table 1 cannot solve the problem with | f”| = 1. Thus, while
this kind of restriction on f is appealing, the difficulty of obtaining workable solutions
makes it reasonable to retain the assumptions about f as they are given in Section 1.
Moreover, it appears that there is not much loss of efficiency when one uses the kernels
found here as suboptimal solutions to problems like (3.6) (see [8] for some remarks about
this).

E. CHOOSING m. To implement the procedures of this paper it is necessary to specify
m. Some scant information obtained in regression contexts indicates that crude methods
may be adequate since the estimate f(0) seems to be insensitive to misspecification of m.
We hope to address these problems later.

‘

TABLE 2
ARE
d Epanechnikov Rosenblatt
1 1 94
2 99 .89
4 95 .83
8 91 .75
00 .67 49
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