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THE SECOND ORDER PROPERTIES OF A TIME SERIES
RECURSION

By V. SorLo

The Australian National University

In this work we prove the asymptotic efficiency of a certain time series
recursion for the parameters of an ARMAX time series model.

0. Introduction. In recent years, in the Engineering literature, there has been an
enormous interest in real time methods of parameter estimation. These methods, known
as recursions, have been seen as a first stage in the design of adaptive control schemes as
well as a means of tracking slowly varying parameters. In this work a particular time series
recursion known as RML, (see Soderstrom et al., 1974) is investigated and shown to be
asymptotically efficient in that it has the same asymptotic covariance matrix as the
Gaussian maximum likelihood estimate. While this is certainly an interesting result (and
the first of its kind for time series recursions) it is not the final answer since in practice it
seems RML; must be monitored to ensure its convergence; this can be a costly affair. Thus
there is interest too in less efficient recursions that can be operated without monitoring
(see, e.g., Solo, 1979, 1978a).

The convergence of RML; has been discussed by Ljung (1977) and Hannan (1978). The
present discussion is relatively straightforward in conception though the details are tedious.
The idea is to introduce a fictitious term (related to the recursion) which clearly obeys a
central limit theorem (CLT). The term is simply subtracted from the normed up recursion
and the remainder shown to converge to zero (a.s.). The idea of subtracting off a term that
obeys the desired limit law has been used also by the author to discuss stochastic
approximation schemes (Solo 1978a, 1978b).

The paper is structured as follows: Section 1 is devoted to introducing RML;. In Section
2 we review the convergence behaviour of RML, along the lines of Hannan (1978) and
Ljung (1977). Also some propositions that will be useful in the CLT proof are established.
Section 3 contains a proof of the CLT. At the end of Section 3 a brief indication of an
invariance principle for RML,; is given.

1. Preliminaries. Consider then, an ARMAX model for a scalar time series with
stationary exogenous sequence or input sequence, u, and output or measured sequence y..
Following Ljung (1976), the model is defined by a formula for its innovations or prediction
error sequence as

(1.1) e(0) = (1 + »(L)) (1 + a(L)) yn — y(L)un)

where .

W(L) = 35 wL!
and so on, and L is the lag or backwards operator; also § = (a’, ¥, y')’ with a = (a; - - -
an,)’ and so on, while § € R a compact subset of the open set

S={0|1+a(L),1+ »(L) have all zeroes strictly

outside the unit circle in the complex L plane}.
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308 V. SOLO

It is assumed there is a true value 6, € R 3 e,(6p), denoted e, is a martingale difference
sequence w.r.t. %, the increasing sequence of ¢-algebras, generated by ¢,: €, is also then
called a nonlinear innovations process so that the best least squares predictor of y, from its
own past is a linear predictor. This is a minimal assumption if the linear model is to make
sense: cf. Hannan and Heyde (1972). Denote e,(6) by €, and assume that

(1.2) E(eX| Fnoy) = o
Assume also 3 a small § > 0 with

(1.3a) Sup.E (| €, |3 < K < o,
(1.3b) _ Sup.E (| u, |Y"7%) < K < oo,

where u, is taken to be a stationary ergodic stochastic process.
Now recursions can be constructed by sequential minimisation of an approximate
likelihood such as

N7 ¥V en(d).
For the simplest time series model, namely a linear regression where
en(o) =Yn — 0,xn

for some vector of regressors x, the exact solution to the minimisation problem is given by
Plackett’s algorithm (Plackett, 1950)

0!: = 0n—1 + annen
P.' =P, + x,x,
en=Yn— Xnb0,_1.

Notice for the regression that —de,/df = x,. For the RML; recursion an approximate
solution to the minimization is generated by utilising the gradient vector

Gn(0) = —den(0)/d0
= —(1 + V(L))_l(Pn(g)’

where
Pnl0) = (=Yn-1 *++ —Yn-nn-1(0) +++ €np (Dttn-y -+ - Un—n,).
This gradient has three components
(=Fn-1(0) + -+ —Fn-n (0)€n-1(0) - -+ €1n(0)tn-1(0) - -- hn-n (6))

that obey

(1.4a) (L + v(L)yn(0) = yn,

(1.4b) (1 + v(L))én(8) = en(8),
(1.4¢) (1 + »(L))1n(8) = un.

Notice that

(1.4d) (1 + ao(L))yn(8o) = €n + yo(L)iin(6o),

(where the subscript zero denotes a true value). We will need to know that stationarity
and ergodicity (which we assume for €,) ensure that the limit

(1.5) R =lim n7'p;"(6o) = lim ™" " ¢,(80)¢4(60)

exists w.p.l. It is further assumed R is positive definite.
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The recursion will be then

(1.6) On = 0n_1 + Prgres,

(1.7 Pl = Pl + ¢a9n,

(1.8) €n=Yn— @Prnbn

where

(1.9) @n = (=Yn-1++* —Yn-nln-1*** nopUn-1++* Unn)

while ¢, has components y,, €., &, that obey

(1.10a) (1 + vas(L))Yn = Y,
(1.10b) (1 + va-1(L))€r = en,
(1.10c) 1+ voi(L))n = un

(with »,_1(L) = ¥1" v,—1,;.L* where »,_,, are the v-coordinates of 6,).
With (1.4d) in mind, and for an ARMA model (u, absent) (1.10a) is replaced in Hannan
(1978) (henceforth referred to as (H)) by

(l.loa), (1 + an—l(L))y.n = ée,.

Actually (H) only explicitly derives results for an ARMA case but it is pointed out there
that the same results will go through for the ARMAX case, with an equivalent of (1.4d)
replacing (1.10a) once more.

2. A review of the convergence behaviour of RML,. The RML; recursion as
given may not converge and must be monitored. Two schemes have been suggested, one
used in (H) and the other in Ljung (1977). This latter scheme is similar to that used by
Albert and Gardner (1967) and also Nevel’son and Khas’minskii (1973/1976; Chapter 7).
Only the first scheme is discussed here.

The region of stability is separated into an inner region R. and an outer region R; with
R; C R, C R. Here R, is such that V € R,, 1 + «(L), 1 + B(L) have no zeroes for |L | <
1 + p, u > 0. Also any pair of zeroes one from 1 + a(L), one from 1 + (L) are at least u
apart in the complex L plane. R, is described in a moment. Denote the output of the
modified recursion by §,..

Let d be a fixed value inside R,. Define an auxiliary sequence 8, which is §, until §, first
exits from R; and is 4 until it returns to R; when 8, = 6, again and so on. R, will be chosen
to ensure the event {6, remains outside R, indefinitely long} has zero probability. The
recursion is now

(2.1a) 0. = 6,1 + P,Gnre,
(2.1b) P.' =Pl + ¢,
(2.10) €n = Yn — (P;lén—b

However e, in (1.9), (1.10) is replaced by
(2.1d) €n=Yn— @nbu1
and v,—1(L) in (1.10) is #,—:(L) and so on. Thus to (2.1) we add

(22) PQn = (_yn—l e _yn—n"e—n—l e e—n—nl,un—l e un—nv)
(2.33.) 1+ in—l(L))y.n =Xn
(2.3b) 1+ vp1(L))en = e,

(2.3C) (1 + Enfl(L))lZn = Un
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with
Vn1(L) = ¥y, L*  etc.
Subtract 6, from (2.1a), multiply through by P,,' and sum up to obtain
0n — 6o = P, 37 pu(es — ¢4(6,-1 — o).
If we notice the Taylor series
e (0) = €. + @a(0°) (0 — o)

then it is intuitively clear that we can expect ultimately to be dealing with an expression
like

P, Y7 g€,

and so expect convergence and asymptotic efficiency. In any case, by repeated use of the
martingale convergence theorem gin the form presented by Neveu (1975, page 151)).
Hannan (1976) is able to evaluate 6, as

(2.4a 0.=6,+0,(1) as.
where

(2.4b) b, =n"'K;' 3% a(f.-1)
where

(2.4¢) K,=n"'Y! G0,-)
with

G(8) = E(¢.(0)9,.(9))
in (H) this is denoted by K (6) and
(2.5) a(f) = E(¢n(0)(e. () — ¢.(0)8))

(cf. expression (2.14) of (H) where this is written in a different form; recall also that from
(2.1a),

6, = P, Y% ¢u(es — ¢40,1))
We reorganise these expressions as follows. Write

a(@) =£0) — G@O)o
with

f(8) = E(¢n(0)en(0)).
Now we may write (2.4b) as

0.=01 + nT' K7 (a(@u-1) + G(Br-1)éner).

Once it is known that the recursion converges so that d, = 8, + 0,(1) then this expression
may be evaluated to 0,(1) a.s. as

(2.6) 0n =001+ n 'K f (Bno).
Also (2.4c) may be reorganised as
(27) Kn - Kn—l = n_l(G(a—n—l) - anl)-

Now setting 7, = Y1 s~ and making the notational transformation 8, < () we are led
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to consider the behaviour of the ordinary differential equations
db(r)/dr = R™\(7)f (6(r)),
dR(r)/dr = G(0(r)) — R(),

which are, in fact, the pair presented by Ljung (1977): see also Soderstrom et al. (1974).
The monitoring of the recursion enables the following conclusion to be drawn.

ProposITION 1 (P1). lim inf n™'P;' > 0 as.

Now we can see how the region R, is defined. Suppose ., remains outside of R,
indefinitely long then clearly
6,— 6=G7'(B)a(d)
=G ' G)f @) +9.
Recall
1(0) = E(¢pn(0)en(6)).
Straightforward manipulation shows the ‘pseudo’ Taylor series

() = € — @n(6, 6o) (0 — o)

where

@n(0, 60) = (1 + »o(L))'@a(0).
Thus
(2.8) £(8) = —L(8, 60)(6 — 6o)
where

L(8, 60) = E(9x(0)pr(0, 60))
so that

0— 6= I~ G ()L, 6,))(8 — 6o)

(cf. (H) expression (2.16); also expression (2.4) for L (6, 6,) and the present one are easily
seen to be identical).
Now R is defined so as to ensure

(2.8a) 11— G )L, 8| <1
so that

16— 6ol =18~ 6ol
which is a contradiction.

The following result is obtained.

ProrosITION 2. (P2). 8, — 8, — 0 ass.

Actually in (H) a stronger result is proved. It is not required that e,(6o) be a martingale
difference sequence, only that y, be a stationary process. Then 6, is defined as a value
which minimises E (eZ(8)) or else satisfiesE (¢.(f)e.(8)) =0.

For the CLT/IP a stronger convergence result is needed namely (Theorem 2 of (H))
when sup E (e3) < « then,
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ProposITION 3 (P8). nV?7%(§, — 6,) — 0 a.s. ¥§’ > 0.

In particular we will take 8’ = § of (1.3a). The result is intuitively clear for the following
reason. Consider the quadratic form V, = (6(1) — 6o)'R(7)(6(t) — 6o) (equivalent to V, =
(0, — 00)’' K. (6, — 6o)) then it follows from the differential equations below (2.6) and (2.7),
that

dV./dr= =V, —=2(0(r) — 60)'f0(r)) + @(r) — 5)'G@(r))(@ () — b)).
Recalling (2.8) we see
dV,/dr=—V.— (8(r) — 6o)' (L7 + L; — G(0(r))(@(r) — o)
with
L. = L(6(7), 6).

Now if §(1) — 0 a.s. then L, — G(0) and we may expect the second term to be negative
for 7 large enough: we are left with

or dv./dr=-V,

V.= V(1 — 1/n).

It clearly follows that n'~%'V, — 0 for any §’ > 0. i
It will be naturally necessary in the ensuing discussion to dispose of the difference 4,
— §,.. It follows from the definition of §, and P2 that

PROPOSITION 4 (P4). There exists a random variable no with no < ® as. and 6, =
6,Vn > n,.

We will also need
ProposITION 5 (P5). lim n(P, — P,(6y)) = 0 a.s. or lim n ™ (P;' — P;'(6y)) = 0 ass.

Recall from (1.5), lim n™'P;'(6) = R. The proof of this intuitively reasonable propo-
sition is postponed.
The following rate of convergence result is also needed subsequently.

ProposITION 6. (P6). Under condition (1.3a),
n'?%@, — 6,.)) - 0 as.
Proor. Now
G, — 0, = nP,,nT‘(ﬁn(yn — @hba-1).
In view of P4, P5 and expression (1.9) it is enough to show

—1/248 = = —1/2+6 =

n1/2+6n_1¢n(yn - (pila-n—l) =n Prnen =n Pn€n + n_1/2+8¢"(e—" —&)—>0 as.

This will follow if (setting g, = || ¢.||)

(2.9) || n~ /42 5 0 as.
(2.10) | — € |n~ V2 50 as.
@2.11) Gan V2 50 as.

Of course we expect a much better result than (2.10) and one will subsequently be obtained.
Now (1.3a) ensures, via the Bienaymé-Chebyshev inequality and then the Borel-Cantelli
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lemma that (2.9) holds. We now show
(2.12a) sup,E (| &, — €. |""%) < o
(2.12b) sup.E (¢5/' %) < oo,

So that (2.10), (2.11) will follow by the same argument.
Begin with (2.12b). Take one component of ¢, say €, with

(2.3b) (1 + vus(L))én = €,.

Now @, which is used to construct 7,-,(L) lies inside the stability region R, so we must
have for some constant A < 1, and another D

|é.] =¥t A"°|é&| + D\
where DA" accounts for initial conditions. Now
[én] = YTAN"°(| &, — €| + | &]) + DA"
= YT N(] 8n—s — €n—s| + | €a—s|) + DA"

whereupon (1.3a), (2.12a) and Holder’s inequality will ensure (2.12b) holds. Similar
arguments follow for the other components of ...

Turn now to (2.12a). From equations (2.1d) and (1.1)
(1 + ;n—l(L))e_n = (1 + a_n—l(L))yn - fn—l(L)un
(1 + VO(L))Gn = (1 + aO(L))yn - YO(L)un'

Thus
(1 + wo(L)) (e, — €) = (@n-1(L) — ao(L)) Yn — Fn-1(L) — vo(L))tin
(2.13) = (Yn-1(L) = yo(L))un
= —@n(l,-1 — 60).
Now since 1 + »o(L) is assumed stable we have for some constant A < 1
(2.14a) | — €| = Tt N9, ]| 1 — o] + D" o =o.l

Again we recall 8, lies in a bounded (stability) region so for some constant C
(2.14b) | — €| = C YN @, + DN
= C Y7 N@u—s + D"
We note in passing that we can do better than this; since via P3 we have from (2.14a)
| &, — €| = 37 A" *g,0,(1)s7/**® + DA
so that if it can be shown that
(2.15) @n /50 as.

we will conclude, via the discrete ’'Hospital rule (a special case of the Toeplitz lemma, see
Bromwich, 1947, page 404)

(2.16) n'*|é, —e,| > 0 as.
Finally by the same argument that shows (1.3a) implies (2.12a) we see (2.15) follows from
(2.12¢) sup, E (@) < oo,
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Returning to (2.14b) it is clear, via Holder’s inequality, that (2.12a) will follow from (2.12c).
To see (2.12c) observe that since 8, (used in the formation of ¢,) lies in the stability region,
@ is formed by stable linear filtering operations on y,, u.. Thus for some constant A < 1

on < SN[ e] + |m]) + DA?
= U N (| €ns| + | tnos]) + DA"
whereupon (2.12¢) follows from (1.3a), (1.3b) via Holder’s inequality.

The proof of P5 is now given. The norm of the difference in P5 is bounded by
2N YV Gada + N7 RN 8n = 2NN XY (g)’NTU RN 802 + N7V R 8
where
@n =[G, 8 =IlGn — Fr60).

If we show lim 8, = 0 then, by the discrete I’Hospital rule we can conclude lim N™'YY 82
= 0. Consider one component of ¢,., say €.
From (2.3b) and (1.4b) with 8 = 8, we deduce

(1 + #-1(L))(€n — €n(6o)) = €, — € + (vo(L) — vn-1(L))€rn(6o).
Appealing yet again to the fact that &, lies in the stability region we have, via P3,
|€n — €n(00)| = X N"*(| €u(00) | s7/**00,(1) + | &, — & ).
Thus, via the discrete I’'Hospital rule lim | &, — €,(6o)| = 0 follows from
&, —e|—=0 and |é(Bo)|s7* >0 as.

The first of these hold by (2.16) and the second from sup, E | €.(6o)|*/*-* <  in the same
way that (2.9) follows from (1.3a).

3. A central limit theorem for RML,. It was pointed out above that summing the
recursion (2.1) yields

0, — 60 = Po 37 sl + (01 — o).
Also it was mentioned that the summand in this expression looks like
e,(0) — (de,(0)/d6) (8 — 6,) for 8 =0,
and via a Taylor expansion this is almost e,(6y) = €,. So let us introduce
3.1) Q. = n'’P, Yip.e..

This quantity can easily be shown to obey a CLT so that a CLT for RML; will certainly
follow if

(3.2a) n'*@,—6;) — Q. — 0 as.

THEOREM. Let 0, be the output of the monitored RML, recursion described in (2.1),
(2.2), (2.3) and the paragraph above (2.1), where the region R, in that paragraph is
defined so as to ensure (2.8a) holds. Then

nl/z(gn - 90)—>@N(0, R_l)
where R is defined in (1.5).

Proor. Following the comments above it is enough to show (3.3a) and (3.2a).
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(3.3a) Q.—+N (0, R™).
Now in view of P5, (3.3a) may be replaced by
(3.3b) n 2 8 Np.es—> N0, N’RA)

where A is an arbitrary fixed vector. This follows via P5 from the martingale central limit
theorem of Scott (1973).
Now (3.2a) is just

n?P, Y1 9.6 — € + @6 — 60)) > 0 ass.
Once more by P5 it is enough to show
' RV SR G, — € + Gt — 6)) > 0 as.
From P4 this may be replaced by
(3.2b) n72 YT Gu(@s — € + §i(fe1 — 6) > 0 as.

Denote f, = | &, — €, + 93(0;—1 — 6o)| and Ga = || ¢, ||. Then (3.2b) will follow if n™** ¥ ¢s f;
— 0 a.s. The idea is to show ¥¥ ¢ fis7"/* < @ a.s. so the result will follow from Kronecker’s
lemma. T'o bound f; begin by recalling (2.13)

(2.13) (1 + #0(L)) (€ — €) = @n(Bn1 — o).
Furthermore it is shown in the Appendix that

(3.42) (1 + 7n-1(L)) (@ (Br-1 = 00)) = @7(Bn1 — b0) + d

where

dn = O0([|0n = Gus ]| @n).
It follows then that
(3.4b) (1 + #-1(L)) (@ (Bn-1 — bo) + & — €,) = (7p-1(L) — wo(L)(&n — €) + dn.
Now in view of P6
|d.| = 0.(1)n™Y*°,.
Finally it follows from argument already given in proving P6 that
fo=|GnB1 — 00) + & — €| S TTNF|ds| + TTNF| & — €] 05(1)s7 VP
=YENTE0,(1)n7 2 (Gn + | € — € | R7).
Thus set {, = (¢ + | & — €| n*°) and consider
Y GofesT2 = T GesTE TENTO0(1) T,
=TV 0. (1)t 20 T s
= 2V 0 (DSt T Greck”
= 2V 0. (DSt
where ¢, = Y5 @reN.
Recalling the definition of {, and that | &, — €, | n** — 0 (see (2.16)), we need only show
S Guths ™0 <0, BT s <
these will hold if (see Lukacs, 1975, page 80)
YT E(@ue)s™ P < o0, TF E(Ys)s™ " <
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which will hold if
sups E (¢ss) < oo, sups E () < .
Now E (¢.%) =< VE(¢3) VE (¥3) while
E*Y) =EW) = (1 -\ 35 NE(¢20)
so the required result follows from
sup,E (¢3) < o
which holds in view of (2.12b).

REMARK. An invariance principle for RML,. Denote 7, =Y7 s~ and define
k() = sup{m:7Tpsm — T < t}.
Now (3.1) may be reorganised as
dQ. = {(% + o(n™)I — R:'$.97)} Qu-1d71, + dW,,
where
W, =R;' Y1 ¢.e./s"?
R. =nP;' and dr, = 7, — 7._; etc. Notice that Var(W,) = R;'7, so that W, resembles a

Wiener process on a time scale 7, = In n. Also, recalling the definitions of R, and P, we
might expect ultimately to deal with a process Q, that obeys

dQ.=—% Q. 1d7, + dW,.
It is not surprising then that it can be shown (though not easily) that (see Solo, 1978a)
(3.5) Qrir,(t) = Q(2)

where for an arbitrary fixed vector A, @ (¢) = N’Q (¢) is the continuous Gaussian process on
DIO0, 1] the space of all right continuous functions on [0, 1] that have left-hand limits, with
t
Q) =e Qo) + f e W (s)
0
and Q(0) ~ N(0, 0% while W(¢) is the Wiener process on D[0, 1] with variance ¢ =
AMR7A. If we define Q, = n'/?(d, — 6,) then once (3.5) is established the conclusion

Qs (8) = Q(2)
follows provided
SUpPo=¢=<1 " Qn+k"(t) ~ Qn+kn(t) " —>p 0.

This will hold provided || Q. — Q.|| —, 0 which is however a consequence of the proof of
the CLT (that is of condition (3.2b) of Section 3).

CoNcLUsION. It has been shown that a monitored form of the RML; recursion obeys
a CLT and is indeed asymptotically efficient. The result can be extended-to give an
invariance principle for RML,. This enables the construction of a confidence interval for
the trajectory of the recursion for all time from a certain time onward: see Ibragimov and
Khas’'minskii (1973) who give details for a conventional maximum likelihood estimator.
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APPENDIX

DERIVATION OF RELATION (3.4a). The argument is tedious but simple and is therefore
illustrated for a MA(2) model only. Now

1+ Fn—l(L))(QBZ(o_n—l — o))
=1+ vl + '72,n—1L2)(én('71,n—1 =) + (1 + vyn1 L + 920m1 L¥) (én(2n-1 — 13)).
Now the first term is
en(Vi,n-1 — 1) + V1,n-1€n-1(P1,n—2 — ¥1) + P2,n—16n—2(P1,n—3 — V1)
= €,(Vi,n-1 — 1) + Pp—1€n-1(P1n—1 — ¥1) + Vo,n—1€n—1€n—2(V1,n—1 — 1)
+ Vin-1€n-1(Pin—2 — V1,n-1) + Vo,n-1€n—2(¥1,n—3 — P1,n1)

= ('71,"—1 - Vl)[(l + '71,n—1L + ;Z,n—le)én:l + O(" o—n I”I(ﬁn "" 0_11 - 9——1 ")

= ('71,"—1 - Vl)en + O(" (ﬁn "" gn - o_n—l ")
in view of (2.3b) and the fact that 8, is surely bounded.
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