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BY LorRRAINE DEROBERTIS AND J. A. HARTIGAN

University of Wisconsin-Madison and National Bureau of Standards and
Yale University

Partial prior knowledge is quantified by an interval I(L, U) of o-finite
prior measures @ satisfying L(A) < @(A) = U(A) for all measurable sets A,
and is interpreted as acceptance of a family of bets. The concept of conditional
probability distributions is generalized to that of conditional measures, and
Bayes theorem is extended to accommodate unbounded priors. According to
Bayes theorem, the interval I(L, U) of prior measures is transformed upon
observing X into a similar interval I(Lx, Ux) of posterior measures. Upper and
lower expectations and variances induced by such intervals of measures are
obtained. Under weak regularity conditions, as the amount of data increases,
these upper and lower posterior expectations are strongly consistent esti-
mators. The range of posterior expectations of an arbitrary function & on the
parameter space is asymptotically by % aon + 0(on) where by and o¥ are the
posterior mean and variance of b induced by the upper prior measure U, and
where a is a constant determined by the density of L with respect to U
reflecting the uncertainty about the prior.

1. Introduction. In practice, prior knowledge is typically vague and any elicited
prior distribution is only an approximation to the true one. Less stringent modes of
quantifying prior information would make the Bayes approach more practical and would
protect against the inferential errors that could result from the discrepancy between the
elicited and true prior.

Keynes (1921) proposed that probability should be a partial ordering on pairs of
propositions, induced by statements of the form “A, given B, is more probable than C,
given D.” Koopman (1940) axiomatized Keynes’ approach. If the observation space can be
partitioned into events which are judged equally probable, Koopman developed a technique
for assigning upper and lower numerical values to conditional probabilities. Good (1961)
offered an axiom system for such upper and lower probabilities.. Smith (1961) defined
upper and lower probabilities to correspond to a range of bets which might be accepted for
or against a proposition; any probability between the lower and upper probabilities is
acceptable. For a continuous parameter, Smith suggested accepting any of a convex family
of prior probability densities. Heath and Sudderth (1972) consider bets to be random
variables on some sample space, and show that if a convex set of bounded bets contains no
entirely negative bet, then there exists a finitely additive probability measure giving every
bet in the set nonnegative expectation: the convex set of such measures is the analogue of
Smith’s range of probabilities for a single event. Heath and Sudderth (1978) develop the
relationship between families of acceptable bets and admissible decisions; if a decision is
admissible, it must be worthwhile betting on it against other decisions.

Throughout the following, © will denote an arbitrary parameter space, and & a o-field
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of subsets of ©. A measure @ on (0, #) is a nonnegative, countably-additive function on
%; Q is a probability measure if @ (0) = 1. The analogue of lower and upper probabilities
for a convex set C of probability measures is the collection of extreme points of the set;
under suitable conditions, all probability measures in C will be expressible as mixtures of
extreme probability measures, and continuous linear functionals on C (i.e., expectations of
bounded measurable functions of §) are optimized at the extreme points of C.

For a given pair of o-finite measures L, U on (0, #) satisfying L(A) < U(A) for all
A € 2 (denoted L < U), let I(L, U) be the convex set of measures @ satisfying L < @ <
U. Since we require only that L and U be o-finite, such useful prior measures as Lebesgue
measure may be accommodated. The lower measure L and the upper measure U are direct
generalizations of the lower and upper probabilities of Koopman and Smith. They are not
excessively burdensome to specify, as would be a completely general convex family of
measures. Bayes theorem “works” on the interval I(L, U) in that prior measures in I(L,
U) map into posterior measures ranging between those induced by L and U. Upper and
lower posterior expectations, and variances of arbitrary bets b:0 — R! are obtained. Under
quite weak conditions, as the amount of data increases, the upper and lower posterior
expectations of b(f) are strongly consistent estimates of b(6); the range of posterior
expectations of b(6) is approximately by + aoy where by, oy are the posterior expectation
and standard deviation of 5(¢) induced by U, and where the multiple « is determined by
the precision of the prior interval I(L, U) of measures.

The “principle of stable estimation” put forward in Edwards, Lindman, and Savage
(1963) and generalized by Dickey (1976) may be expressed in terms of intervals of prior
measures. For a real parameter 6, it is assumed that the prior density p satisfies ¢ <
p(0) = (1 + B)cfor § € D and p() < yc for all 6. This is just the interval of measures with
lower measure L(A) = cu(D N A) and upper measure U(4) = (1 + B)cu(D N A) + yeu(D*
N A) where p is Lebesgue measure. Provided D has high posterior probability induced by
1, the posterior interval of measures is then close to the posterior measure for a uniform
prior.

2. Intervals of measures. Given a pair @i, @; of measures on (0, #), we say @, <
Q2 if @i(A) = @:(A) for all A € #. Let L and U be o-finite measures on (8, #) satisfying
L = U. The interval of measures I(L, U) consists of all measures @ such that L <@ < U.
Equivalently, if L and U have densities / and u with respect to some o-finite measure » on
(6, %), then I(L, U) consists of measures with densities ¢ with respect to » satisfying
1(6) = q(6) = u(8)[v], where [v] signifies “v almost surely.” If @ € I(L, U), then the odds
ratio @(A)/Q(B) for A, B € % is bounded by U(A)/L(B) whenever that bound is well-
defined. The measure L will be called the lower measure and the measure U the upper
measure.

A real-valued, #-measurable function b on O is called a bet, and b(6) the payoff received
if § occurs. For a measure @ on (6, #), let @ (b) denote the integral of b with respect to Q.
The measure @, interpreted as a probability statement, is taken to mean the acceptance of
all bets b for which @(||) < « and @ (b) = 0. Of coure, @, and @: accept the same bets if
and only if, for some constant a > 0, @.(A) = a@:(A) for all A € #; thus proportional
measures are equivalent probability statements.

A bet bis I(L, U)-nonnegative if @(|b]) < « and @ (d) = 0 for every @ in I(L, U). The
interval of measures I(L, U), interpreted as a probability statement, is taken to mean the
acceptance of all I(L, U)-nonnegative bets. The class of all measures proportional to some
member of I(L, U) is, thus, equivalent to the probability statement I(L, U). For any bet
b, define b*(0) = b(6) if b(6) =0, b*(4) = 0if b(d) < 0, and define b~(8) = b(6) — b*(6). Let
B(#) =1if b(f) =0, else B(6) = 0. Since Q(b) = Q(b*) + Q") = L(db*) + U(d") for all
Qin I(L, U), and since @o(b) = L(b™) + U(b~), where Q(d’) = L(Bb’) + U[(1 — B)b'] is
such that @, € I(L, U), we see that a bet b is I(L, U)-nonnegative if and only if U(|b|)
<ooand L(*) + U(b™) = 0. A bet b is defined to be I(L, U)-positive if L(b*) + U(b")
> 0.
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3. Intervals of posterior measures. Bayes theorem states that if {P|0 € 0} is a
family of probability measures defined on a o-field #of subsets of a sample space %, where
for each 6, P, has density f(X|6) with respect to a o-finite measure v on ( %, %), and if @,
is a probability measure on (0, #), and f(X|6) is #X % measurable as a function of X and
0, then the unique probability measure on (% X 6, #X %) having §-marginal measure @,
and regular conditional distribution {Ps|0 € O} given £ is the probability measure @ with
density f(X|60) with respect to » X Q. Furthermore, the regular conditional distribution of
Q given # has density f(X|6)/[ f(X|0)dQ.(0) with respect to @, given X. It is straightfor-
ward to extend Bayes theorem to the class of improper o-finite priors @, for which the
induced measure @ has o-finite X-marginal measure, as, for example, in the case where
Xlo ~ N(6, 1) and @ is the uniform prior. However, if the X-marginal of @ is not o-finite
then it is possible that v{X € Z|[ f(X|6)d@o(f) = =} is positive, so that a conditional
probability measure for 6 given X cannot be defined.

For example, if Po(X =1) =60, Po(X=0)=1—0,and dQ,/df =01 - 6)",0=<0'<1,
then [ f(X|6)dQo(®) = [ 6* (1 — 6)*dd = o« for all X. Thus, the posterior probability
density “prescribed” by Bayes’ theorem equals zero if 0 < § < 1 and is indeterminate at
0 = 0 and 4 = 1. Nevertheless, the measure d@x(f) = *7*(1 — 6)*d# may be interpreted
to give a probability statement about 6 according to which, given X, all bets b(6) such that
J b(6)d@x(6) = 0 are acceptable.

To accommodate all o-finite priors the concept of a regular conditional probability
measure is generalized to that of a regular conditional measure which will be interpreted
as a conditional probability statement.

DEFINITION 3.1. Let @ be a measure on (2, ¥) and let 2 be a sub-o-field of ¥ A
family {Q.|w € ©} of measures on (R, &) is a regular conditional measure given 2 if for
every Smeasurable, @-integrable function b

(1) Q.(b) is Z-measurable and finite [Q];
(i) Q.(gb) = g(w)Q.(b)[Q] for every bounded Z-measurable function g;

(iii) @.(b) = 0[@] implies @ (b) = 0.

The existence of such a family requires regularity conditions similar to those guaran-
teeing the existence of a regular conditional probability measure (see Loeve (1955), page
363).

If {@.|w € Q} is a regular conditional measure given 9, and if @() = 1 and Q.(Q) =
1[Q], then {Q.|w € @} is a regular conditional probability given 2. For, taking b = 1,
condition (ii) of Definition 3.1 together with the monotone convergence theorem implies
that @.(kh) = h(w)[@] for any 2-measurable function A. Letting h(w) = g(w)Q.(b) for
arbitrary bounded Z-measurable g and @-integrable b, we obtain @,.(gQ:.,(d)) = g(w) Q.(b)
= Q.(gb)[@], where the last equality follows from (ii). Condition (iii) then implies that
Q(gb) = Q(gQ.\(b)); thus, {Q.|w € Q} is a regular conditional probability given 2. In
particular, @.)() is (@)-unique. For unbounded measures @ we prove the following:

LEMMA 3.2. Assume Q is a o-finite measure on &, and let {@,|w € Q}, {Q.|w € R} be
regular conditional measures for @ given 2 C &. Then there exists a 9-measurable
function k such that k(w) > 0 for every w € Q and Q.,(b) = k(w)Q.(b)[Q] for every Q-
integrable b.

PrOOF. @ o-finite on & is equivalent to the existence of an #measurable, @-integrable
function &, such that bo(w) > 0 for every w € Q. Since @, and ., are countably additive,
Q.(bo) > 0 and Q.(bo) > 0 for all w € Q. Define k(w) = Q.(bo)/Q.(bo). Let b be any
nonnegative, ~measurable, @-integrable function, and let C(w) = @.(b)/Q.(bo), C’'(w) =
Q. (b)/Q.,(bo). Define Cy(w) = 0 if C(w) > M, Cy(w) = C(w) if C(w) < M. Then
Q.(Cubo — b) = Cu(w)Q.(bo) — Q.(b)[@]. Letting M 1 o, we find by the monotone
convergence theorem that @.(Cby — b) = 0[@]. Hence, @(Cby — b) = 0; similarly,
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Q(C’bo — b) = 0. Thus, Q(bo(C — C")) = 0. Let A = {w|C(w) > C’(w)}. Applying the above
argument to the function 144, and noting that Q.(140) = 14(w)Q.(b) and Q.,(14b) =
14(w)Q.(b) since A € 9, we find that @ (be14(C — C’)) = 0. But bo(C — C’) is strictly
positive on A; hence, @(A) = 0. Similarly, @ {w|C(w) < C'(w)} =0, and so C(w) = C'(w)
[@]. We have shown, then, that @.(b) = k(w) Q. (b)[Q] for any nonnegative #measurable
Q-integrable b. For arbitrary #measurable @-integrable b = b* + b7, the desired equality
holds since it holds for each of b* and 6~. 0O

A regular conditional measure {@.|w € ©}, interpreted as a conditional probability
statement, is taken to mean the acceptance of all @-integrable bets b for which @, (b) =
0[@]. By Lemma 3.2, conditional probability statements are unique.

BAYES’ THEOREM FOR UNBOUNDED PRIORS. Let (%, %#)be a sample space, and let
{Py|0 € O} be a family of probability measures on (%, F) with densities f(X|0) with
respect to a o-finite measure v on (%, ). Let @, be a o-finite prior measure on (6, #).
Assume that f(X|0) is measurable with respect to # X 2.

Then there exists a unique measure @ on (% X 6, F X &) such that Q agrees with Q,
on # and such that {Ps|6 € O} is a regular conditional measure of @ given 8. Q is o-
finite on & X A. A regular conditional measure of @ given ¥ is {Qx|X € ¥} where
Qx(d) = [o b(X, 0) f(X|6)dQo(8).

PrOOF. Let @ have density f(X|6) with respect to » X Q. Tonelli’s theorem implies
that for every B € 8, Q( 2 X B) = [oen [ 2 f(X|0) dv(X)dQo(6) = Qo(B). Since @, is o-finite
on %, @ is o-finite on # X 4.

Viewing # as a sub-o-field of # X £ in the obvious way, we next show that {P,|§ €
O} is a regular conditional measure of @ given 4 in the sense that the family of measures
{Q@x6|X € Z, 0 € O} defined by Qx4(A X B) = Py(A)13(d) for A € & B € & satisfies
conditions (i), (i) and (iii) of Definition 3.1. Let b be any & X %#-measurable, @-integrable
function. Then Qx4(d) = [+ b(t, 8) f(¢|0) dv(t) = Py(b) is B-measurable by Fubini’s theorem.
If g is any bounded %#-measurable on Z X O then, without loss of generality, g is a function
of 6 and so Py(bg) = [« b(t, 6)g(0) f(¢|6)dr(t) = g(8)Py(b). Finally, if Ps(b) = 0[Q] then
Py(b) = 0[ Q0] and, by Fubini’s theorem, @ (b) = [¢ Ps(b)d@o(d) = 0.

Now, suppose ' is a measure on (¥ X 6, # X #) which agrees with @, on # and for
which {Py|6 € ©} is a regular conditional measure given 4. Then @’ is o-finite, as is Q. If
Ce #x #and Q(C), Q'(C) are both finite then @ (C) = Q(Py(1¢c)) = Q'(Ps(1c)) = Q'(C).
Since @ and @' are both o-finite, it follows that @ = Q’.

Finally, we show that {@x|X € %} is a regular conditional measure of @ given %, in the
sense that the family of measures {@%|X € %, 6 € 6} defined by Q%4(A X B) = 14(X)
I f(X|t)d@Qo(t) for A € & B € 4 satisfies conditions (i), (ii) and (iii). Fubini’s theorem
implies that @x(b) is #measurable for every @-integrable b. And obviously Qx(bg) =
£(X)Qx(d) for any bounded F#measurable g. Lastly, suppose @x(b) = 0[@]. By Fubini’s
theorem, Q(b) = [ [ b(X, t) f(X|¢)dQo(t)dv(X) = [ Qx(b)dv(X) =0. O

The measures @x, X € & are called posterior measures, given the observation X,
induced by the prior measure @,. We interpret unbounded measures to make probability
statements as follows. For the prior @, the #-measurable bet b is acceptable whenever &
is Qo-integrable and Qo(b) = 0. It should be noted that such popular bets as b = 1 are
excluded by the requirement of @o-integrability. Bets b such that b and —b are acceptable
are fair bets. Now consider Bayes theorem, interpreted on bets which are measurable
functions on & X %. For the conditional measures Py, any & X %-measurable bets b such
that Py(b) = 0[Qo] are acceptable. Any bet b is the sum of the Ps-fair bet () — Ps(b) and
the #-measurable bet Py(b). Bayes theorem states that there exists a unique measure @ on
(& X 6, F X B) such that b is @-acceptable (i.e., @(b) = 0) if and only if the sum of a
Py-fair bet and a Qo-acceptable bet. A subset of these @-acceptable bets consists of all bets
acceptable according to the posterior measures Qx, X € %, namely, all bets b such that
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Qx(b) = 0 [@]. By Lemma 3.2, the set of posterior acceptable bets is uniquely determined
by @ and {Ps| 8 € 6}. See also Freedman and Purves (1969). v

If @ € I(L, U), then @x € I(Lx, Ux). For if L(A) = @(A) < U(A) for all A € & then
it follows, since f(X|6) = 0, that [4 f(X|0)dL < [4 f(X|60)dQo =< [4 f(X|6)dU all A € %,
and so that Lx(A) = Qx(A) = Ux(A) for all A € #. Thus, Bayes’ theorem “works” for
intervals of prior measures in that an interval of prior measures is transformed given X
into an interval of posterior measures. Indeed, dL/dU = dLx/dUx’ so that the density
dL/dU, which indicates how far apart the lower and upper measures are, is unaffected by
the observation X.

4. Bounds on integral ratios and Bayes risks. For the #-measurable, U-integ-
rable bets b and ¢, with ¢ I(L, U)-positive, consider the range of integral ratios @(b)/@(c)
for @ € I(L, U).

THEOREM 4.1. inf{@Q(b)/Q(c)| @ € I(L, U)} is the unique solution A of U(b — Ac)™ +
L(b - Ac)* = 0. sup{Q(b)/Q(c) | @ € I(L, U)} is the unique solution \ of U(b — Ac)* +
L(b—Ac)”"=0.

ProOF. Let Ao = inf{@(b)/Q(c) |@ € I(L, U)}, c1 = inf{Q(c) |@ € I(L, U)}, and ¢; =
sup{Q(c) | € I(L, U)}. Then 0 < ¢; < ¢3 < » and |A,| < . Since U(b — Ac)” + L(b —
Ac)™ = inf{Q(b — Ac) | @ € I(L, U)}, it follows that A, = A if and only if U(b — Ac)” +
L(b — Ac)* = 0. Moreover, for any € > 0, A + €/c; < A, implies e = U(b — Ac)” + L(b —
Ac)* which in turn implies A + €/c; < A,; thus; A, > A if and only if U(b — Ac)™ + L(b —
Ac)* > 0. Hence, A, is the unique solution of U(b — Ac)” + L(b — Ac)* =0. O

EXAMPLE 4.2. Let © = R' and suppose that L is Lebesgue measure and U = kL for
some constant 2 > 1; we are supposing, then, that the prior measure of any set does not
exceed % times the prior measure of any set of the same Lebesgue measure. If X ~
N (6, o3) given 6, with oo known, then the posterior measure interval is I(Lx, Ux) where Lx
has density f(X |6) = (V27 00) 'exp[— %(X — 6)?/a3] with respect to Lebesgue measure and
Ux has density kf (X | 6).

The posterior mean Q(6f(X |8))/Q(f(X|6)), @ € I(L, U), has minimum value satisfying
Ux(@ — A~ + Lx(6 — A\)* = 0, and maximum value satisfying Ux(§ — A)* + Lx(6 — A)~ =
0. It is easily seen that this range of posterior means is [X — aoy(k), X + 0oy(k)] where y(k)
satisfies

ky = (k = D[¢(y) + y2()]

and ¢, @ are the standard normal density and cdf. Table 1 displays values of y(k) for 1 <
k =< 10. It is seen that a substantial amount of variation in the prior has only a minor effect
on the posterior mean of 4, as compared to the variability of the estimate X due to the
data. '

Suppose that r(d, ) is the loss incurred if decision d € 2 is taken when 4 is true. For a
measure @ satisfying 0 < @(1) < «, the Bayes risk corresponding to r is S(r, @) =
inf{Q(r(d, 0))/Q(1)|d € 2}. Assume that 0 < L(1) = U(1) < « and that r(d, §) is %-

TABLE 1
Half interval, vy (k), of posterior means as a function of maximum prior ratio k.

k 1 1256 150 175 2 2.5 3 4 5 6 7 8 9 10
ykk) 0 .08 .162 .223 276 .364 .436 549 .636 .707 .766 817 .862 901
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measurable and U-integrable for every d € 2. For —o < A < o, define

Bi(A) = infuel[ U (r(d, 6) — N~ + L(r(d, 6) — N*]

and

B2(N\) = infael[L(r(d, 6) — N~ + U(r(d, 6) — N)*].

THEOREM 4.3. The lower Bayes risk inf{B(r, Q)| @ € I(L, U)} is the unique solution

A1 of Bi(A) = 0. The upper Bayes risk sup{B(r, Q) |Q € I(L, U)} is no greater than the
unique solution A; of B2(A) = 0.

Proor. It is straightforward to show that, for A € R! and § > 0, — §U(1) =
B.A + 8) — B.(A) = —6L(1) for ¢ = 1, 2. Thus, B: and B; are continuous and strictly
decreasing and, hence, have unique zeros; denote these by A; and A respectively. Then
inf{B(r, @) |Q@ € I(L, U)} =sup{A E R'|Q(r(d,0) —A) =0foralld € 2, Q € I(L, U)} =
sup{A € R'|L(r(d, §) — A)* + U(r(d, §) — A)~ = 0 for all d € 2} = sup{A € R*|8:(\) =
0} = A1 And sup{B(r, @) |Q € I(L, U)} =inf(A € R'|B(r, Q) =Aforall Q€ I(L, U)} =
inf(A € R'|supger,vy Q(r(d, §) — A) < 0 for some d € 2} = inf{A € R*|L(r(d, §) — A\)~
+ U(r(d, ) — A\)* <0 for some d € 2} = inf(A € R'|B2(A) < 0} = Aq.

ExaMpLE 4.4. Consider the normal location problem of Example 4.2, and let 2 = R'
and r(d, §) = |d — 0|*. For @ € I(L, U), B(r, Qx) is the posterior variance of § corresponding
to @; its range is bounded by the solutions of

infzeq Ux[k(ld - 0'2 -A)+ (ld - 0'2 - A1)+] =0
and
infoee Ux[(|d — 8> — A2)™ + k(ld — 0)* — A»)*] = 0.

Because Uy is symmetric about X, the optimal decision for both equations is d = X. The
solutions A; and A; are thus each posterior variances of elements of I(L, U) so that the
bounds of Theorem 4.3 are, in this case, sharp. Defining H(A, ¢) = A ¢(4) + (A% — 1)
(®(A) — c¢), it develops that A; = 63A? and A; = 63A3 where A, is the solution of H(A, ¢) = 0
with ¢ = (B — 2)/(2k — 2), and A; is the solution of H (A, ¢) = 0 with ¢ = (2k — 1)/(2k —
2). Table 2 gives A; and A; for 1 < &k < 10.

5. Asympototic behavior of ranges of posterior expectations. Let the obser-
vation X; have sample space (%, %) i =1, 2, ..., and define %. = [[T%, % = [[7%.
Suppose {Py|6 € 6} is a family of probability distributions of (%=, %) such that Py(A) is
%#-measurable for all A € £.. Let @ be any measure on (0, %) andlet Y, Y;, Y5, - - - be any

TABLE 2
Interval (A, A,) of posterior standard deviation as a function of maximum prior ratio k.
k A, As k Ay A,
1 1 1 4 .697 - 1.360
1.25 947 1.055 5 .654 1.421
1.50 904 1.100 6 621 1.472
1.75 .870 1.140 7 574 1515
2 .840 1.174 8 592 1.552
2.5 7192 1.233 9 .552 1.585
3 754 1.282 10 .535 1.615




BAYESIAN INFERENCE 241

sequence of random variables on (% X 6, % X %). The notation Y = 0[] will mean that,
except for some set of -values of @-measure zero, P4{X € Z..| Y(X, 6) = 0} = 1. Similarly,
the notation Yy — Y[Q] will mean that, except for some set of §-values of @-measure zero,
Yn (X, 6) converges to Y(X, ) with P,-probability one. Similarly Y is %.-measurable [Q]
if 4 is Z-measurable and P[Y = h] = 1[Q].

Assume further that, for all 6, the (X, - - - , Xy)-marginal distribution of P, has density
f(Xi, -+, Xn|6) with respect to some o-finite measure vy on (%2; X +++ X Zn, FAX oo X
Z). For a #-measurable bet b and a measure @ on (0, %), we will denote @n () = [ b()
fXy, -+, Xn|60)dQ(6); and for A € %, define @n(A) = Qn(14).

If Q is a probability measure and Q(| b|) < =, the martingale convergence theorem (see,
for example, Doob (1949)) implies that @ (b)/@~(1) — b(6)[Q] for any %.-measurable bet
b. In particular limy_...lim supn@ (| 5| 1is-1)/Qn(1) = 0[Q]; and @n(4)/Qn (1) — 14(O)[Q]
if 14(6) is Z-measurable. We now show that these conditions are essentially sufficient to
extend the martingale result to o-finite measures @.

LEMMA 5.1 Assume Q is a o-finite measure on (O, %); let © = UT A, with A; € #
disjoint and 0 < @(A;) < x. Suppose
(i) b() is F-measurable [Q];
(ii) @n(1) < = [vn] for sufficiently large N;
(iil) @n(A4;)/Qn(1) > 14O[Q]fori=12,--.;
(iv) limas.lim supy@n (| | Lip>a)/@n (1) — O[Q].
Then Qn(b)/Qn(1) — b(0)[Q].

ProOF. Note, first, that if A € %, 0 < Q(A) < », and Q(|bls|) < o then, by the
martingale convergence theorem applied to the probability measure @4(D) = @(A N D)/
Q(A) for D € 4, it follows that @y (b14)/@n~(A) converges to b(f) with Py-probability one
for all 4 in A, except for a subset of A of @-measure zero.

Now, suppose | b(6) | = M for all §. Then@(| b14,|) < = for every i. For any fixed § € A;
such that @y (b14)/Qn(A;) — b(f) and Qn(A;)/Qn(1) — 1 with Py-probability one, it
follows that

| @n(dlas)/@n(1)| =M |1 — @n(A)/Qn(1)|— 0
and so also that Qn()/Qn(1) — b(6) with Ps-probability one. By (iii), then, we obtain

Qn(b)/Qn(1) — b(O[Q].
For unbounded b, define by (8) = b(6) if |5(f) | = M and bu(6) = 0 otherwise. Then
Po{@n(bar)/Qn(1) = by (@) foral M = 1,2, - ..} = 1[Q]. Fix 6; then for all M > |58,

| QN (b)/@n(1) — b(0) | < |Qn(bu)/@n(1) — by (8)| + @n(|b] Lip>nr)/ Qn (1).
Thus, (iv) implies that @n()/@n~(1) — b(O)[Q]. O

REMARK. Condition (i) may be weakened slightly to requiring that b(6) is estimable:
tn(Xy, -+, Xn) — b(6)[Q] for some sequence of estimators Zx.

If X;, X, --- are independent and identically distributed given 6, with sample space
(%, F) where (%, #) and (O, #) are isomorphic to Borel subsets of complete separable
metric spaces, and if §; 5 6, implies Py, # Py, then Doob (1949) showed that there exists
some Z,-measurable function A on %, such that Py(h(X) = §) = 1 for every 6 € ©. Hence,
any #-measurable bet b(6) satisfies condition (i).

THEOREM 5.2. Let L and U be mutually absolutely continuous lower and upper
measures on (0, B). Suppose the density 1(6) of L with respect to U is #.-measurable
[Q]. If the measure U and the bet b(6) satisfy the assumptions of Lemma 5.1, then

SUPQernL,U) IQN(b)/QN(l) - b(d) | i O[U]~
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Proor. Let A be the set of 8 € © for which /() > 0 and for which, with Ps-probability
one, Un(I(b — A)* + (b —AN)7)/Un(1) = UB)(b() — N)* + (b(f) —A)~ and Un((d — N)* +
Ub — AN)7)/Un(1) = (b(6) — N* + 1(6)(b(#) — N~ for all rational A. By Lemma 5.1,
U(A°) = 0. Fix § € A and suppose a; < b(f) < az, with a; and a» rational. Then (b(6) —
az)* + 1(6)(b(6) — az)” < 0. Thus, with Pg-probability one, Un((b — az)* + I(b — az)”) <0
eventually which, by Theorem 4.1, implies sup{@x~ () /@~ (1) | @ EI(L, U)} < a; eventually.
Similarly, inf{@~(5)/@~(1)|®@ € I(L, U)} > a1 eventually with P,-probability one. Since
a; and a; are arbitrary, the theorem is proved. 0O

DEFINITION 5.3. Let S be the set of functions g:R' — R' that are bounded and
continuous; and let ¢(¢) be the standard normal density. The bet b(6) is asymptotically
normal under Uif for allg € S,

Un(g((b — bn)/on))/Un(1) — J' 8(t)p(t)a U],

where by = Un(b)/Un(1) and 6% = Un(b%)/Un(1) — b}.
Recall from Example 4.2 that for 2 > 1, the constant y(k) is the unique solution of
JZe (Rt — )" + (£ — v)))p(t)dt = 0.

THEOREM 5.4. Assume that the conditions of Theorem 5.2 hold and that b(6) is
asymptotically normal under U, with mean by and variance ok. Let ky = Un(1)/Ln(1).
Then

on'[supgerr.vy @n(b)/@n(1) — (by + ony(kn))] — O[U]
and

on'[infeere, vy @n()/Qn(1) — (by — ony(kn))] — O[U].

Proor. We will prove the desired result for the maximum posterior expectation of b;
that for the minimum posterior expectation is similar.

For real A, define Zy(\) = (b(8) — bn)/on — A. Then Un(Z%(\))/Un(1) = 1 + AZ for all
N. From the asymptotic normality of 5(f) under U, we find

limp,olim supy Un (| Znv(A) | Lizyon=m)/ Un (1)
= limp olima, o Un (ZE(A) Lz, 0p-4) / Un (1)
= limpwlimu, (1 + A2 — Un(ZX A Lz o0j=m)/ Un (1)}
= limpo0 {1 + A% - j (t— }\)2¢(t)dt}
lt=Al=M

= 0[U].
Hence

lim supwy

Un(ZH(N)/Un(1) — j E=N"o(t)dt ‘

=< limp,olim supy Un(|Zn (A) |11z, 5>m)/ Un (1) :
+ limp.lim supy ‘ Un(Z % (M 1zyon=m)/Un(1) — J' (& =N p(t)dt

|t—\=M

+ limpeo

f (t=N)"o(t)dt — f (t— A)*qb(t)dt‘
|t—A|=M

=0[U].
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Similarly, Un(Z~n(A))/Un(1) = [(¢ — A)"¢(t)dt{U]. Let en = 1/kn = Un(l)/Un(1). Since
0 =< U(f) = 1[U] and [(f) is F-measurable [@], Lemma 5.1 implies that cx — ()[U].
Thus, for every real A we have

Un(ZEN) + enZu(N)/Un(1) = [ (t = N o(t)dt + 1(8) [ (t — N)"¢(t)d{ U]
Furthermore, by the Cauchy-Schwartz inequality,

Un((ew = DZu () |° ~Un(len—I]") Un(Z%N)
Un(1) - Us() Un(1)

= (1 +M)[Un(%/Un(1) = ck]— O[]
since, by Lemma 5.1, Un (1%)/Un(1) — I*(8)[U]. Hence, for every real A,

Un(ZN(\) + 1Zn(N)/Un(1) - J’(t = A)'p(t)dt + l(¢)J’(t —A)7¢()df{ U].

Now, let A denote the set of § € O for which /() > 0 and for which, with Ps-probability
one, Un(ZX(A\) + 1Zx(M))/Un(1) converges to [(t — A)*o(2)dt + 1(0) [(t — A)"¢(¢t)dt for all
rational A. Then U(A°) = 0. Fix § € A, and suppose a; < y(1/1(6)) < ar with a; and a
rational. Then [(t — a2)*¢(t)dt + 1(0) [(t — az)"¢(t)dt < 0. Hence, with Pg-probability one,
Un(Z%(az) + IZn(az)) < 0 eventually, which, by Theorem 4.1, implies that sup{@n~((b —
bn)/on)/@n(1)|Q € I(L, U)} < a; eventually. Similarly,

sup{@n((b — bn)/on)/@nv(1) |Q E I(L, U)} > oy
eventually with P,-probability one. Since a1, a; are arbitrary, we have shown that
o' (sup{@n(b)/@Qn(1)|Q € I(L, U)} — bn) — y(1/UO)[U].

Furthermore, Ay — 1/1(§)[U] and y(-) is continuous; thus, y(k~) — v(1/1(6))[U], and the
theorem is proved. 0O

Theorem 5.4 permits close approximations of intervals of posterior expectations of
arbitrary bets. When 6 is the true parameter value, the upper and lower posterior
expectations of b are by + ony(1/1(0)) + o(on). Thus, if the prior density with respect to
U is uncertain up to a factor of, say, 2 in the sense that /(§) = %[ U], then the interval of
posterior expectations of b is by + .276 on + o(on) for any bet b satisfying the weak
conditions of the thorem.

Acknowledgment. We are grateful for the work of a referee who suggested numerous
improvements in terminology and proofs.
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