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I'-MINIMAX SELECTION PROCEDURES IN SIMULTANEOUS
TESTING PROBLEMS!

By KLAuUS J. MIESCKE

Mainz University and Purdue University

Suppose we have to decide on the basis of appropriately drawn samples
which of k treatment populations are “good” compared to either given control
values or to a control population from which an additional sample is available.
The unknown parameters are assumed to vary randomly according to a prior
distribution about which we only have the partial knowledge that it is contained
in a given class I" of priors. Though we derive in both cases (under the assumption
of monotone likelihood ratios) I"-minimax procedures which by definition attain
minimal supremal risk over I', the emphases are different: while we try to
demonstrate in the “known controls case”” how well known results from the theory
of testing hypotheses can be utilized to solve the problem, our main purpose in
the “unknown control case” is to give a new proof for a theorem which was stated
but only partially proved by Randles and Hollander.

1. Introduction. Suppose that for every i € {0, I, ---, k} we are given a family
{ fi,s} seq.cr of densities with respect to either the Lebesgue measure (“continuous case”) or
any counting measure (“discrete case”) on the real line R, which have monotone nondecreasing
likelihood ratios (M.L.R.) f s(2)/fi,s(z) in z for ¢ < &' Let X, = (Xi1, +++, Xin,), i = 0, 1,
-+ +, k, be independent samples from populations %, 2, - -+, 2, from which for every i €
{0, 1, - -+, k} we can deduce a sufficient statistic Z, with density f, ,, where ¢; € Q; only is
unknown.

Our goal is to select a subset of {2, - - -, %} containing “good” populations and excluding
“bad” ones, to be defined more precisely in the sequel. Every selection procedure is viewed to
be a probability measure (depending on the observations) over S = {s|sC {1, -+, k}}, where
every s € S represents the indices of populations to be selected eventually.

In the “known control case” (Section 3) fori =1, ..., k we take values &, € 2, and A, >
0 and call 2, “good” if ¢, = ¢, + A, and “bad” if #, =< &,,. Assume that @ = (6, - - -, ), the
parameter vector, a priori varies randomly over @ = &, X...X§, according to some prior
distribution 7, about which we have only the partial knowledge that it is contained in T, the
class of priors with property 7{# € Q|| % = %o + A,} = m, and T{} € Q| 9, = Fo} = 7/,
where m;,, 7/ =0, m + 7, < 1,i=1, ..., k, are fixed.

Now for any specific loss function a I'-minimax rule y" is defined as having smallest
supremal risk over I" among all the competing procedures (cf. Blum and Rosenblatt (1967)).
Let us adopt the following loss function:

L(®, 5) = Yies Lo —w,0,).) + Yies L1 isy+0,=(%), sES, #€Q,

where L, L1, = 0,i =1, .-, k, represent the losses for including “bad” populations or
excluding “good” ones, respectively.

For this loss function (and more generally for additive ones, cf. (1)) and any prior Z the
conditional risk—given X—of a procedure depends only on its conditional probabilities of
selecting 2, i = 1, .- -, k. This was stated already by Lehmann (1957, 1961). An idea of the
proof can be found in Nagel (1970). Thus we may restrict our considerations to the class 2 of
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procedures of the form Y(X) = Wu(X), -+, ¥2(X)), X = (X, - -+, X), where ¢;(X) denotes
the conditional probability—given X—of selecting 2,,i=1, - .-, k.

Though we generalize results of Randles and Hollander (1971) and Huang (1974) our main
purpose is rather to demonstrate how one can utilize results from the (Neyman, Pearson)
theory of testing hypotheses to find the I'-minimax rules. Within the scope of selecting a best
population this was shown already by Miescke (1979). Finally we point out that other
interesting results concerning I'-minimax rules can be found in Gupta and Huang (1975,
1977).

In the “unknown control case” (Section 4), instead of having the ¥.;’s as control values, %
now acts as control population with which 2, --., 2 are to be compared. Things which
change with respect to the previous situation are obvious in nature: Now we have X = (Xo, X1,
coe, X)), 0= (0, 0:, -+, 0:) and @ = Qo X Q1 X-..X Q. I" and L are given as before, but
now g, - - -, Por coincide with &, the realization of the random parameter 6, for Xo.

A crucial assumption we have to add is that all populations are in the “continuous case”
where @, 91, -, ¥, are location parameters. In this setup Randles and Hollander (1971)
specified I'-minimax rules within 2°, the class of procedures of the form ¥(X) = (¥1(Xo, X1),
oo, Ur(Xo, X2)), X = (Xo, Xi, - - -, Xi). Here we give an alternative to the incomplete proof
of their Theorem 4.1. Instead of using a Hunt-Stein argument our proof is based on a
generalization of their Lemma 3.2 (Section 2) where an approach, due to Lehmann (1957), is
applied which admits also the use of improper priors.

2. A lemma. Our considerations in this section are valid in both cases. In this sense X is
understood either to be equal to (X, - -+, Xx) or (Xo, X, - -+, Xx) throughout the following,
and &, & and T" are to be interpreted analogously.

Let us more generally admit any additive loss function:

M L@, 5) =Yies LY®) + Ties L'@), s€ S, 9€Q,
where the L{”’s are nonnegative functions.
Then for ¢ € 2 the risk with respect to 7€ T is given by (7, ¥) =Yk1 r'(, ), where for
everyi € {1, ---, k}
rg; ) = f (LY@ Espi(X) + LY @)[1 — Espu(X)]} dT )
Q

is the risk of ¥ in the corresponding ith component problem.

LeMMA. A procedure y* = (Y1, - - -, Yk) is T-minimax with respect to a class 4 C 2 of rules
if there exist priors 7, €T, n€ N = (1,2, .- .}, such that for every i € {1, - - -, k} the following
holds true: for the ith component problem there exist Bayes-rules y/5, with respect to 7, n € N,
and ¥ with

2) lim infy. r(Z;, ¥B) = supserr(Z y7).

Proor. Lety = (Y1, .-+, y») € ¥ be a selection procedure. Then
supserr(7; ¥) = supser Yi=1 r(7; Y1) = supn Yim1 (T, ¥i)
= sup, Yt r(Tn, ¥5) = lim infow Y1 r*(Tn, Y1)
= Y&, lim infrw r(Tn, ¥i)
= Zf—l Supser ”(”(37 \P{) = Supger Zf=1 r(”(g-, \PF)
= supser 17, ¥").

3. Known controls. Within the framework given in Section 1 we derive now I'-minimax
procedures with respect to 9. For every i € {1, ---, k} let pf,, a € [0, 1], denote the best



I'“MINIMAX SELECTION PROCEDURES 217

(U.M.P.) level « test—based on X,—for the testing problem
3) H;: ¥, =9, versus K;: 9> 9.,

and let A4, denote the set of values 8 € [0, 1] minimizing the term Ly, 7,8 — Ly Es, +a,
*
Pu5(X0).

THEOREM 1.  Every Y* € 9 of the following type is T-minimax with respect to D: Y} (X) =
1(0) as Z; = (<) c,, where c; satisfies

[Laim! fis,(c) — Lumifis, +a,(c)l(c: — ¢) = 0, cEci=1...,k

Proor. We apply our lemma in the simple version of Randles and Hollander (1971)
where the sequences of priors and Bayes-rules reduce to a single prior 75 and to single Bayes-
rules 7, - -+, Y. Under 7 let 0y, - - -, 6, be independent where 6, equals 5 + A; (S, Foi +
A,/2) with probability m(w{, 1 = m —7/),i=1, ..., k. Now we fixi € {1, - -, k}.

For every ¥ € 9 the Bayes-risk for the ith component problem is given by

r'Jo, %) = Lo, w1 E3, $u(Xi) + Lum[1 — Es, +a ¥i(Xi)),

where Y(X.) = EEw,,....6,1,6,1,--- 0 ¥:(X) can be viewed as being a test for (3). Obviously,
the Bayes-rules for the ith component problem are just those ¢, with o, € 4,. And since
E5 @, is nondecreasing in &, % is least favorable to them. Thus every procedure (¢,
oo, Qhay) Witha; € A4,,i=1, - - -, k, is T-minimax with respect to 2. Finally by choosing the
a, € A, appropriately to get nonrandomized tests, the proof is completed.

Example 1. Fori=1, ..., klet X, (with sample mean X,) come from a normal distribution
N(®:, 07) with known variance o7 > 0. Then by Theorem 1

\PF(X) =1 iff Xi = 00;' + Az/z + (n,'A,)AIO% ln(Lgml’/Lhm), i= 1, e, k.

Now suppose that for certain 2, with i € I, say, instead of X, only incomplete information
is available: Y, = #{X,;| X;, = b;,j= 1, - - -, n,}, where b, is fixed. Thus instead of X we have
at hand only X which can be obtained from X if for every i € I X is replaced by Y;. Since the
M.L.R. property in a natural way carries over from the normal to the corresponding binomial
distributions, Theorem _1 still is applicable, this time leading to y', say, where for i & I
Y1 (X) = ¢F(X) but where fori € I

YI(X) = Liff Y, = [In((1 — ¢)q"/q(1 — ¢’)] [n. In(q’/q) + In(Lgim{ /L1.m.)],
where
q= (I)(nzl/z(bi - 001 - Ai)/ot), ql = (D(nzl/2(bi - 001)/01),
and @ denotes the cdf of N(O, 1).

4. Unknown control. Since we are dealing now with location parameter M.L.R -families
we can utilize the fact (cf. Randles and Hollander (1971)) that for every i € {1, .-, k} W; =
Z; — Z, has the density gi(w — (&; — %)) = [o fi(w + u — &) fo(u — $o) du, w € R, which
likewise has the M.L.R. property if §; = #; — ¥ is considered as location parameter for W;.

For every i € {1, --., k} let ¢/, a € [0, 1] denote the U.M.P. level « test — based on W,
— for the testing problem ’

) H.:8;<0  versus K.:8,>0,

and let 4; denote the set of values 8 € [0, 1] minimizing the term Lg,7,/B — Lyim Ea,
Pu5(W).

THEOREM 2. Every y* € 9° of the following type is T-minimax with respect to 2°:yT (X)
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= 1(0) as W, = (<) c., where c, satisfies

[Lomi gi(c) — Lumig(c — A)l(c. — ) =0, c#Ec,i=1,.-- k.

PROOF. Again, it suffices to prove that every (§ro,, < -+, Pre) With s €A, i=1, .-+, k,
is I'-minimax.

Let us represent every 7 € I' by = (T, 1), where ¢ denotes the conditional distribution of
(61, -+, 6r)—given 6p—, and T the marginal distribution of 6. For n € N let 7, = (T, to),
where T, is the uniform distribution over [—n, n] and where under 7—given 6 = % — 61,
- -+, 0, are independent, each 6, assuming the value &, + Ai(%, #o + A,/2) with probability
aim, l —m—m),i=1,-.--, k. Nowwe fixi € {1, ---, k}.

For ¢ € 2° the Bayes-risk with respect to 7, n € N, for the ith component problem is
given by r(Z,, ) =

J' {Laim! Esy,09¥:(Xo, Xi) + Liym[1 — Eg,00+8,¥:(Xo, X:)]} dT. (o).
R
Thus the Bayes-rules with respect to 7, n € N, and 2° turn out to be

Yin(Xo, X,) = 1(h, 0) if Lo/ J fo(Zo — 90) fu(Z: — Bo) dTn(Po)
R

<(=,>)Lu.m J fo(Zo - 0o)ﬁ(zz — do — A)) dT(D0),
R

where h = h(Z,, Z,) € [0, 1] may be chosen arbitrarily since it has no influence upon the risk.
Standard analysis leads us to

r“’(%,¢§;)=f f min {Lg,7{(2n)~" f Jozo = m)fi(z. — m) dn,
R IR -n

Ll,m(Zn)’l J’ fo(Zo - T])ﬁ(zi - Al - 7)) d'q} dZo dz,-.

Substituting first zo = nv + u and z; = nv — u in the outer integrals and then n = — { + nvin
the interior ones, we arrive at

n(v+1)
r(Tn, Vin) =Jr J min{Lzm’J So +w)fi§ —u) dE,
R IR n

(v-1)

n(v+1)
Ly J fol& + u)fit — A; — u) d) dv du

n(v—1)

1 n(v+1)
. j f min{Lour! j Fole + W)€ — ) d,
R J-1

n(v—1)

n(v+1)
Lyim, J fo§ +wfi§ — A, — u) d&} dv du.

n(v-1)

Now we can apply Lebesgue’s dominated convergence theorem to the last double integral,
since the “min”-terms converge pointwise in (v, v) € R X (=1, 1) to min{Lym g.(u),
Ly, 7 g(2u — A,)} which at the same time is an integrable upper bound for them. Thus we
have

) lim infoer®(Z5, ¥5) = J min{ Ly, 7 gi(u), L. gi(u — A,)} du.
R

The right-hand side of (5), however, equals Losmio; + Lim{l — Engt. (W] for a; € 4;:
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This follows from the fact that every @, with a; € 4; can be viewed as being a Bayes-test for
an auxiliary problem, where W; is known to have either the density g,(x) or gi(u — A,), the
losses of errors of both kinds are unity and the prior probabilities are Lo, 7 /(L1,7, + La.m)
and Ly,7/(L1,m + Lg;m!). Thus (2) is verified and the proof is completed by noting that for
a€[0,1]

supzerr' (7, 1) = supr supyr, nerr (T, 1), Pra)

= supr {Lam! Eo®ria(W.)
R

+ Lumi[l — En@ra(Wi)]} dT(S0)
= Loym/a + Lim[l — Eo @ a(W))],

which again follows from the monotonicity properties of U.M.P. tests in the testing parameters
in case of monotone likelihood ratios.

REMARK. It is not difficult to see that in fact we have proved that

iy ®(Zn, ¥5) = suprerr (7, ¥1), i=1, ...k

Example 2. Fori=1, .-, k let X; be a sample from N(&,, %) where the variance o® >
0 is known. Then by Theorem 2 fori =1, -- -, k we have

YIX)=1 iff X,— Xo=A,/2 + o®A7 (0, + no") In(Loim! /L)

Now the question arises whether in case of no = k it is better to split the sample X, into k
subsamples X,, of sizes m,, m; + --+ + m; = no, then to switch over to X, — Xoyi=1, .-,
k, and finally to take the rule Y* provided by Theorem 1, where ¢! differs from ¢ only in
that X, is replaced by X,, (the sample mean of X,,) and noby m,,i=1, .-+, k.

If comparison is made in terms of supremal risks over the corresponding classes I" and T,
say, the answer turns out to be in favor of ¢

superr(Z; ) = supir,nerr(T, 1), ¥F).

If, on the other hand, comparison is made in terms of risks, this time point-wise over pairs
of “comparable priors”, then it is not possible to give an unique answer in favor of one of the
two competitors. But there is an exception:

Let Lym = Lyw/,i=1, ---, k, and let 7 be any prior of (6, — o, ---, 6 — o) with
respect to y'. If (7, r) with respect to ¥" is chosen in such a way that under (7, ¢) the
conditional distribution of §, — fo—given 6o = Jo— coincides with the marginal distribution
of ; — o under 7,i=1, ..., k, then

r(t)((T, 0, J/I‘) = r(z)(g—’ ‘PF)’ i=1 ...,k
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