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A ROBUSTNESS PROPERTY OF HOTELLING’S T2-TEST

By TAKEAKI KARIYA

Hitotsubashi University

This paper shows that Hotelling’s 7"*-test for testing u = 0 in the one-sample
problem is robust against departures from normality in the following sense. It is
still UMPI in a broad class of distributions, and the null distribution under any
member of the class is the same as that under normality.

1. Introduction. As is well known, when (y1, -+-, yn) is a random sample from a p-
dimensional normal distribution N,(u, =), for testing u = 0 Hotelling’s T>-test is UMPI
(uniformly most powerful invariant), where

(LD T?=ny'S™y
(1.2) y=Xkiy/n and S=3Li(yi—y(»-Y).

A stronger result due to Simaika (1941) is that it is UMP in the class of tests whose power
functions depend on (g, =) only through 'S "'y (see Anderson (1959) pages 115-118). Further,
the admissibility of the T>-test has been proved by Stein (1959) and Kiefer and Schwartz
(1965). Giri and Kiefer (1964) showed its local and asymptotic minimaxity and Salaevski
(1968) verified its minimaxity, which had been shown for a special case by Giri, Kiefer and
Stein (1963).

In this paper, as one more optimality of the T >-test, a robustness property is studied in the
following set-up. Let Y= (1, - -+ , y»)’ be an n X p random matrix with a pdf h, let %, be the
class of pdf’s on R™ with respect to Lebesgue measure 4dY, and let Q be the set of nonincreasing
convex functions from [0, ) into [0, ). We assume n = p + 1. For u € R” and 2 € %, define
a class of pdf’s on R™ as follows:

(L3) (1, Z) = {fE€ Gup | f(¥ |11, Z) = |Z]"?g(Ti1 (y — w27 (3 — W), € O},

where %, denotes the set of p X p positive definite matrices. In this model, we consider the
following testing problem

(1.4) Hoh € 4p(0,3), S € %, vs. Hith€ up(, Z),p %0, S € &%

and show that Hotelling’s T>-test is UMPI. Clearly if ( y1, - - , y») is a random sample from
Np(p, Z) or Y ~ Npp(enp', In ® Z), where e, = (1, ---, 1)’ € R", the pdf h of Y belongs to
%np(1, Z). Further if f(Y | u, Z) belongs to %,,(u, Z), then

g(Ylu,2)=f f(Y|u, aZ) dG(a)

also belongs to %,,(u, Z) where G is a distribution function on (0, ®), and so %,(u, Z) contains
the (np-dimensional) multivariate ¢-distribution, the multivariate Cauchy distribution, the
contaminated normal distribution, etc. On the other hand, Dawid (1977) has shown that for
any = € %, and any k € %,,(0, =), the null distribution of 7 is exactly the same as that when
Y ~ N(O, I, ® =), that is, the distribution of (n — p)T*/p under H, is F(p, n — p), the F-
distribution with d.f.’s (degrees of freedom) p and n — p. In fact, the null distributions of the
tests appearing in the MANOVA problem as well as the 7>-test do not depend on normality
but on the invariance of the distribution of Y under the transformation ¥ — pY for p € O(n),
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where O(n) denotes the set of n X n orthogonal matrices (see Dempster (1969) and Dawid
(1977)). In this sense, the T>-test is robust against departures from normality. The result
obtained here is regarded as a multivariate extension of the result in Kariya and Eaton (1977)
by invariance. To obtain an expression of the distribution of a maximal invariant, Wijsman’s
(1967) theorem is used.

Finally we remark that in terms of a canonical form, the problem is stated as follows. Let
X be an n X p random matrix whose pdf, say &, belongs to the class

(L5 Zu(p, Z) = {fE€ Gup | f(X |1, Z) = |Z|™2qtr T(X —ep’Y (X —ep)), g€ Q)
where €, = (1,0, -- -, 0)’ € R". Then the problem is to show that for testing

(1.6) - Hoh€ 9,50, 2), 2 €% vs. Hith€ Dnp(p, 2), n# 0, Z € &
the T test defined by
(L.7) T? = Xi(X2X2) ' X1> ¢

is UMPI, where

x(%)

with X1:1 X p and Xz:(n — 1) X p. This canonical form is simply obtained by transforming ¥
into X = poY where po € O(n) with e,,/(ere,)"/? as its first row. It is noted that the space of X
can be restricted to the set of n X p matrices of rank p since the complement of this set in R™
has Lebesgue measure 0.

2. Null distributions. In this section, we consider the null distributions of the 7>-test. Let
&(Z) denote the distribution law of a random matrix Z. An n X p random matrix is said to be
left O(n)-invariant if L(pZ) = L(Z) for all p € O(n). Let = {Z:n X p|rank (Z) = p} CR™
where n = p + 1 is assumed. The next theorem is a result due to Dawid (1977) (see also
Dempster (1969)).

THEOREM 2.1. Let Z be an n X p left O(n)-invariant random matrix over %, and let

#=(2)
where Z1:k X p and Zy:(n — k) X p withn — k = p = k. Then L(Z(Z3Z)"'Z") is the same as

that under £(Z) = N(0, I, ® X). Especially when k = 1, L((n — p)Z(Z3+Z>)'Z1/p) = F(p, n
- p)

This theorem shows that the null distributions appearing in the MANOVA problem as well as
the 72-test do not depend on normality but on the left invariance of Z (see, e.g., Anderson
(1958) for the MANOVA tests). The readers are also referred to Eaton (1979) for invariance
of random matrices. '

3. UMP property of T*-test. Without loss of generality, we treat the problem in terms of
the canonical form stated in Section 1. Obviously the problem remains invariant under the
group 9= O(n — 1) X 9/ p) acting on

_| X
x= %]
by

3.1 g X = (XA, pXoAd) for g=(p,A)E Y,

where Xi:1 X p and Xz:(n — 1) X p and %/(p) denotes the set of p X p nonsingular matrices.
As is well known, a maximal invariant under %is T2 = X;(X5X2) ' X1 and a maximal invariant
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parameter is § = ' 'y. To obtain a formal expression of the distribution of T2 a theorem
due to Wijsman (1967) is applied.

LEMMA 3.1, Let h € Dnp(p, X) be the pdf of X, let W = w(X) be a maximal invariant under
the transformation (3.1) and let PY’ be the distribution induced by W under 8§ = u'= ' Then the
pdf of W with respect to P§’ evaluated at W = w(X) is given by

h(ge X | p, Z)| A’A | dv(g)
o L g X| | A4 | g
ary’

(3-2) (w(X)) = hw(w(X)| 8) =

f h(goX | 0, )| A’ |'* dv(g)
4

where v is a left invariant measure on 4. Naturally hw(w(X)|0) = 1.

Theorem 4 in Wijsman (1967) states the conditions for which (3.2) holds. But checking the
conditions is included in the proof of Lemma 5.1 in Kariya (1978) and so it is omitted here.
Write the pdf 4 of X as

(33 h(X |, Z) = | Z|™2q(tr 27X — en’) (X — ep)),

where ¢ is convex and nonincreasing, and take » = »; X v, where »; is the invariant probability
measure on O(n — 1) and dvy(A) = dA/| A’A |72

LEMMA 3.2.  The pdf hw in (3.2) is evaluated as

J’ q(tr A’A + 8 — 2a;,8"v)| A’A |"P* dA
%4¢(p)

(3.4) hw(w(X)| 8) =
f qtr A’A)| A’A|"P72 4y
4¢(p)

where v = T/(1 + T?)'? with T® = X1(X5X2) "' X1, a; denotes the (i, j) element of A and a,
denotes the ith column of A.

Proor. First we note that the integrals in (3.4) are finite and positive. To evaluate (3.2),
let N5 denote the numerator of (3.2). From (3.1) and (3.3) N; is written as

Ns= f | ™2 27 (XA’ — p'Y (X’ — ')
(3.5) O(n—1)xX%¢(p)

+tr E_IAXQXQA/)I A/A ln/Z dl/1(p) de(A)
But since the integra ... of (3.5) does not depend on p and since »( O(n — 1)) = 1, N; is equal

to the integration ov. v %/(p) with respect to »,. Since »; is left and right invariant, replacing
A by Z'24(X3Xz) "/ leaves the integral the same;

(3.6) Ns = J cig(tr (ud’ — n’)’(uA" ~1n) +tr AA)| A'A |"? dva(A)
%¢(p)

where (Z'2)? = Z, [(X3X2)™°P = (X2X2) ™", o1 = | X5Xe |72 u = Xy(X3Xz)™v2 and 7 =
Z=7"2u. Let p; and p; be p X p orthogonal matrices with n'/|| 7| and u’/||u || as their first rows
respectively. Since tr (ud” — n')'(ud’ — n’) = ud’Au’ — 2ud’ n + n'n, replacing 4 by pidp:
yields

Ns = J ag((L+ T*)| @ |* = 26"°Tan + 8 + T2 || a: |P)| 4’4 [* dva(4)
where T? = uu’ = X,(X5X2) ' X7 >0 (a.e.) and § = n'n = p’= "' Finally transforming a; into

ai1/(1 + T?)"* and taking the ratio of N5 and No produces the result (3.4).
Now we shall prove our main theorem.
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THEOREM 3.1.  For problem (1.4), Hotelling’s T?-test is UMPI and the null distribution of
(n — p)T?/p is F-distribution with d.£’s p and n — p.

PrOOF. By Lemma 3.2, the pdf of a maximal invariant with respect to P is given by
(3.4). Hence for fixed 8o, a most powerful test for testing § = 0 versus 8 > 0 is given by the c.r.
(critical region):

3.7) hw(w(X)| 8) > chw(w(X)| 0) = c.

To evaluate this, let H(v) be the numerator of (3.4). Then transforming 4 into —A4 yields
H@) = f gltr A’A + 8 + 2a118"%v)| A’A |"P7? d4 = H(—v), say.

Hence using the convexity of ¢, for %2 = a < 1 we obtain
H() = a HO) + (1 — Q)H(—v) = HuQa — 1)).

This implies that H(v) is a nondecreasing function of v € [0, 1]. Therefore (3.7) yields c.r. v
= ¢’ or T® = ¢”. Since this c.r. does not depend on &, it is UMPL. The latter part follows from
Theorem 2.1. This completes the proof.

When p = 1, Theorem 3.1 means that the usual F-test (or equivalently two-sided ¢-test) is
UMPI for the problem (4.1). On the other hand, without invariance Kariya and Eaton (1977)
have shown that the usual two-sided #-test is UMP similar (hence unbiased) for (1.4). This is
a stronger result since there exists a noninvariant similar test.

Finally we remark that the nonincreasing property of ¢ is not used in the above proof. But
since f(Y |, 2) in (1.3) is a pdf, the convexity of g implies it. Without the convexity, it seems
difficult to obtain Theorem 3.1.
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