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STRONG LAW OF LARGE NUMBERS FOR MEASURES OF CENTRAL
TENDENCY AND DISPERSION OF RANDOM VARIABLES IN COMPACT
METRIC SPACES

By HARALD SVERDRUP-THYGESON
University of Oslo

Given a sample of independent random variables Z;, Z;, --., Z, with
identical distribution p on a compact metric space (M, d), a measure of central
tendency is a sample centroid (of order r > 0) defined as a point X, in M satisfying

1 5 . 1
o Y d(Xe, Z) = lnfxEM; Y d'(x, Z,).
A (population) centroid of Z is any point x* in M such that

f d'(x*, z) dp(z) = ianer d’(x, z) dp(z).
M M

The quantity% = d’()?,,, Z)) itself is called the sample variation, whereas

m d'(x*, z) dp(z) is the variation of Z. This paper establishes almost sure
convergence for the sample centroid and variation to the corresponding popula-
tion values for all orders r > 0.

Convergence is also proved for the case when the sample centroid is restricted
to be one of the sample values.

1. Introduction. Consider a compact metric space (M, d) in which there is observed a
random variable Z with probability distribution p. If a sample of several independent
observations Zi, Z,, ---, Z, is available it may be desirable to summarize the sample, much
as one does with ordinary variables, by measures of central tendency and dispersion. To this
end one defines a sample centroid of order r > 0 as a point X, in M satisfying

1 X : 1
" Y d'(X,, Z) = infrem - Yo, d'(x, Z).

The population value, that is a centroid of Z (or of p) of order r, is then any point x* € M such
that

J’ d"(x*, z) dp(z) = infrem f d’(x, z) dp(z).
M

M

o1 5 . .
The quantity > w1 d"(Xn, Z,) itself is called the sample variation of order r, whereas

fm d'(x*, z) dp(z) is the variation of Z of order r. Centroids are often not unique, a fact which
causes some technical difficulties (see below).

These concepts have been discussed by MacQueen (1965) who notes that they reduce in
Euclidean spaces to the mean, the median, the mode or the mid-range according as r = 2, r
= 1,r— 0 or r — . A variety of metric spaces are encountered in practice so that it may be
worth establishing that these notions have the asymptotic stability (strong law of large
numbers) so well known in the cases of Euclidean variables. This is accomplished here by
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proving, in an appropriate sense, a.s. convergence of the sample centroids and sample
variations to their corresponding population values (for all r > 0).

MacQueen gives a partial proof for the case of r = 1 which is based on some uniform
convergence results of Parzen. The results presented here follow a different approach.

Previous work by other authors on laws of large numbers seems to be restricted to linear
spaces (e.g., Hilbert, Banach, Fréchet spaces); see Padgett and Taylor (1973) for a review of
such theory.

Closely related to the above notions is that of a sample restricted centroid (of order r), which
is one of the sample points Z, satisfying

1 5 . 1
; 27=1 dr(Zn, Zz) = MiNi<;<n ; :l=1 dr(ij Zl)
In this case, an appropriate restricted (population) centroid z* is defined by

J d’(z*, z) dp(z) = infz»ewf d’(z', z) dp(z),
M

M
where W is the support of the probability measure p. Further, the restricted variation is for the
sample, % %1 d"(Zn, Z,), and for the population [ d"(z*, z) dp(z). These concepts are of

special interest in situations where the objects in the sample do not have any easily quantified
physical description, yet distances can still be measured. For example, suppose the sample is
a set of 18th century paintings. Distances between all pairs can be obtained by judgement
methods, but construction of an 18th century painting would not be so easy. In this case one
of the sample points will serve quite well. Note that for purposes of comparing several groups
of such objects, say 18th and 19th century paintings, the distances among all pairs being
measured under the same conditions, the two restricted sample centroids potentially are of
independent interest as exemplars. Knowing that they have (or do not have) the kind of
stability of other measures of central tendency is of practical interest just as with the
nonrestricted sample centroids defined above. It will be shown below that the restricted sample
centroids will converge in an appropriate sense, as does the restricted sample variation.

2. Terminology. Given a probability space (2, ./, P) and a compact metric space (M, d),
let # be a o-algebra containing the open subsets of M, and let Z;, Zs, - - - be independent,
identically distributed random variables from (2, </, P) into (M, %), with their common
probability distribution on (M, %) denoted by p.

Let r be any positive constant. For each n define the set of sample centroids

. 1 1
Cn = {XA EM: ; Z?=1 dr(XA, Zl) = infxeM; 27:1 d’(x, Zl)} .
Also define the class of (population) centroids
C* = {x* EM: J d"(x*, z) dp(z) = infrem J d’(x, z) dp(z)} .
Now let W, be the sample set {Z:, Z;, ---, Z,} and let W be the support of p (i.e., the
complement of the union of all open sets in M of p-measure 0). Then define the set of sample
restricted centroids
1 1
R, = {2 € Wa: - Yim1d' (2, Z) = infoew, - Y d7(z, Zl)}
n

and the set of restricted (population) centroids

CR* := {z* EwW: f d’(z*,z) dp(z) = infz»ewj d'(z', z) dp(z)} .
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Note that C* and C, are nonempty (since M is compact), as are CR* and C"){,,. Of course one
or more of the sets may be a nonsingleton, as is illustrated by the median of a real valued
random variable taking two distinct values each with probability %. In the following, let x * be
an arbitrary element of C*, and for each n define a function X, :Q.~3M by letting X, be an
arbitrary element of C,. Analogously, fix a z* in CR* and a function Z,:Q~>3M by Z, €

As there are many nontrivial examples in which the full sequence of sample centroids (or
sample restricted centroids) does not converge, we will have to consider the sets

B := {cluster points of sequences (X, )1 in [[5=1 Cp}
BR := {cluster points of sequences (Z, )5-1 in [[7-1 C}{,,}.

The question of measurability needs some special attention. Because X, and Z, need not
be measurable, it is convenient to work with a slight modlﬁcatlon of the concept of almost
sure (a.s.) convergence, denoted as 25.: “Property x holds a.s.” is to mean “The set of w such
that property x holds contains a set in . of P-measure 1”. By using this definition we
circumvent the usual need for functions on § to be measurable. Note though, that Y7, d’(Xn,
Z,) = infrem =1 d"(x, Z,) is measurable due to M being separable. Of course, Yy d"(Z,, Z.)
= minig<, Yi=1d(Z,, Z,) is measurable, even if M is not separable.

3. Results.

THEOREM.

(@) % i d (Xa, Zi)— [ d'(x*, 2) dp(z) as.
(i) BC C* 2%

(iii) ! "1 d(Zn, Z)) > [ d'(z*%, z) dp(z) as.
(iv) ’;R C CR* 2%,

Conditions (ii) and (iv) describe the convergence properties of the sample centroids and the
restricted sample centroids. Note that B and BR are nonempty for all w since M is compact.
Also note that (i) implies the full sequence ( X, ) converges as. to x* if x* is unique. This is
an example where B = C* 3%, Wthh is also the case of the aforementioned two-valued
random variable. To see that B = C* 4. does not hold always, consider the cube M := [—1,
1]3 with the metric d((x1, X2, X3), (1, 2, y3)) == | X1 = y1| + | x2 — y2| + | x3 — ys| and let Z
= (Ui, Us, Us) be a random variable in M with Pr(Uy = —1) = Pr(Up = 1) = % (k = 1, 2, 3)
where Ui, Us, U; are independent. Let r = 1, and assume we have a set of independent
observations Z;, Z,, ---. The set of centroids, C*, is easily found to be M itself, since any
point x in M makes [ d(x, z) dp(z) = % Y .c(-1,» d(x, z) equal to 4. To find C,, let S,; :=
Yr=1 Uir (k =1, 2, 3) and let S, := (Sn1, Snz, Sns). There are four mutually exclusive and
jointly exhaustive events of interest: .

E.i:={S.=(0,0,0)},

E.;:={S. € {(1,0,0),(0,¢0),(0,0,2):£#0}},

Es:={S.€{(510),(s0,¢),(0,s,¢):s,t%0}} and

E.s:={S.=(r,s,t) wherer, s, t # 0}.

We easily convince ourself that E,; = {C, = M}, E,; = {C, = some face of M }, Enz =
{C, = some edge of M} and E,s = {C, = some corner of M }. It is then obvious that B equals
C* = M if and only if E,, occurs infinitely often, and if this is not the case then B at most

2n3 s
equals the surface of M. Now Pr(E;, ;) = [(2:)(%) ] , and using Stirling’s formula we

find Pr(Ezn,1) = (nm)™>2 Since Pr(E,,1) = 0 when 7 is odd, we have Y%, Pr(E, ;) < ® and
the Borel-Cantelli lemma asserts that Pr(%,; infinitely often) = 0, so Pr(B = C*) = 0. We can
show similarly that Pr(B = the whole surface of M) = 1. As regards the restricted case, though,
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we have BR = CR* (a.s.) which is the set of all corners of M.

PROOF OF THE THEOREM. Define

1
To(x) = " Yiid(x, Z) - J d’(x, z) dp(z),

1
TX(x) := - Yeid(x, Zi) — f d’(x*, z) dp(z)
and
TR} (x) := % Yeid'(x, Z)— J’ d’(z*, z) dp(z).

Clearly, by the ordinary strong law of large numbers for real-valued random variables,
T.(x)— 0 as. foreach xin M.

Furthermore, since M is compact, the results of Ranga Rao (1962) on uniform convergence
can be applied, yielding

supzem| Tn(x)| > 0 as,

which in turn implies

T.(X,) > 0 as.
and

T.(Z,)— 0 as.
By the definition of X, and x* we find

To(Xy) < TE(X,) < Tu(x*),
S0
| T#(Xn)| < max{| Tn(X,)|, | Tu(x*)|} > 0 as.;

hence (i) is proved.
In the case of the restricted variation (iii), we first show

(1) min <<, | TR¥(Z,)) — TRX(z*) }> 0 as.
To this end, let
8(8) = sup-emsupax.y<s|d’'(x, 2) — d’( y, z)|
and observe that 5(§) — 0 as § — 0 due to the compactness of M. Easily, we find
SUPa(ry<s| TRE(X) = TRE( y)| < 5(8).

Furthermore, for any § > 0, 05 := {x € M:d(x, z*) < 8} is a set which must have positive p-
measure a, else z* wouldn’t be in the support. Hence with probability at least 1 — (1 — )"
there is some Z,, i < n, lying in O;. This implies

limsup,mini<,<.| TR¥(Z,) — TR¥(z*)| =< s(8) a.s..

Letting § — 0 then proves the assertion (1).
As we continue the proof of (iii), observe that T,(z*) is equivalent to TR*(z*). It is easy to
see that

Min <=, TRE(Z:) < To(z*) + Mini<,z | TRE(Z,) — TRE(z%)|.
By the definition of Z, and z* we find
Tn(Zn) = TR:(Zn) = mi-nlszsn TR:(ZL)7
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hence
| TRX(Zn)| = max{| Tn(Zn)|, | Ta(z*)| + mini<,<, | TR¥(Z) — TR¥(z*)|} > 0 a.s.
which proves (iii).
We now turn to proving the convergence properties of the sample centroids and the
restricted sample centroids.
Writing

f d"(Xn, z) dp(z2) — f d'(x* 2) dp(z) | = | =Ta(Xa) + T (Xn)| = | Tu(Xa)| + | TH(Xn)]

we see that

?) f d’(X,, 2) dp(z) > J d'(x* z) dp(z) 2s.

Now let X € B, say X = lim, X,,, where X, € C, (Vn). Then d’(X,,,,_, z) >, d' (X, z) for all z
in M, so by the bounded convergence theorem we have

J d"(X, z) dp(z) = lim, J’ d’ (X, 2) dp(2)

and by (2) the right-hand side equals [ d"(x*, z) dp(z) 2%, 50 X € C* 4% and hence B cc*
o/
as.

Proving that BR C CR* 2. is quite analogous to the proof just presented for the
nonrestricted centroids. [J

Acknowledgment. The author is indebted to J. MacQueen for discussions leading to
formulation of the problem.
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