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UNIFORM ASYMPTOTIC NORMALITY OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

By T. J. SWEETING

University of Surrey

A very general result concerning the weak consistency and uniform asymp-
totic normality of the maximum likelihood estimator is presented. The result
proves to be of particular value in establishing uniform asymptotic normality of
randomly normalized maximum likelihood estimators of parameters in stochastic
processes. The only conditions imposed are certain regularity conditions on the
(random) information function, easily verified in practice. Application of the
result is briefly considered.

1. Introduction. In this paper we present a very general result on the weak consistency
and asymptotic normality (a.n.) of maximum likelihood (m.l.) estimators, which proves to be
of particular value in inference for stochastic processes. Recently there has been much interest
in large sample inference for stochastic processes—in particular, for the “nonergodic” case
where the conditional information function does not behave asymptotically like a constant
(for example, branching processes, the pure birth process, some diffusion processes). The
standard approach is to prove the asymptotic equivalence of the m.L. estimator and the first
derivative U4(#) of log likelihood (both suitably normalized) and then to establish a.n. for
U(®). In the independent case this follows from the ordinary central limit theorem when the
Lindeberg condition holds, and in the “ergodic” dependent case from a martingale central
limit theorem. (See for example [5], [11], [14], [3], [2], and [7].) In certain nonergodic cases it
is possible to express U,(§) as the random time change of a process with stationary independent
increments and derive a.n. from this fact (cf. Keiding (1975), Feigin (1976)).

It is shown here that under some reasonable stipulations on the (random) information
function, a.n. of m.1. estimators results. Moreover, the convergence to normality is shown to be
uniform in compact subsets of the parameter space, a statistically essential requirement for
constructing approximate confidence regions or assessing the power of tests. The conditions
imposed are briefly discussed and some applications given in Section 5.

2. Regularity assumptions and conditions on the information function. Let {({2, /) be a
family of measurable spaces, where ¢ is a discrete or continuous parameter, and let Pj be a
probability measure defined on (2, %) depending on the parameter § € 6, an open subset of
R*. Assume that, for each ¢ and § € ©, Pj is absolutely continuous with respect to a o-finite
measure A; let p(f) be the density of P§ with respect to A.. Then the function /(6) = log pA6)
exists a.e. (A\). We assume that the second-order partial derivatives of p(f) exist and are
continuous a.e. for all § € O. Let U/(6) = I (), the vector of first-order derivatives of /(§), and
17(0) be the matrix of second-order derivatives. Define the (random) information matrix
J(0) to be F(0) = =17 (6).

The symbol —, will mean uniform convergence in compact subsets of ©, and =, will
mean uniform weak convergence (see Section 4 for definitions and properties). Let M}, be the
space of all k X k matrices. The norm | A | of the matrix 4 is | 4 | = (tr ATA)V% a sequence (45)
of matrices converges to the limit 4 iff | 4, — A| — 0. If the matrix 4 is p.d. we write 4 > 0;
if A > 0 then A'/* denotes the (symmetric) positive square root of A. The identity matrix in M,
will be I;.
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If T is the matrix (6, - - -, 6;) where 6, € 6, i =1, - - -, k, define 4(T') to be .% with row i
evaluated at 6. We assume that .%(0) satisfies the following conditions:

C1 (Growth and convergence). There exist nonrandom square matrices 4,(6), continuous in
0, satisfying {4,(0)} ' —. 0 such that

Wi0) = (440)} " AO{40) '] =u W)

where Pr(W(0) > 0) = 1.
C2 (Continuity). For all ¢ > 0
(i) sup [{446)} "Ad0") — x| —u0
where the sup is over the set |{48)} 7(¢’ — 8)| <, and
(ii) sup | (40} "[AT) — AON{AWB) 17| =0
in probability, where the sup is over the set |[{4(6)} T6:— 0| <c, 1<i<k
It is easily seen that C1 and C2 are equivalent to the single condition

M {440} " AM{46)) 1T =0 W(6)

where |{A46)}7(6" — 8)| <c, 0, - - -, 0, are random variables satisfying | {40)} "(8; — 0)| < ¢
and Pr(W(6) > 0) = 1. Verification of C1 and C2 is briefly discussed in Section 5. In most
applications, A(0) {4/6)} T = E,;%(6); however we do not require here that E;.%(f) even exist.
When it does exist, 4,(6) can often be taken as {Es.%(6)}"/ but this is not always so—for
example, when information about different parameters tend to infinity at different rates (cf.
[8]). If z is the index parameter of a stochastic process one can often prove uniform convergence
in probability of W,(f) to some random variable W(6) > 0, which will then imply CI (see
Lemma 2). However, C1 allows the random variables to be defined on different spaces.

3. Statement of main results. We assume throughout this section that the regularity
assumptions and conditions C1, C2 in Section 2 hold. Normalize U(6) by defining

Xy6) = {446)} ' Ud8).
The main result concerns the asymptotic joint distribution of Xy(f) and the “normalized

information” Wy(0).

THEOREM 1. (X(6), Wi(0)) =. ({W(0)}*Z, W(6)) where Z is a standard normal random
vector in R*, independent of W (6).

One can deduce uniform convergence of certain probabilities from Theorem 1 since the
distribution of W(0) is continuous in é—see Lemmas 1 and 3. To deduce the asymptotic joint
distribution of the m.l. estimator §, and W,(#), we need a link between §; and X,(0); this is
given in Theorem 2. Write

Yd8) = (A(6)} (6. — 6).
THEOREM 2. There exists a local maximum 6, of 1(6) with probability tending to one
satisfying
Xd0) — W{8)Y(0) —. 0
in probability.
It follows from Theorems 1 and 2 and the continuous mapping theorem that
{WLO)}Y*Y6), WAB)) =u (Z, W(D)).

For statistical application, one can deduce the following result:

CoROLLARY 1. Conditional on Wi(0,), Y«0) is asymptotically normally distributed with zero
mean and covariance matrix { Wi(0;)} .
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It may be shown from the uniform stochastic boundedness (u.s.b.) of Y,(§) (see Lemma 4)
and C2(i) that {4«6)} A«8;) —. I+ in probability and so Y(6) in Corollary 1 may be replaced
by {448)} "(6: — 6). Thus confidence regions for @ are based on the approximate normality of
0., mean 6, covariance matrix {f,(é,)} -1

The justification for considering the sampling distribution of ; conditional on Wy(f,) is
provided by the following conditionality argument. From (1) and Y,(6) u.s.b. it follows that
{#(8,)} ' —>. 0 in probability. Since the asymptotic distribution of Wy(f,) is continuous in §
(from Lemma 3 and W) — W6) —, 0), the distribution of W,4,) as a function of 8 is
effectively constant over the main range of variation of the distribution of ;. Thus Wy(f,)
behaves like an ancillary statistic for 6, which suggests basing inferences about 6 on the
distribution of 6, conditional on Wy#,).

4. Proof of results. We first define the notion of uniform weak convergence and give
some simple properties. Let g,, n = 1 be arbitrary real functions and g a real continuous
function on a metric space X. Several times we shall make use of the fact that

@ gn(s) — g(s) uniformly in s
iff gn(sn) — g(s) for every sequence s, — s.

Let P, P.s, n = 1 be probability measures defined on the Borel subsets of a metric space
depending on the arbitrary parameter s, and let C be the space of real bounded uniformly
continuous functions. We shall say that P,,=> P, uniformly in s iff

3 J’ udP,;— J u dP; uniformly in s, for allu € C.

If s € X, another metric space, then the family (P;) of probability measures is continuous if P;,
=> P, whenever s, — s. The set B will be called a (P;)-continuity set if P(dB) = 0 for all s € X,
where 0B is the boundary of B. The following lemma gives some simple consequences of
uniform weak convergence when the limit family (P;) is continuous.

LemMA 1. Suppose that P,s = P, uniformly in s and (P;) is continuous. Then
(i) The convergence in (3) holds for all bounded continuous u.
(ii) Prn(B) — P«(B) uniformly in s for every (Ps)-continuity set B.

PROOF. Let s, be an arbitrary sequence converging to s.

(i) From (2), [ u dP.s,— [ u dP; for all u € C, and hence for all bounded continuous u
(Theorem 2.1 in [4]); (i) follows on applying (2) once more. v

(ii) Since P, = P, from (2), it follows from Theorem 2.1 in [4] that P, (B) — Py(B); (ii)
now follows from (2) since Py(B) is a continuous function of s.

Let X,, X, n = 1 be random k-vectors on a probability space (2, J, Ps) .

LEMMA 2. If X, —p X, uniformly in s then X, s = X, uniformly in s.
The proof is elementary and therefore omitted.

Assume throughout the remainder of this section that the regularity assumptions and
conditions C1, C2 of Section 2 hold.

LeEMMA 3. The distribution Gy of W(0) is continuous in 0.
PrOOF. Let G4 be the distribution of Wy(#). Since, from C1, [ u dG.s— [ u dGs uniformly

in compact subsets of © for every u € C, it suffices to show that G, is continuous in 4 for each
t.Butifue C,6,0,€0,m=1,6,— 6,

J’ u dG;'am - f u th,o
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® = ' J' u(WiOn) dPrs, - f u(W(0)) dPsg

< IIuIIJ’ | @) — p(@)| d A\,
+ J | u(W(Om)) — w(W«8))| dPys.

Since p.(f) is continuous a.e., the first integral tends to zero as m — o by Scheffé’s Theorem.
Since W\(0) is continuous a.e. (A;) and u € C, the second integral tends to zero by Dominated
Convergence.

In the proofs of Theorem 1 and Lemma 4 below, 6, § € © and 6, — 6 as t — . Write W,
= Wi(6:), A = Ad8.), X, = A7'1}(8:) = Xi(6:). Repeated use is made of (2) in the proofs. Note
in particular that from C1 and (2) we have

©)] ;1> 0.

Proor oF THEOREM 1. For brevity we omit the fixed argument @ in W(6) and elsewhere
in the proof. Let s € R* and define , = 6, + {4;"}7s; from (4), Y: €O fort >ty and Y, — 6.
Assume ¢ > 1o; from the regularity assumptions we can write a.e. (A,)

Iie) = 1(00) + (Y — 0) T1(60) + ¥ — 0) "I (b)(Ye — 6))

where ¢ = ad + (1 — a)yy, 0 < a; < 1 (o is random). Write ¥, = A7 ' F(p) {47 7; taking
exponentials and rearranging gives

(5) eSTX?t(at = el/stVtsPl(\I/t)~

It follows from (1), (2) and Lemma 3 that ¥, = W under both the (d,) and (y;) families of
distributions. Let 0 < € < 1 and choose K such that Pr(| W| = K) < e and Pr((W| = K) = 0
(possible since the distribution of | W | has a denumerable number of atoms). Since V, = W
and {| x| < K} is a Gy-continuity set, it follows that

(6) Pi(| V.| < K) - Pr(| W| < K).

Let (Q") be the family of distributions (P$) conditional on (| ¥, | < K); that is, Q* has density

_PO)/Pi(V.|<K), |V|<K
= ,  otherwise.

Let u be a bounded function on Mj, continuous on |4 | < K, with u(4) = 0 for | 4| = K. Let
E? denote expectation under Q*. Multiplying (5) through by u(¥;) and integrating with respect
to A, over the set (| V.| < K) yields

EX{u(V)e™) = E{u(V)e">™*} /Pi(| V.| < K)
— E{(u(W)e"* "} /Pr(| W| < K)
= E* {u( W)el/2sTWs}

where E* denotes expectation conditional on | W | < K. This follows from (6) and because the
function u(w)e'’*™ is a bounded Gj-continuous function ([4], Theorem 5.2). But the right-
hand side is equal to E*{u(W)e’"""*?} where Z is a standard normal random vector in R*
independent of W. By the uniqueness of bilateral Laplace transforms and the weak compact-
ness theorem, it follows that (X, ¥;) = (W'?Z, W)| W| < K with respect to the family (Q°)
of distributions. Since € was arbitrary, it follows easily by standard computations that (X;, Vi)
= (W'2Z, W) and hence

™ X, W)= (W'°Z, W),

since ¥, — W, —, 0 with respect to (P§). Finally, since (7) holds for arbitrary 6, — 6 and since
the distribution of ({ W(6)}/?Z, W(#)) is continuous in § from Lemma 3, the theorem follows
on application of (2).
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A family (T7(0)) of (possibly extended) «-measurable functions is uniformly stochastically
bounded (u.s.b.) if for each € > 0 and compact set X in O there exists ¢ and #, such that

Py(| T(O)| > c) <€

for all £ > £, and 6 € K. Let §, be any local maximum of /,(6); if none exists put f, = +oo.
Recall

Y(0) = {446)} "6, —

LemMMA 4.  There exist local maxima 8, with (Y«(0)) u.s.b.

Proor. Write P = Pj, for brevity. Let S, = {¢p € R* | Al (¢ — 8)| = ¢}. If (¢ — 0) Tl(o)
< 0 for all ¢ € S, then there exists a local maximum §; of /(6) satisfying | Y«8,)| < ¢ (cf.
Aitchison and Silvey (1958)). Let 7, = P(supyes, (¢ — 8:) "li$) = 0). We shall show that

® limsup, ... m— 0
as ¢ — oo, from which the lemma will follow. If ¢ € S, we have a.e.
@ = 0)"li(¢) = (6 — 60 T1i(6) — (& — 0) AT — 8)

where I' = (0, - -+, 6x) and | A7 — 6)| < c, 1 <sis< k. Taking the sup and inf over the set
{x € R* | x| = 1} we therefore have

< P(sup x"X, = c inf x"U,x)

where U, = 47" 4(T) {47} ™. But inf x"U,x = p,, the smallest eigenvalue of U,, and from (1)
and (2) it follows that p, = p(6), the smallest eigenvalue of W(6). But for all € > 0

m<P(| X:| = cu) < P(| X, | = ce) + P(p < e).

Since from Theorem 1 X, = {W(6)}"/*Z, and p, = u(f) it follows from (iii) of Theorem 2.1 in
[4] that

limsup,. 7 < Pr(| { W(0)}'*Z | = ce) + Pr(u(d) < ¢)
— Pr(u(f) < ¢

as ¢ — o and (8) follows since Pr(u(f) <€) — 0 as e > 0.

PROOF OF THEOREM 2. Let F, be the set (§, < ). On the set F,, Uf6) = 4T, — 6)
where I = (0, .- -, 6;) and so

X(8) = W0, 8)Y(0)

where W8, ) = {A40)} AT {A46)) '". Since {A(0)}"(0: — ), | < i < k, are us.b. it
easily follows from C2(ii) that Wy, 6,) — Wi(6) —. 0 in probability. Since Yy(d) is u.s.b., the
theorem therefore holds conditionally on F,; the result follows since P§(F,) —, 1.

PROOF OF COROLLARY 1. This follows since Y,(f) is u.s.b. and Wy(f;) — Wi(6) —. 0, as in
the proof of Theorem 2.

5. Application of results. In this section we consider briefly the application of the results
of this paper. Sufficient conditions are easily constructed for conditions C1 and C2 of Section
3; obvious sufficient conditions for C2 in terms of the derivatives (when they exist) of the
elements of A(6) and .%(f) may be constructed—we omit further consideration of C2 and
concentrate on C1. The approach to verifying Cl1 largely depends on whether one is in the
ergodic (W (6) degenerate) or nonergodic case. These two cases are briefly discussed below,
along with some simple examples.

In the ergodic case the simplest general sufficient condition arises when %(6) is square-
integrable, since then C1 holds if E {#(8)} —. W(8), Var{#(6)} —. 0. This requirement can
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of course be weakened; in the case of independent observations, conditions such as those in
[5]; [11] or [14], strengthened to hold uniformly in compacts of ©, can be given. Asymptotic
normality in the ergodic case is derived in Weiss (1973) under a similar set of conditions to
those imposed here. Our result may be considered an improvement of Weiss’s result since
uniform asymptotic normality is obtained. In addition, our conditions are weaker since in [17]
it is assumed that there are diagonal matrices A, such that A;’4(f) —, B(6). This condition
fails to hold for a nonhomogeneous Poisson process with intensity fe* for example, which
satisfies our conditions with A(6) = te®/%.

The nonergodic case usually arises when the process (X;) itself is nonergodic and .%(6)
approximates a linear combination of X, (or integral, when the parameter ¢ is continuous). For
then (specializing to k = 1), if there are constants b,(d) and random variables Y(6) such that
Y«(0) = {b«(0)} "' X«(6) —. Y(0) in first mean, an application of the Toeplitz lemma, or integral
version, will usually give C1. A simple discrete example is the estimation of the mean 6 of a
power series offspring distribution in a supercritical Galton-Watson process. The likelihood
function and m.l. estimator 6, were derived by Heyde (1975) and asymptotic normality of 6,
(randomly normalized) discussed. Here %,(6) = {0(6)} ~> =% X; where X; is the ith generation
size and ¢%(f) the offspring distribution variance (Sweeting (1978)). It is straightforward to
show using the above argument that C1 holds with {4.(f)}* = 8" C2 is readily seen to hold,
so that Corollary 1 applies. The uniform asymptotic normality of , (obtained by a different
method) was used in [15] to make power calculations. The pure birth process provides a simple
continuous-time example. The likelihood function and m.L estimator A, of the birth parameter
A are derived by Keiding (1974), who obtains the asymptotic distribution of A,. Here Q) =
A~%(X, — Xo) where X, is the population size at time ¢, and it is easily shown that C1 and C2
hold with {4,A)}? = €. The asymptotic results in [12] therefore follow with the addition of
uniform convergence.

No attempt has been made here to work through details of more complex processes, but the
results of this paper should apply to a very wide range of inference problems. Where asymptotic
results are available in the literature (for example, the Ornstein-Uhlenbeck process with
unknown drift parameter—see [6] and [9]), use of the general results proved here provides a
simpler route to establishing asymptotic normality—and with the additional bonus of uniform-
ity of convergence.
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