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ASYMPTOTIC INTEGRATED MEAN SQUARE ERROR USING LEAST
SQUARES AND BIAS MINIMIZING SPLINES?!

By GIRDHAR G. AGARWAL AND W. J. STUDDEN

Indian Statistical Institute and Purdue University

Let S¥ be the set of dth order splines on [0, 1] having k knots §, < & ...
< &. We consider the estimation of a sufficiently smooth response function g,
using n uncorrelated observations, by an element s of S¥. For large n and k we
have discussed the asymptotic behavior of the integrated mean square error
(IMSE) for two types of estimators: (i) the least squares estimator and (ii) a bias
minimizing estimator. The asymptotic expression for IMSE is minimized with
respect to three variables. (i) the allocation of observation (ii) the displacement of
knots §; < - -+ < ¢ and (iii) number of knots.

1. Introduction. Suppose a functional relationship

n = g(x)

exists between a response 1 and an independent variable x, where x lies in the interval [0, 1].
The problem to be considered is to estimate g using n measurements of 1. At each x;, i = 1,
..., I, n; = ny; measurements are taken. The probability measure assigning mass y; to the
point x43 p; = 1) is referred to as the design and will be denoted by u*. In observing the
response n we assume that an additive experimental error, denoted by e, exists so that, for each
observation y;;, j=1,...,m,i=1,..., r; we can write

Yii = n(x:) + &;; = g(x:) + €.

We assume that ¢; are uncorrelated and identically distributed with mean zero and an
unknown common variance o independent of x.

If it is known that the true functional relationship 7 = g(x) has a certain form depending
on a few parameters, then the problem is usually to estimate these parameters. If the form of
the true functional relationship is unknown, the problem is to approximate the function g(x)
by some graduating function. In this paper we are interested in the latter problem. In the
absence of the knowlege of the true functional relationship, it has been a common practice to
use a polynomial as an approximating function. But when the degree of polynomial is high,
a number of unpleasant features begin to appear, one of which is the high oscillatory behavior
of the approximating polynomial. Spline functions, to be defined presently, are considerably
less oscillatory. As an example see Jupp (1978) where he has fitted a polynomial of degree 9
as well as a cubic spline to the data of world sugar prices over a 31 year period taken from
Guest (1961, page 194). The improvement in the fit to the data achieved by cubic splines is
somewhat obvious since it shows less oscillation compared to the polynomial fit. Furthermore,
the behavior of a polynomial in an arbitrary small region defines, through the concept of
analytic continuity, its behavior elsewhere. This seems to manifest itself in situations where
the function g, behaving poorly in a small region, gives rise to a polynomial approximation
behaving poorly everywhere. On the other hand, the spline functions possess the property of
having local behavior that is less dependent on their behavior elsewhere. Because of these
properties spline functions are more and more being used in the exploration of response curves
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for physical processes. Low order splines are commonly used in geophysics in the form of
layered earth models (for example, see Vozoff and Jupp (1975) and Jupp and Stewart (1974)).
In astrophysics, Holt (1974) has used piecewise linear splines to model the radiation profile of
the sun’s atmosphere. Lawton, Sylvestre, and Maggio (1972) have also used linear splines as
“empirical functions” in approximating shape invariant models. These kinds of models arise
in the studies of hearing response, or EKG’s in the human population, or when one measures
spectrophotometric curves from sampled product, or observes reaction curves in designed
chemical experiments. Wold (1971, 1974) has used spline functions in the analysis of response
curves in pharmacokinetics.

We assume that the function g(x), defined on [0, 1], is such that g € c9o, 1], i.e., ghasd
continuous derivatives. Here the function g(x) will be approximated by a function s(x) in the
class S§. The set S# is the collection of all polynomial splines of order d (degree d — 1) having
k knots §; < & < .- - < § in the interior of the interval [0, 1]. That is, s(x) is a polynomial of
degree at most d — 1 on each interval (£, £.1) and belongs to C*7'[0, 1]. For d = 1, S% consists
of functions which are constant on each interval (and suitably defined at each &;). For d = 2,
S¢ consists of functions s which are linear on each interval (£, &) and continuous on (0, 1).
For general 4, the function s(x) € S¢ has the representation

(L.1) s(x) = Y 0:Ny(x)

where N/s are normalized B-splines. The polynomial splines and their B-spline basis will be
discussed further in Section 2.
Let y: denote the average of the n; observations taken at x;. Estimates which are linear in

y=(J1,.. ., ) will be used in nearly all cases. Thus the vector of parameters § = (61, .. .,
0r+4)’ will be estimated by
1.2) 6=cCy

where Cis a (k + d) X r matrix. As our criterion for the goodness of the estimate we shall use
an integrated mean square error (IMSE); the integration being taken with respect to a measure
A which has a continuous strictly positive density with respect to Lebesgue measure. OQur
estimate is then

(1.3) N'(x)§ = N'(x)Cy,
where N(x) = (Ni(x), Na(x), .. ., Nr+a(x))’. The mean value of N'(x)f is N "(x)Cg- where g,
= (g(x1), ..., g(x»)) . The variance is

E(N'(x)8 — N'(x)Cg)* = (¢*/m)N"(x)CD™ (u™)C’' N(x),

where D(u™) is an r X r diagonal matrix with diagonal elements i, . . . , u-. The mean square
error is then variance plus squared bias and the integrated mean square error is

(14) IMSE = V + B = (¢*/n)tr CD'(u™)C’' M) + f (g(x) — N'(x)Cg,)* dA\(x)
0
where M(]) is the (k + d) X (k + d) matrix
(1.5) MQ\) = J N(x)N’(x) d\(x).
0

Note that ¥ and B denote the integrated variance and integrated squared bias respectively.
The IMSE involves three variables (i) the design p (ii) the knots &1, &, . . ., £ and (iii) the
estimate or choice of C. It is difficult to minimize the IMSE given in (1.4) directly with respect
to these variables. The approach used is to first consider the asymptotic behavior of the IMSE
for large n and k under some regularity conditions and then perform the minimization.
The purpose of studying (1.4) is to attempt to utilize the choice of these three “variables”.
With regard to the choice of C we study mainly the least squares estimator (LSE). Some
consideration is given to a bias minimizing estimator (BME) which resembles the estimator
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minimizing the total IMSE for known g. Further comments on the BME are given in Section
4.

An explanation of how the design and the knots are chosen is given after Theorem 3.2. We
have as yet not exploited the choice of the order 4 of the splines.

In Sections 3 and 4 we have discussed the asymptotic behavior of the IMSE for two kinds
of estimators, namely, the least squares estimator (LSE) and a bias minimizing estimator
(BME). An example is given in Section 5 to illustrate the behavior of the procedure (for
choosing the design and knots) which is proposed in Section 3. In order to facilitate the
presentation of the results, we have deferred the proofs of all theorems to Section 6.

The main idea for the approach used here is from Dodson (1972), Rice (1969), and
Burchard (1974) where nonstatistical approaches were used. Further discussion of the results
can be found in Agarwal (1978), and Agarwal and Studden (1978a).

2. Splines and B-splines. Let
21 G=)0<&L<-  <&<IU(= &)

be a subdivision of the interval [0, 1] by k distinct points. These points are the “knots” of the
spline function which is defined as follows: a spline function, s € S%, is a function which (i)
in each open interval ({1, &) fori=1,..., k + 1 is a polynomial of degree =< (d — 1), (ii) has
(d — 2) continuous derivatives in the open interval (0, 1).

For each (fixed) set of knots of the form (2.1), the class S§ of such splines is a linear space
of functions of dimension (k + d). A basis for this linear space is provided by B-splines, or
basic splines (Curry and Schoenberg (1966)). As well as being a powerful theoretical tool in
spline theory, these elementary spline functions provide stable methods for computing with
spline functions (see deBoor (1972) and (1978)). One of the desirable properties of B-splines
is that their support consists of a small fixed, finite number of intervals between knots.

For d = 1, the N,(x) are simply the indicator functions on the intervals ({1, &]. Ford =2
the support consists of two consecutive intervals (except for the first and last function) and on
these intervals is given by

Nini(x) = (x — éi—1)/(§i —§) Laa<x<é§
= (&1 — %)/ (&1 — &) Li<x < i

For equally spaced knots the N; are proportional to the density of the sum of 4 uniform
random variables on (0, 1) appropriately scaled and translated.

Explicit expressions for the B-splines will not be needed. For completeness we give a precise
definition and list some of their properties below.

We write IT for the nondecreasing sequence {#;} {*** obtained from {£}§*" by repeating &
and &1 each exactly d times. The B-spline basis for the family S§ is formed by the following
k + d normalized B-splines

.2 Nix) = (tiva — B)[tiy - - -, tiva](t — )5
i=1,...,k+d where[t, ..., tira]p denotes dth order divided differences on the (d + 1)
points #;, . .., tira Of the function ¢, and a means a” if a > 0 and zero otherwise. For two or

more than two coincident ¢’s, the differences in (2.2) are taken to be confluent divided
differences (cf. Milne-Thomson (1951)). The N; are, apart from a constant factor, the B-splines
of Curry and Schoenberg (1966).

The N, defined in (2.2) satisfy

(2.3) 0<Ni(x)<1 for x€ (L, tisa) and Ni(x) =0 otherwise;

.4 {N:}/%}is linearly independent over the interval [ja-1, tj+241]
forany/=d—landanyl <j<k+d—-1

.5) {N}%¢ spans S%;

(2.6) HAN(x)=1 forall x;



1310 GIRDHAR G. AGARWAL AND W. J. STUDDEN

(27) J N,‘(X) = (T,'+d - t,‘)/d, i= l, ey k+d.
0

For (2.3), (2.5), (2.6) and (2.7) see Schoenberg (1966). DeBoor and Fix (1973) proved (2.4).

For d > 1, Ni(x), as given by (2.2), are well defined continuous functions. For d = 1, (2.2)
makes sense only for x # t;, 1 <j =<k + 2d, because of the jump discontinuity of (¢t — x)$ at
t = x. So in this case we assume the definition (2.2) to be augmented by the (admittedly
arbitrary) demand that N;(x) be right continuous everywhere. Thus for d = 1, we let

Ni(x) =1, =X <liv1
=0, otherwise.

3. Asymptotic value of IMSE for LSE. In considering the asymptotic behavior of the IMSE,
we shall be concerned with the sequences Ti = {, &1, . . ., &, &+1} of knots defined by

i
@3.1) f px) dx =i/(k +1), i=0,1,...,k+1.
0

where p(x) is a positive continuous density on [0, 1]. Sacks and Ylvisaker (1970) call the
sequence {7}, k = 1} so defined as a regular sequence generated by p{RS(p)}.

It will be convenient to introduce the following notation: for each fixed k, and i= 1, .. .,
k+1let

6 =§& — &1, 6 = max §;, and A = §/min; §;.
Letting 0 < pmin = min, p(x) < max; p(X) = Pmax, We see that
3.2) A = prmax/Pmin.
Also in view of the definition of t/s in terms of &’s we see that
3.3) {max; (tiva — t;)/min; (tiva — )} < dA =< dpmax/Pmin-

In this section we discuss the asymptotic behavior of the ISME when the estimator used is
the least squares estimator (LSE).

In the classical problem of regresson theory, the analytic form of the function g(x) is
supposed to be known. In our case g would be assumed to be of the form g(x) = ¥ 4, Ni(x).
The estimator § = Cy is restricted to be unbiased. The unbiasedness of § = Cj restricts C so
that

CF' =1

where F is the (k + d) X r matrix F = (N(x1), ..., N(x,)) and I is the (k + d) X (k + d)
identity matrix. The quantity ¥ in (1.4) is then minimized by the usual least squares estimate

34 C= M"Y (p™)FD(u™).

Here ™ represents the design measure placing mass on x;, i = L...,r, M(u™) is the (k
+ d) X (k + d) matrix [ N(x)N’(x) du(x). The estimator § = Cy can then be represented by
3.5) fuse = Cj = M~'(u"™) f N(x)x du™ (x)

where j. is the average of the observations taken at the point x. The LSE estimator gives a
value of ¥ and B as follows:

(3.6) V= V(n, k) = (0®/m)tr M~ (n™)M\)

and

3.7 B=B(n k) = J (g(x) — grr(x))* dA(x)
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where g,x(x) = N'()M ~'(u™) [ N(»)g(y) du™(y).

In order to make concrete asymptotic statements about ¥ and B we assume (i) 1™ converges
to a design measure p, where u has density A, continuous and positive and (ii) the rate of
convergence is determined by k or rather by § = max(¢ — £_,). More specifically we let n =
n; be such that

(3.8) sups | Hp(x) — H(x)| = o(k™), k— oo,

where H,, and H are the cumulative distribution function of ™ and u respectively.

THEOREM 3.1. Let g € C? [0, 1], u and A have continuous strictly positive densities h and f
respectively. If {T:} is RS(p) and condition (3.8) is satisfied by the designs u"™, then as k —
w’

(A) V = (ka®/my) [ (f(x)/h(x))p(x) dx

(B) B = (b/k™) [ {(g' "))/ p(x))*} f(x) dx
where the symbol = indicates that the ratio tends to one. The constant b equals | Bsa|/(2d)",
where Byg is the 2dth Bernoulli number (see Norlund (1924) or Ghizzetti and Ossicini (1970)).

The above theorem says that

(3.9) IMSE = (ko*/ny) j (f)/h(x))p(x) dx + (b/k™) f {(8' )/ (p0))*} f(x) ax.
This asymptotic value depends upon (i) /(x), the allocation of observations, (ii) k£, the number
of knots and (iii) p(x), the displacement of knots. The results of minimizing the asymptotic

value of the IMSE in (3.9) are given in the following theorem.

THEOREM 3.2. The IMSE given in (3.9) is absolutely minimized by h, p and k given as follows:

(3.10) h(x) = ag/{(f(x))?* (gD (x))?}V4e+D
@1h P) = Ber{f00(g V) 4o,
(.12 k = Bai{(2bdn/o)ag )V **0,

where 0;_1,' - J‘(l) {(f(x))zdﬂ(g(d)(x»z}1/(4d+1» dx, and B;lf = f(l) {f(x)(g‘d’(x))‘}l/“"“’ dx.

For a proof of this theorem we refer to the proof of a theorem in Section 3 of Agarwal and
Studden (1978b) in which parallel results are proved for the case f(x) = 1.

The knot displacement in (3.11) indicates that the knots should be placed where
S(x)(g“(x))* is large. Using (3.10) and (3.11) (or going back to (3.9)) we see that & a (fp)* so
that A is usually more dispersed than p.

Equation (3.12) indicates that k is decreasing in o and of order n'/?**". For example for d
= 2 this gives nak®. This indicates that there should be many more observations than knots.

The minimized value for the asymptotic expression for ¥ + B is used as follows. First, for
a given n we iteratively choose the number and placement of the knots. Second, the function
g is estimated sequentially and at each stage a better design or allocation of future observations
is chosen. This is illustrated for the case d = 2. ‘

For a given set of observations on g we estimate o® and g®. The number of knots & is
calculated from (3.12) and their displacement is determined by p in (3.11). Then ¢® and g®
are reestimated and the knots are readjusted. For a fixed n, two or possibly three iterations
seem to be sufficient. In choosing the observations sequentially, we attempt to choose future
observations so that the allocation of the total set resembles the design 4 given by (3.10) with
the most recent estimate of g®. The above cycle is then repeated. A brief illustration of the
above procedure is given by an example in Section 5.

REMARK 3.1. We have proposed choosing k and §i, . . ., & and the design by estimating g.
Other methods for choosing & and the knots &, . . ., & are certainly possible. One such method
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is the technique of cross-validation proposed and studied extensively by Wahba. See, for
example, Wahba (1977) or Golub, Heath and Wahba (1979) or references therein.

REMARK 3.2. In minimizing the asymptotic expression for IMSE = V' + B we showed k =
O(n'/®#*D) When this is inserted into the expression for the IMSE in (3.9) we find that IMSE
= O(n 2¥®4#*D) (If n and k are chosen so that n, = O(k***"), we should also keep in mind that
condition (3.8) should be satisfied by the design p*¥.) This is the same rate obtainable for
smoothing splines (see Wahba (1978)). This rate appears to be the best possible as indicated
by recent results of C. J. Stone concerning rates of convergence for nonparametric estimators.
This gives considerable support for using splines in practical nonparametric work because
they achieve the best possible convergence results and have in addition some nice properties
as indicated in Section 1.

REMARK 3.3. We have imposed rather strong conditions on the functions g and f. These, of
course, can be weakened somewhat. In particular g is assumed to be in C% That is, g® is
assumed to be continuous. The rates involved seem to be attainable if g** is only assumed
to be absolutely continuous and g’ is in L,. However, the constants involved in the bias term
B would appear to change. Numerous results, concerning the rates, are available in the
literature on spline theory without the constants. Exact constants are given, for example, in
Barrow and Smith (1978a) and they also assume g € C°. Although the exact constants are
desirable in minimizing the IMSE, they do not, however, appear to be overly important. For
example, if the bias is multiplied by a factor of ¢ then k changes by a factor of ¢'/**" which,
say, is 1.58 if c= 10 and d = 2.

4. Asymptotic value of IMSE for BME. The IMSE, given in (1.4), is minimized if
1

@0 E(Cy)=tM7'(f) <f

0

N(x)g(x)f(x) dx)

where M(f) = M(\) = [ N()N'(x)f(x) dx, t = q/((c*/n) + q), and g — g D(s")g, = [ g*(x)
du™(x). This minimization is easy to show and is given in Agarwal and Studden (1978a).
Some discussion of the matrix C which actually minimizes the IMSE is given in Remark 4.2
below. The factor ¢ does not seem to be important unless 7 is small relative to g? and g. We
have not attempted to use ¢ in our estimation of g. The expression (4.1) with ¢ = 1 actually
minimizes the bias B. Various authors, for example, Box and Draper (1959) and Karson,
Manson and Hader (1969) have proposed attaching more importance to the bias part B.

In general a matrix C cannot be found for which (4.1) holds even if # = 1, so instead we try
to find a C* such that

42 E(C*p) = M7(f) J N(x)g(x)f(x) dx.
0

The asymptote is in the sense that | E(C*y) — M~'(f) [ N(x)g(x)f(x) dx]|| goes to zero as n
(number of observations) tends to infinity, where the vector norm || a || =g (a’a)"’%. We should
emphasize here that k is fixed.

Let L'(x) = (Li(x), ..., Lr(x)), where Li(x), i = 1, ..., r are the normalized B-spline
(Section 2) of order 2 with knots at the observation points x;, i =2,...,r — 1. The L,(x)is a
“roof-like” function which has a value one at x;, goes linearly to zero at adjacent knots x;_;
and x;+; and then remains zero. Let us define g(x) = Yi=1 g(x:)Li(x). Since Li(x;) = 853 i, j =
1,...r, g(x) interpolates g at x;, i =1, ..., r. As an approximation to g, the function g satisfies
the following two properties (e.g., see Prenter 1975).

(i) If g is continuous then g converges to g as r (or n) — o in such a way that n = max; (x;
— x,-1) tends to zero.

(ii) If g is twice continuously differentiable, then ||g — g« = max.cpoy | g(x) — g(x)| =
a| g® |1, where a is a constant independent of 7.
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Now if we take
“4.3) C*= M'l(f) J' N(x)L'(x)f(x) dx

then in view of (i) and (ii) we see that C* of (4.3) satisfies (4.2). Hence our “bias minimizing”
estimate (BME) is defined as
1

@4) fome = C*5= M7'(f) ( f NEOL'(x)f () dx)yﬁ

(]

In the following theorem we shall find certain asymptotic expressions for the IMSE using the
estimator fpme. For simplicity the design ™ is assumed to have weight p; on x; given by

4.5) i = f Li(x)h(x) dx,
' 0

i=1,...,r

for some continuous strictly positive density h(x).

THEOREM 4.1. If the estimator OsmE, given in (4.4), is used, and the design is chosen using (4.5)
and {T:} is RS(p), then

(A) limp s i (1V/k0®) = [ (f(0)/R(G))P(x) dx

(B) limy o lim o KB = (| Baa|/(2d)") J {(g“(¥))*/(p(x))**} f(x) dx.

REMARK 4.1. In Theorem 4.1 the limits are taken in such a way that n approaches infinity
before k. Presumably the limits may be taken together as was done in Theorem 3.1 provided
a condition like equation (3.8) holds. The condition which is imposed in equation (4.5) on the
design measure p'” does not seem to be necessary. It is imposed in order to obtain the same
asymptotic value for the variance term as that obtained by the LSE. In the proof of Lemma
6.11 below it seems that something of the form

(4.6) pi = h(x)I(1 + o(1))

where I; = [ L;(x) dx is necessary. For a general sequence p1 ™ one could use a slightly different
set of points z;, z,, . . ., z-, instead of x;, x2, . . ., x,, on which to base our L; functions so that
(4.6) holds. In this case however one has futher difficulties in showing the bias term involving
(4.4) (or slight modifications) behaves properly.

REMARK 4.2. The matrix C which actually minimizes the IMSE for known g is given by
@7 Ce=M7'(f)sgra™

where s = [ Ng fdx, A =[g.g: + (6°/n)D3"] and D, = D(p."). Instead of starting with (4.1)
in search of a good estimator one might try estimating g by some preliminary means and
inserting this value into the matrix C, from (4.7). It turns out that the resulting estimator is
effectively (4.1) again with an estimate of quantity 1.

Using (4.7) the minimum IMSE reduces to

4.8) J' gifdx — tsM~'(f)s.

With ¢ = 1 this is the minimum of the bias term. This gives some support to placing more
stress on the bias term if ¢ is near 1. In evaluating the performance of any estimator the
quantity (4.8) (the unachievable minimum IMSE) might be used as a comparison.

5. An example. In the example below the integrating measure f was taken to be f = 1 and
the function g was estimated by linear splines, i.e., d = 2. The function g was taken to be

g(x) =[0.01 + (2x — 0.3)’]™" + [0.0144 + (2x — 1.2)*]"".
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The choice of the above function is from Ichida, Kiyono and Yoshimoto (1977). For this
function g®(x) varies considerably in the interval [0, 1]. The data errors were simulated by
adding to g(x;) a number sampled from the normal distribution with mean zero and variance
one. To begin with we took three equally spaced knots and took five observations at each knot
and the end points. We performed three cycles with the number of observations n = 75, 150
and 250 respectively. This was done for both estimates namely fisg and fsme. Recall that a
number of internal iterations within each cycle (for fixed n) were done to select the number
and position of the knots. The linear spline obtained at the end of cycle zero, cycle one and
cycle two for fisg and fpme are shown in Figure 1 and Figure 2 respectively. The breaks
(joints) in the graph are the knots. We can see that the linear spline fits obtained by the two
estimates improved at each cycle. Once the fit started getting better and hence the estimates of
g and g were improved, the knots were chosen at the points where g® was large. Also the
design (not shown in the graph) was more dispersed than the knots. Both of these things were
expected (see the comments after Theorem 3.2 in Section 3).

At the start (cycle zero), the fit was bad. Actually, the bias was very large compared to the
variance. Both the estimators tried to reduce the bias very fast. The BME shows some
superiority over the LSE in the sense that it reduces the integrated squared bias (B) faster than
the LSE does.

If in this example, we had chosen a larger o” so that the integrated variance (V) is larger
than B then the present set up does not show a strong case for the LSE minimizing V faster
than the BME does. This is apparently due to the fact that after two or three cycles and a few
observations have been taken, these observations are considerably dispersed (at least in this
example), so that the LSE and the BME operate on V in a similar manner.

The details of the termination criterion, estimation of g, etc., are omitted here. A more
complete report on this procedure and its use is available in Agarwal and Studden (1978b).
The Fortran program based on this algorithm has been used on a few other examples. Further
work especially using d > 2 and more detailed comparisons between estimators and with other
procedures seems appropriate.

6. Proofs of theorems.

ProOF OF THEOREM 3.1A. We first prove the following important result which will be used
in the proof of this theorem as well as in the proof of Theorem 4.1.

THEOREM 6.1. Let M(¢) be the (k + d) X (k + d) matrix
6.1) M(e) = J' NN’ (x)(x) dx.

If ¢ and { and p are continuous strictly positive functions defined on [0, 1] and {Tk} is RS(p)
(see (3.1)) then as k — o,

(62) tr M(@)MW) = k f (Y (x)/d(x)p(x) dx.
0

PRrOOF. Let us write
(6.3) M($) = MoD(9) — E(®)

where M, is given by (6.1) with ¢ = 1, D(¢) is the diagonal matrix with elements ¢(¢;), i = 1,
2, ...,k + dand the error term E(¢) is defined through (6.3). The points {; < {o < +++ < {k+a
and (k + d) arbitrary points in [0, 1] such that

(6.4) $i € support N, i=1...,k+d
If we define

L= QR n)/d - ), i=1,.. . k+d,



ASYMPTOTIC IMSE USING SPLINES 1315

———S0BLID LINE IS ACTURL FUNCTIGN
— —BIG DASH LINE IS ESTIMATE AT CYCLE ZERO
——~— SMALL DASH LINE IS ESTIMATE AT CYCLE ONE

\
|
| —--——- [BOT LINE I8 ESTIMATE AT CYCLE TWG

Fi1G. 1. Function g(x) and the LSE at end of cycles zero, one and two.

we can see that these {/’s satisfy (6.4). Schoenberg (1966) calls these points “nodes” and has

used them in another context. Using (6.1) and (6.3), we can write
M7 @MW) =[1 - UI"'[D7'($)D¥) — V]

6.5)

where U = D™(¢)M5'E(¢), V= D"($)M 5" E(Y) and I is (k + d) X (k + d) identity matrix.
We want to expand (I — U)™" as a power series. This can be done if the matrix norm of U is
less than one. In the following lemma we find || U || =4er max. (|| Ux|| /|| x||), where vector
norm | X|| = (x'x)"/%
LEMMA 6.2. || U || < aw(¢, 8), where a is a constant independent of k and w (¢, 8) is the modulus

of continuity of ¢ and 8§ = max,<;e+1 (& — &i1).
PrROOF OF LEMMA. The proof consists of bounding the norms of M;' and E(¢). Since M, is

a positive definite matrix, it is easy to see that
1M | = (1/ ki),

(6.6)
where /s is the smallest latent (or characteristic) root of M, given by

= min; {(x’Mox)/(x'x)}.

bnin

6.7)
Now to find an upper bound on || M5 || we use an inequality of deBoor (1973, page 273). The
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—— SOLID LINE IS ACTUAL FUNCTIGN

— —BIG DASH LINE IS ESTIMATE AT CYCLE ZERG
L 100.5 —=—— SMALL DASH LINE IS ESTIMATE AT CYCLE GNE
—-— DOT LINE IS ESTIMATE AT CYCLE TW@

F1G. 2. Function g(x) and the BME at end of cycles zero, one and two.

inequality states that
(6.8) P(Y'V=(Y4y)=(y'y) forall y€ IR

where p is a constant independent of k and depends only on d, and matrix 4, called a Gram
matrix by deBoor, is related to matrix M, by

(6.9) Mo = DAD

where D is the diagonal matrix with diagonal elements {(ti+a — t.)/d}"% i=1,..., k + d.
Using (6.6), (6.7), (6.8) and (6.9), we can show that

6.10) | M3 =< (d/p®){miny<izr+a (tira — 1)}

Now we shall find an upper bound on || E(¢) ||. First of all since E(¢) = [e;;(¢)] is a (k + d)
X (k + d) band matrix of bandwidth d — 1 (i.e, e;;(¢p) = 0if |i—j|>d—L;i,j=1,...,k
+ d) it is easy to check that

(6.11) IE@)l = 2d — 1)"*{maxi<izk+a LoF ebi(@)}"%

In view of (6.4), we have fori=1,..., k + d,

(6.12) Y |e(@)] < d w(g, 8) 52t J Ni(x)N;(x) dx = w($, 8)(tiva — 1)-
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The equality in (6.12) follows from (2.6) and (2.7). The equations (6.11) and (6.12) give
(6.13) | E@) | = d — 1)"*w($, §) maxi<i<k+a (tiva = £).
Finally since || D™'(¢) || = {min; ¢({)} ", we may combine (6.10) and (6.13), to obtain
IUl=1D"@)M:"E@) |

= D7) I Ml Il E@)
< (2d - 1)1/2 d max; (t,'+d - t,') w(¢, 8)

o’ min; (fisg — ;) min; ($(S7))
In view of the quasiuniformity condition and the fact that ¢ is bounded below, it follows that
Ul < aw(s, 8),

where the constant « does not depend on k. This proves the lemma.
Now since w(¢, 8§ — 0 as k — o (or § — 0) we can make w(¢, §) < 1/a and hence || U ||
< 1. We can then invert ( — U) using a power series expansion,
dI-U)y'=I1+U+U*+ ...
=1+ W, say,
where W= Y2, U’. Therefore, from (6.5) and the above expansion,
tt M{(@)MWY) = tr D'(@)DW) —tr V
6.14
©.149) + tr WD Y(¢p)D(¥) — tr VW.

Now using the definition of the nodes {/’s and the mean value theorem in the expression (3.1),
we see that the first term on the right of (6.14) divided by k (or k + d) will converge to the
integral term in (6.2). Therefore Theorem 6.1 will be proved if we show that, as k — oo,

() tr ¥V = o(k)

(i) tr WD ($)D(¥) = o(k)

(iii) tr VW = o(k).

Since ¥V = D™(¢)M5'E(Y), from Lemma 6.2 we get

| VIl < B, 8

where B is a constant independent of k and w(y, 8) is the modulus of continuity of . Also
|teV| < | (k +d) | V|, where (k + d) is the order of matrix ¥, hence (i) holds.
Using the matrix norm properties, namely

IS+TI=IslI+ITI
and
I STI<|SIITI
we can show that
(6.15) Iwi=Iul/a-|1ul
=< aw(p, 6)/(1 — aw(s, 8)) by Lemma 6.2.
Now since

Itr WD (@)D | < (k +d) | Wl D7'@) | | D@) I,

the relation (ii) holds in view of (6.15) and the fact that ¢ is bounded below and v is bounded
above.
The proof for relation (iii) follows from the proof of (i) and (ii). O
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Now we come back to the proof of Theorem 3.1A. We can write
(mV/0®) = tr M7} (™ )M(\)
=t M7 (WMQ) + tr [M7' (™) = M7 (m)]MO).

Since the design measure u and the integrating measure A have continuous strictly positive
densities 4 and f respectively, in view of the above Theorem 6.1, the first factor on the right of
the above expression has the asymptotic value k[( f(x)/A(x) p(x) dx. To complete the proof of
the theorem, we need to show that

(6.16) tr[ M~ (p"™) — MY (W)]MQ) = o(k) as k — co.
Introducing E(u"") = M(p) — M(u™) we have
M7 (™) = M7 () = M7 (") E@™)M ™ (),
and therefore
[tr{M (™) = M WIMMN)| =< (k + )| M @) E@™) I M7 @I M-
The relation (6.16) will hold when we show that the following are true:
LemMMa 6.3. | MA)|| = O(9).
LemMa 6.4. | E(w™)|| = O(8).
LEMMA 6.5. | M~ '(w)| = 0@ ™).
LEMMa 6.6. | M7'(u™)|| = O@6™").
ProoF oF LEMMA 6.3. The matrix M(A) = M(f) = [ N(x)N'(x) f(x) dx is a band matrix.
Therefore, as before (see (6.11)), we see that
M) = 2d — 1) {max; 3= miA)}2,
where m;;(\) are the elements of M(A). Using equations (2.6) and (2.7), we see that
M| = 2d — 1)"/* max, f(x)8.
This proves the lemma.
PROOF OF LEMMA 6.4. We use condition (3.8) in finding the norm of E(u"™') = [e;;]. This
being a band matrix, we have
(6.17) I E™)| < 2d = 1)*(max; $ 17 €3 }"2.
Using integration by parts and the fact that N.(t;) = Ni(t:i+a) = 0 (see (2.3)), we can easily
check that
tivd
(6.18) ey = f (H(x) = Hp, (x))(Ni(x)Nj(x) + N;(x)N:(x)) dx.
¢

Using a recurrence formula (deBoor 1978, page 138) relating the derivatives of B-splines with
the lower order B-splines and the fact that the knot sets determined by p are quasiuniform, we
can find a constant ¢ independent of k and 7 so that

(6.19) I Nl = ck/, j=0,1,+.v,d—2.

(Note: ¢ = 1 for j = 0, see (2.3)).
Condition (3.8) says that there exists a sequence {e:}%-1 tending to zero such that

(6.20) | Hny(x) — H(x)| < ex/k for all x.
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Equations (6.18), (6.19) and (6.20) can be combined to get | e;;| < 2excd for all i and j, and
therefore

(6.21) Y E | ey| < 2(2d — 1)excd.

In the above, the sum has at most (24 — 1) nonzero elements since E(u*’) is a band matrix.
The proof of the lemma now follows from (6.17) and (6.21).

PROOF OF LEMMA 6.5. Recall that M() = M(h) = [ N(x)N'(x)h(x) dx. Let us use the
representation (6.3) with ¢ replaced by 4, i.e.,

M(h) = Mo D(h) — E(h).
Now
M7 (h) = (I — U)"' D7 ())M;!

where U = D~'(h)M;' E(h). The rest of the proof follows in a manner similar to the proofs of
Theorem 6.1 and Lemma 6.1. Actually, we can show that

| M~(h)|| < const.{(1 — aw(h, 8))(min:A(S:))(min(tira — 1))} .
The quasiuniformity condition (3.3) and the fact that 4 is bounded below implies that
M7 (k)| = O™
PROOF OF LEMMA 6.6. Writing M(u™) as M(p) + (M(u"Y) — M(u)), we have
(622) M) = [1 = Un "M~ (),

where U,, = M7'(WE(u™'). Lemma 6.4 and Lemma 6.5 give || Uy, || = o(1), that is | U, || <
B, where B — 0, as k — o. For sufficiently large k, we can make || U, || < 1 and then invert
(I — U,,) using a power series expansion,

(I = Uny)™ =350 Us,.

Using properties of the matrix norm (see proof of Theorem 6.1), we find that || (I —Un, )7
< (1 = Bx)7". The lemma now follows in view of equation (6.22) and Lemma 6.5 which gives
a bound on the norm of M™'(u).

This completes the proof of Theorem 3.1A.

Before proving Theorem 3.1B, let us introduce some notation and describe two important
results of Barrow and Smith (1978a and 1978b). These will be used in the proof of this
theorem. Let L} = {y| [§ ¥*(x) dv(x) < =} denote the L space corresponding to measure »
with norm ||-|, and let P} denote the orthogonal projection operator from Ljto S%. The
omission of the index » will correspond to Lebesgue measure. Also, whenever » = p™ we will
simply use P%.

LEMMa 6.7. (Barrow and Smith 1978a). If g € C9(0, 1), p is continuous and strictly positive
and {T,} is RS(p), then

(6.23) lime.k?|| g — Prg|* = (| B2al/(24))) f {8 /(p(x))*} dx.

Note that the right side of the above expression differs from the asymptotic expression for
k*?B by a factor of f in the integrand and that using the LSE with design 4, the bias B is
given by | g — Pig||X (see also (3.7)). It turns out that under the regularity condition (3.8), the
projection Pjg is asymptotically independent of ™ = p as the number of knots k — .
The error function g — Pfg on each interval (;, £-1) begins to look proportional to a scaled
version of the dth Bernoulli polynomial B4(x). A detailed discussion of polynomials Bs(x) can
be found in Schoenberg (1969), Ghizzetti and Ossicini (1970) or Norlund (1924). We shall
mention some of their properties momentarily.

To exploit the idea that locally the error g — Pxg looks approximately like a Bernoulli
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polynomial, Barrow and Smith define a sequence of operators Q, such that Qxg € S% and is
“close” to Prg in the sense that

(6.24) limek?{]|g — Qegll — g — Prgll} = 0.
Let
g(x) = Tk g V() (x — £)7/j! + 0o(8%) = g(x) + 0(8%)

and denote g'/'(¢;)/j! by g’ The spline Qxg = Y42 a/N, is essentially characterized by the
requirement that on every dth interval (§;, §i+1)

(6.25) (& — Qeg)(x) = g7Ba((x — £)/8:1)8%1.

Due to the fact that Qg must have d — 2 continuous derivatives at each £;, the above equation
cannot be made to hold on every interval (£;,£;+1) but only on every dth interval. For example
if d = 2 we approximate g by a continuous broken line segment. The error g — P.g is
approximately g®(¢,) times a scaled version of Ba(x) = x> — x + %. One considers
approximately the best line segment on every second interval and then joins the ends of these
line segments on the intervals between. The polynomials Bs(x) on (0, 1) have leading
coefficients one, satisfy

B,‘}’(O)=B,‘}’(l), i=0,1,...,d—2

and minimize [§ B3(x) dx.
The coefficients a; for Qrg = Y1 a;N; can be determined explicitly by setting ¢y,«(s) =
1= (s = teer), yha = (1A = DY ¢fa" 7 (£) and

(6.26) o _
a =Y 5 vidgl— g8 (HBasy) =i+ 1, .- i+d

By taking i = 0 (mod d) for sufficiently many i, all of the coefficients a; can be determined.
For d = 2 these coefficients turn out to be

a1 = g(&) — gP(€)(61/12) + o(8?).
Barrow and Smith (1978b) have shown that the operator Q;, defined by the above scheme,
satisfy (6.24) and the following. ‘
LeEMMA 6.8 (Barrow and Smith 1978b). Let g € C 90, 1], and £ € [0, 1). Let Jj be chosen so
that g_,' = z < §j+1 and let §j.1 = é,‘ﬂ —§&;. Let
(6.27) Ru(y, &) = k(g — Qug)& + ydi1), €O, 1)
and K(», &) = (g"®)/(p®)?)(Ba(y)/dY).

Then there exists a sequence of positive constants {€x}%-1 tending to zero and which may be
chosen independently of & such that

I Re(-, &) = K(-, D)l = maxy| Re(1, &) — K(3, §)| < .

As indicated above, this lemma says, in essence, that for k sufficiently large, the error
function g — Qg is nearly equal (in a sup norm) to a properly scaled Bernoulli polynomial on
each subinterval (§;, §;+1).

Proor oF THEOREM 3.1B. Let us recall that

B=|g- Piglik.
Since Qxg € S we can write

g— Pig=g— Org — Pi(g — Org).
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Therefore, the proof of the theorem will be completed when we show that,

LEMMA 6.9. lims_..k??|| g — Qwgll} = Cr, where
Cr = {| B2a|/(2d)} f {89’/ (p())**} f(x) dx.
o
LEMMA 6.10. lims_..k??|| PE(g — Qx| = 0.
PrOOF OF LEMMA 6.9. Let us consider, using (6.27)

k*|g — Qugllk = k“J (8 — Qe (x) dx
0

= Y08 J' Ri(p, E)f (&) + pdjn1) ay.

0

By Lemma (6.8), this equals

Yo 8l (8 VEN/ (PEN] {J (Ba(p)/A)S (&) + ydjv1) dy + ﬁj,k}
0

where | 8| < aex, for some constant a which depends only on 4, g and p. We also note that
f& + y81) = f(§)) + vj» where |y;| < w(f, 8). Hence we have

k|| g — Qugllik = (J (Ba(p)/dt)* d)’) 270 81 ((8VEN/(PENSED + o (D).
0

Let k — o in such a way that § = max §;— 0, then

(6.28) lime..k?*| g — Orglli = Cr.
We use here the fact that

J (Ba(y)/d")* dy = | Bza|/(24)!

(see Ghizzetti and Ossicini (1970)). This proves the lemma.

PROOF OF LEMMA 6.10. Denoting || PZ(g — Q:g)[lx by 4, we have
1 1
A= J {N')M ™' (™) J N()(g = 2®)(y) d™ () f(x) dx
0 0

- a'M_I(IL(""))M(f)M—1(#('"'))(1,

where the (k + d) X 1 vector a is given by

" J N()(g = Q) du™ ().
Using matrix norm properties, we see that
(6.29) A =|al* | M7 @™ MO

We have already found the bounds on the norm of the matrices M(f) (or M(A)) and
M) in Lemma 6.3 and Lemma 6.6. Here we shall find a bound on the norm of the
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vector a. The ith element (i = 1, -- -, k + d) of this vector is,

a; = f Ni(x)((g = Ceg)(x)) du™ (x)

=y J 1 Ni(ti + y8u){(g — Qe )(tr + y81s1)} du™ (11 + ydin).
0
Using (6.27), we can write
k%, = Yizd! f l Nits + p8uc))Ru(p, 1) du™ (ts + ydp1).
0
Using Lemma 6.8, we get
k%, = Yird? Jl Ni(ti + y8i1){p:Ba(p) + Br} du™ (1, + YOi+1),
0

where p; = g'(1)/{(p(t:))“d"}, and {B }i-1 is a sequence of positive numbers tending to zero.
Writing u™ as p + (™ — ), we can see that

iy
k% = Yird! sz Ni(x)Ba((x — t;)/81+1) dp"™(x) + 0(6)
¢,

1

(6.30) =i PIJ’ ) Ni(x)Ba((x — 1:)/8:+1) du(x)

1

+ 2 J Ni(x)Ba((x — 1)/8141) d(u™ — p)(x) + 0(§).

1

Now we show that the second factor on the right in (6.30) is 0(5). Since the sum involved in
this factor is over 4 terms, it is enough to show that each term in this sum is o(8). Using
integration by parts, we can easily check that the /th term (except for the quantity p;) in the
second factor equals

Ni(tr1)Ba(Hn, — H)(t141) — Ni(t)) Ba(Hn, — H)(t)

- J (Hn, — H)(x){&;ﬁlN,»(x)B;,((x = 1)/8141)
6.31) i
+ Nﬁ(x)Bd(x - t[)/81+1)} dx.

In the above, we have used Ba(o) = Bs(1) = By, the dth Bernoulli number. Using the upper
bounds on (i) | N’ || given in (6.19), (i) | H», — H || given in (6.20) and the fact that the dth
Bernoulli polynomial is bounded above by a number independent of k, we find that the
quantity (6.31) is of order o(8). Now,

tiv1
k% =Yt o j Ni(x)Ba((x — t;)/81:1)h(x) dx + 0()
¢

]

where h is the density of measure p. On the interval (4, #+1), h(x) = h(t)) + y:, where | y;| <
w(h, 8), the modulus of continuity of . We can write

(6.32) k%; = Vit oih(t) f ’ Ni(x)Ba((x — t.)/81+1) dx + 0(d).

In the proof of their Lemma 2, Barrow and Smith (1978a) have an expression similar to the
first factor on the right in (6.32) with A = 1. They show, using the continuity of g’ and the
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condition (3.3), that this quantity is of order o(8). Since h is continuous on [0, 1], we can
similarly show that the first factor in (6.32) is of order o(8) and therefore a; = o(8 1) Now we
have

lall* = Tk a? = 08,

Also by Lemma 6.3, || M(f)|| = 0(8) and by Lemma 6.6, | M~'(u")|| = 0(57"), therefore
(6.29) gives A = 0(8°7). This completes the proof of the lemma, and hence also the proof of
Theorem 3.1B.

ProOF OF THEOREM 4.1B. Since the estimator fgme, given in (4.4), satisfies (4.2), we can
easily check that the bias term is asymptotically minimized, i..,

limy o liMyos kB = (| B2a|/(2d)!) J (g /(p(x))**} f(x) dx.

PROOF OF THEOREM 4.1A. With the choice of fsume, as given in (4.4), it is easy to check that
the integrated variance V is given by

(nV/o%) =tr C*D'(u™)C*M(f)
(6.33) =tr M7'(f) (J N(x)L'(x)f (x) dx) D7(u™) ( J NO)L' D) f) dy)

= w7 ( [ [ ooy g B

For the proof of the theorem we need the following lemma.

———f()f(y) dx d)’)

LeMMa 6.11. Let u(x) and v(x) be continuous functions defined on [0, 1]. If n = max; (x; —
x;—1) = 0 as n — o, we have

. " . LML) _ [ w0
(6.34) hm,._.mJ; L u(x)v(y) Xi=1 — dx dy = JO de

The proof of the lemma is deferred until the end of this section. Assuming for the present
the truth of Lemma 6.11 we complete the proof of the Theorem 4.1A. Let n— oo in (6.33) and
then use (6.34) to get

lim, . (n¥/0%) = tr M™Y(/)M(f*/h)

where M(f?/h) = [ N(x)N’'(x)(f*(x)/h(x)/h(x)) dx. If we take ¢ = fand ¢ = f*/h in Theorem
6.1, we then see that

limew. (k™" tr M7 (f)M(f?/h)) = J (f(x)/h(x)) p(x) dx
which completes the proof of the theorem. [

PrOOF OF LEMMA 6.11. Let us denote by , the double integral on left of (6.34). Since L;(x)
has support on the interval (xj-1, x;+1), we can express the integral I as

Xj+1  Xj+1
=%’ f J u()v(y)Li(x)L;(y) dx dy,
where xo = x; = 0 and x,+; = x, = 1. By use of the mean value theorem, we get
Xj+1 Xj+1
I=3%jx {Hj_ "u(x;)v(x;) J J Li(x)Lj(y) dx d)’} + () T i1 wimyi(y + mjen)?

where | yj| < a(w(u, 1) + w(v, n)) where a depends only on u and v, and w(u, 1) and w(v, 1) are
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the modulus of continuity of  and v. From (4.5), for 1 < j =<,

= (Bh(x)(m; + njs)(1 + 7))

where 1; = X; — xj-1,j =2, - -+, 7,m1 =141 =0, and | 7;| < pw(h, n) where constant p depends
only on h. Therefore now I equals

L= {u(x)v(x))/ h(x)H i + mj+1)/2} + o(1).

Now the proof of lemma follows since this sum is a Riemann sum for the integral on right of
(6.34).
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