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A SEQUENTIAL CLINICAL TRIAL FOR TESTING p; = p:

By D. SIEGMUND' AND P. GREGORY®

Stanford University

Sequential designs are proposed for clinical trials to compare two binomial
success probabilities, p; and p.. Approximations to the operating characteristics
and expected sample size are obtained and compared with simulations. Special
reference is made to the problem of comparing vasopressin and placebo for
stopping upper gastrointestinal hemorrhage.

1. Introduction. This paper presents a class of sequential tests for comparing two binomial
success probabilities p; and p». Although the method is a general one, it was motivated by a
clinical trial for testing the efficacy of vasopressin (a hormone which constricts blood vessels)
in stopping upper gastrointestinal hemorrhage; and although this report is primarily theoretical,
reference will be made to the trial of vasopressin because it seems to illustrate clearly certain
advantages and disadvantages of a sequential design in clinical trials.

Two conditions indicating a sequential design are (i) a serious disease, so that ethical
considerations mandate the early termination of a trial in which one treatment appears
especially effective, and (ii) a response time which is short compared to the time between
patient arrivals, so that it is feasible to evaluate the current state of affairs before admitting
new patients to the study. Massive upper gastrointestinal hemorrhage satisfies these require-
ments, since failure to control it within hours may lead to death or to surgical intervention.

One other circumstance which seems to indicate a sequential trial in this particular case is
the existence of earlier, favorable reports on the use of intra-arterial vasopressin for stopping
upper gastrointestinal hemorrhage. (See especially Conn et al, 1975.) Although certain
reservations concerning these earlier trials and the desire to investigate a much simpler
intravenous mode of administration of the drug suggest a new trial, a sequential design
provides protection against the lengthy continuation of this trial, should the previous, favorable
results be repeated.

For purposes of sequential analysis this trial is one of comparing the probability p, of
success using vasopressin to the probability p of success with placebo. Very tentative figures
from previous studies indicate that both the spontaneous remission rate and the success rate
with vasopressin vary with cause of bleeding. While this suggests consideration of a more
elaborate model involving some kind of stratification, for the relatively small experiment
envisaged here the advantage of stratification appears to be negligible. For a more thorough
discussion of this point, see Siegmund and Gregory (1979).

The definition of success is somewhat arbitrary. Here it is defined as a cessation of bleeding
within five hours and no recurrence within six. Other endpoints of interest are the time until
bleeding initially ceases, recurrence of bleeding, severity of bleeding measured by transfusion
requirements, the need for surgical intervention, and death. Choice of a sequetial design for
testing p; = p» makes the implicit assumption that if p; appears to be considerably larger than
p2, that by itself is sufficient to terminate the trial and indicate the use of vasopressin. In
practice one would probably be reluctant to terminate early unless the other factors also
consistently favor vasopressin, although it would defeat the purpose of a sequential trial to
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insist that these factors show “statistically significant” differences between treatment and
control. Conversely, in the absence of a strong indication for vasopressin based on success rate
alone, it may be desirable to analyze other factors rather carefully. For example, if vasopressin
reduces bleeding sufficiently that surgery need not be performed on an emergency basis, it
would be a useful treatment, although its “success” rate may be no higher than for placebo.
The extent to which a sequential design introduces a bias which makes these other analyses
difficult is perhaps its most serious disadvantage.

In addition to studying the specific problem of testing p, = p., a primary goal of this paper
is to indicate how arguments developed by Siegmund (1977, 1978) to deal with normally
distributed data can be adapted and supplemented by simulations to obtain a reasonably clear
understanding of a similar but more difficult problem. Section 2 reviews pertinent material for
an analogous problem with normal data. A modification of the repeated significance tests
advocated by Armitage (1975) is suggested and their properties studied. Section 3 returns to
the problem of testing p; = p.. Mathematical results are collected in three appendices.

2. Normal Data With Known Variance. The normal distribution with known variance is
relatively simple both conceptually and technically and suggests useful approximations for
more complex situations. In this section known results for the repeated significance tests
advocated by Armitage (e.g., Armitage, 1975) are reviewed and a modification of these tests
suggested and studied.

The simplest situation occurs in a paired comparison design, in which for each n = 1, 2,
- - - the observation x, represents the difference in response of the nth pair of subjects, one of
whom receives treatment A and the other treatment B. It is assumed that the x,, are independent
and normally distributed with expectation u and known variance o”. Let s, = x1 + -+ + X,
and given b; > 0 and mo = 1, 2, - - . define

) T, =first n=m, suchthat |s.|> bion"~

Let m; > mq be a positive integer. The sequential test of Ho:p = 0 against H:u # 0 which
terminates sampling at min(T:, m) and rejects Ho if and only if 71 =< m, is the repeated
significance test of Armitage (1975).

Let 8 = p/o. The distribution of T; and hence the power function of this test depend on p
and o only through the value of 4. By repeated numerical integration McPherson and Armitage
1971)—see also Armitage (1975)—have provided tables which allow one to choose the design
parameters m, and b, to attain a specified significance level a = Po{T; < m;} and power 1 —
B = Py {T: = m} at a given value 6, # 0. Accurate analytic approximations to a and 8 were
given by Siegmund (1977, 1978)—see Appendix A for a summary of the pertinent results
adapted to the present requirements.

A class of modified repeated significance tests which interpolate the fixed sample size and
repeated significance tests have been suggested independently by Peto et al. (1976) and
Siegmund (1978), but their properties have not been studied. Let 0 < ¢ < b and my =< m be
given, and let T be defined by (1) with b in place of b,. Stop sampling at min(7, m) and reject
H, if either T< m or T > m and | s..| > e¢m'””. For fixed my there are three parameters m, b,
and ¢ defining such a modified repeated significance test and hence there are many tests
having a specified significance level and power at a given 8, # 0. Relative to a given repeated
significance test defined by m; and b, the corresponding modified tests have m < m, and b
= b,. The extreme case b = oo corresponds to a fixed sample size test with rejection region | sy, |
> c¢m'/?, whereas ¢ = b = b, and m = m, give a repeated significance test. Figure 1 illustrates
these relations.

Table 1 gives numerical examples illustrating various relations among fixed sample size,
repeated significance tests, and the modified tests suggested here. The approximations given
in Appendices A and B were used to perform the required calculations, except for those entries
which could be obtained from Armitage (1975), page 104. (Simulations indicate that these
approximations are quite accurate.) For all tests the over-all significance level is .05 and m,
= 1. The entry m, denotes that fixed sample size which would yield the same power at the
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TABLE 1
Numerical comparisons
Fixed
Sample Repeated Significance Test Modified Test
Size
m =49 m; = 49, b =28 m =49, b =315, c=213
6 1-8 1-8 Eo(Ti A my) my 1-8 Eo(T N\ m) my Po(T<m)
6 .99 95 21 37 98 25 45 .90
4 .80 .61 34 32 75 39 44 47
m=111 m; = 111, b, =2.89 m=111, b =325, c=213
4 1-8 1-8 Eo(Th A my) my 1-8 Eo(T N\ m) my Py(T = m)
4 .99 95 47 82 .98 59 101 .88
3 .88 1 72 71 .85 87 100 57

indicated # as the given sequential test. For the modified tests b was chosen fairly large, so that
Po{T = m} is slightly less than .02.

The most obvious appeal of these modified repeated significance tests is that they provide
insurance against a long trial should one treatment seem considerably superior without as
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large a maximum sample size or as great a loss of power to detect smaller differences as the
usual repeated significance tests.

Although difficult to quantify, the following additional arguments in favor of the modified
tests seem to warrant some discussion.

(i) One disadvantage of the possible early termination of a sequential test is that it may
prevent the accumulation of sufficient evidence against Ho to be thoroughly convincing. For
a repeated significance test, if T, = n < m, the observed significance level or P-value of the
test may be defined as Po{ 7\ = n}. This is a common index of how convincing the data against
H, are; but since Po{T) =< n} is approximately proportional to log n (Siegmund, 1977, or
Appendix A), even for n much smaller than m, it may not be appreciably smaller than the
over-all significance level, Po{T) = m,}. For example, for the first repeated significance test in
Table 1, which has m; = 49 and « = .05, if 71 = 16, the observed significance level is Po{T
= 16} = .032. By way of contrast, for a modified test the over-all significance level is

) a=P{T=m}+ P{T>m,cm'*<|s,|=< bm'?}.

If T = n = m, the observed significance Po{T =< n} is no greater than Po{T < m}, which may
be made small by taking b large. For the first modified test in Table 1, Po{T <49} = 0.18 and
Po{T = 16} = .011. A similar argument applies to other indices of “convincingness,” e.g., a
lower confidence bound on | 8| (cf. Siegmund. 1978).

(ii) As was mentioned in the introduction, focusing on a single endpoint—here represented
by the single parameter #—is a convenient but potentially misleading simplification of a
complex situation. By using a modified test with b large enough that Py {7 < m} is small for
small 6, one reduces the biasing effect of the stopping rule (Siegmund, 1978) and helps to
insure that sufficient data will be available for more subtle comparisons when these seem
advisable.

3. Comparing Two Binomials. Now suppose that the response of a patient assigned to
treatment i (i = 1, 2) is success with probability p; and failure with probability ¢; = 1 — p; and
is independent of other responses. To simplify the discussion it is assumed that observations
are taken in pairs with one member of each pair assigned to treatment and the other to control.
The biased coin design of Efron (1971) provides a reasonable scheme for approximating this
situation while maintaining a high level of unpredictability as to exactly which treatment will
be assigned to the next patient. With suitable modifications patients may easily be assigned to
treatment or control in a 2 to 1 or other ratio.

More specifically, assume that the data consists of pairs (x1, y1), (X2, y2), - - -, where the x’s
and y’s are independent random variables assuming the values 1 and 0. Let P{x, = 1} = p,
P{y.=1} =ps,q1=1—pirand g =1 — p». It is desired to obtain a sequential test of Ho:p,
= p» against H,:p; # p» which on the average requires a small number of observations to reach
a decision whenever p; and p. differ substantially.

Two obvious candidates are sequential versions of the generalized likelihood ratio test and
of the x” test for independence in 2 X 2 tables. As one might expect, these tests perform
similarly; but there are slight differences.

Let H(x) = x log x + (1 — x)log(1 — x) and I(x, y) = H(x) + H(y) — 2H[%(x + y)]. The
log generalized likelihood ratio for testing Ho:p: = p» against H,:p, # p; based on n pairs of
observations is I, = nI(Xx, jn), where X, = n~' Y1 xx and y, = n”' Y1 y;. In analogy with (1),
given integers mo =< m and real numbers 0 < ¢ = b, define

3) T=first n=my suchthat (2/,)"*>b.

Stop at min(T, m) and reject H, if either T< m or 7> m and Q)" > c.
A Taylor series expansion about ( pi, p») shows that (2nl,)""* behaves approximately like the
absolute value of a sum of n independent identically distributed random variables with mean

4 p=[2I(pi, p)]"*
and variance

) o” = {p1qlog*(p1q/q1p) + p2q-log’(p2q/q1p)} /21(p1, p2),
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where p = (p1 + p2)/2 and ¢ = 1 — p. This suggests that under H,:p, # p,, one may
approximate the behavior of (2nl,)"”* by Brownian motion with drift u and variance o for the
purpose of computing the power and expected sample size of the test. The relevant formulas
are summarized in Appendices A and B, and their accuracy is supported by Table 2 below.
This approximation is consistent with the customary weak convergence under local alternatives
theory, but appears to be much more accurate when |p; — p.| is not small.

For p, = p» the Brownian motion theory is not accurate because extreme tail probabilities
are involved. Let P,, ,, denote the probability measure on sequences (x1, y1), (X2, y2), + - -,
determined by p, and p.. The significance level of the modified repeated significance test
defined above is for p; = p, =p

(6) a(P) = P(p,m{T5 m} + Ptp‘m{T> m, (21m)1/2 > C}.

The second term on the right-hand side of (6) may be approximated by the upper bound
Poppfc < (2n)'"* = b} = 2[®(b) — ®(a)], since 21, is asymptotically x> with one degree of
freedom under Hj. In principle the methods of Lai and Siegmund (1977) may be adapted to
give an asymptotic approximation to P, ,{T < m} as b — o, m — o, and my — o in such a
way that bm~"/* — @, and bm;""* — 6,. A heuristic sketch of the rather elaborate computations
is given in Appendix C. The resulting formula involves a numerical integration, which was
easy in the case of normal random variables, but in this case remains a difficult unsolved
problem. A further “no overshoot” approximation to this integral yields a crude but simple
approximate upper bound: for p < %,

Ppp{T = m)} = (77 'pga)'/?e™

M
f UE2p - 0 - H2p - (2 — 1 +H] 7 &.
0.2p) N {£:6,<[21¢.2p—£)]'/2<46,}
TABLE 2
Sequential generalized likelihood ratio test
(p1, p2)* P{T<=m) P{Reject Ho} E(TNAm)
Case:mo=7, m=49, b=315 =215

5,.5 017 = .001 (.023) .045 = .003 ( .053) 485+ .1

1,5 238 (:231) 474 (451 441+ 4

8,.5 629 (.623) .851 ( .849) 357+.5 (34.7)
4, .4 019 + .001 (.024) .041 + .002 ( .054) 483 .1

6, 4 .208 (:225) 448 ( .435) 443+ 4

7,4 578 (.571) .827 ( .816) 36.5 +.5 (37.0)
8,4 .902 (:900) 983 (.981) 258 + .4 (24.9)
3,3 018 + .001 (.024) .046 + .003 ( .054) 483 + .1

7,3 .885 (.880) 979 ( .976) 259 + 4 (25.8)
2,2

016 + .001 (.017) 1046 + .003 ( .047) 484 + 1
Case Il my=10, m=100, b=32  c¢=215 '

5,5 018 % .001 (.021) 045 + 004 ( .051) 98.5+.3
1,5 506 (:510) 802 (.775) "79.0 + .9 (74.5)
8,.5 948 (.945) 995 ( 992) 457 + 8 (45.4)
4,4 017 + .001 (.021) 044 + 004 ( .051) 985+ .3
6,4 479 (.496) 761 (757 79.1 +.9 (74.7)
7,4 917 (918) 988 ( .986) 514 +.9 (48.4)
8, .4 998 (.998) 1.00 (1.00 ) 28.8 +.5 (27.0)
3,3 019 + 001 (.024) 046 £ .004 ( .054) 99.1 + 3
7,3 998 (.998) 1.00 (1.00 ) 302 + .6 (28.3)
2,2 017 % 001 (.021) .035 + .004 ( .051) 989 + .3

* The cases (p 1, p2) = (.5, .3), (.6, .3), (.5, .2), and (.6, .2) are by symmetry the same as (.7, .5), (.7, .4), (.8,
.5), and (.8, .4) respectively.
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Table 2 gives two numerical examples, which are roughly comparable to the normal
examples in Table 1. The first entry in each cell is a Monte Carlo estimate; the parenthetical
entries are analytic approximations obtained from the suggestions of the preceding paragraphs
together with (A.4), (A.5), and (B.4) of the appendices. The + figures are one estimated
standard error. Where no + figure is given, the Monte Carlo estimate is a relative frequency
r, the standard error of which may be estimated by the usual r(1 — r)/N, where N is the
number of repetitions of the experiment. Except for the probabilities P, ,{T < m} and o( p),
N =900. For these probabilities N = 5000 and the method of importance sampling mentioned
in Appendix C was used. Generally speaking, the analytic approximations are reasonably
good except for the null hypothesis probabilities P, {T < m} and a(p), for which they are
too large as expected. The authors have performed other simulations and found the approxi-
mations to hold up over a wider range of parameter values than those reported here.

Because of the discreteness of the underlying data, the choice of mo can have a substantial
effect on P, ,{T < m}. Taking m, about equal to m'/* seems reasonable and has the additional
desirable property of making P, {T < m} fairly constant as a function of p, at least for p not
too near 0 or 1.

The customary x” statistic for testing p; = p2 is x» = n(Xx — ¥1)*/2pngn, where p, = %(x,
+ y») and ¢, = | — p,. A sequential test analogous to that discussed above may be defined by
the stopping rule (3) with x, in place of (2/,)"/*. Again sampling terminates at min(7, m) and
H, is rejected if either T< m or T > m and x,» > c¢. Brownian motion approximations similar
to those suggested above can be developed under H;, but the authors have not obtained an
analogous null hypothesis theory.

APPENDIX A

Probability approximations for normal data

Let xi1, x2, - -+, be independent normally distributed random variables with mean 8 and
variance 1. Let s, = x; + .-+ + x, and

(A.D) T=first n=mo suchthat |s.|> bn'2

Let m > mo and 0 < ¢ < b. The over-all significance level of the modified repeated significance
test studied in Section 2 is

(A.2) a=P{T=m} + Po{(T>m,|sn|>cm’?}.

An upper bound for the second term which is fairly accurate when c is small compared to b
is

(A3) Po{em'? < | sm | < bm'/?}.

The first term may be approximated using results of Siegmund (1977).
Let T, be defined by (A.1) with s, in place of | s |. According to Siegmund (1978), if b —
o, m — oo, and b = m'/24,, for each fixed § > 0, x > 0

(A9 Po{Te < m, sm < bm"? — x} = v(01)p[m"%(0; — 0)]e™*/m"6.

For Brownian motion the corresponding approximation has 1 in place of »(6;). It is easy to see
that

Po{T. < m} + Po{T > m, sn > cm'?}

A5
A = Py{sm > cm"?} + Po(Ts < m, sm < cm'*}.

For ¢ = b, (A.4) and (A.5) yield approximations to Pe{T < m} for 8 # 0. For ¢ somewhat
smaller than b one can often ignore the second term on the right hand side of (A.5) in
approximating the power of a modified test.
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APPENDIX B
Approximate expected sample size for normal data

Let {X(#), 0 <t < »} be a Brownian motion process with drift § and variance 1 per unit
time. Let T = inf{t:¢ = mo, | X(f)| = bt"/?}. It may be shown (e.g., Siegmund, 1977) that for
each §#0,as b —

(B.1) EoT = (b% - 1)/6% + o(1).

For discrete normal random walk the corresponding expansion contains a term to account for
excess over the stopping boundary, which can be computed numerically and for small 6 is
about

(B.2) 1.166/68

(cf. Lai and Siegmund, 1979).
For sequential tests of the kind discussed in this paper the expected sample size is

(B.3) Egmin(T, m) = EsT — J E«T — m| X(m)) dP,.
N {T>m}

Suppose that b — ® and m — = in such a way that b = 6;m'/%. For 6 in a neighborhood of
61, say 6 = 6, + ¢m™", it is possible to estimate the second term on the right-hand side of
(B.3) to provide reasonable approximations to Egmin(7T, m).

THEOREM. Suppose b — ® and m — o so that for some 6, # 0, b = 6:m">. For § = 6, +
é-m—l/Z

Emin(T, m) = (b* — 1)/6* — {m"*[0 — % 6,]""
(B.4)
[9(9) — EB(=H]} + 0T [D(=E)(1 + £°) — £6(H)] + o(1).

A sketch of a proof goes as follows. By (B.1) it suffices to consider the second term on the
right-hand side of (B.3), which may be rewritten as

(B.5) J’ Po{X(m) € 0im — dx}(1 — Po{T < m| X(m) = 6im — x})Egtm(x),

where

Tm(X) = inf{t:t > 0, X(¢) = O:m**[(m + )* — m"*] + x}.
Since 8im'?*[(m + £)/2 — m'/?] < % 6.t, a standard argument using Wald’s identity yields
(B.6) Eotm(X) < x/(8 — % 6)).

Writing the integral in (B.5) as the sum of integrals over (0, m"®), (m%, m"*log m) and
(m'log m, ©), one sees from (B.6) that the first and third integrals converge to 0 as m — co.
It may also be shown as in Siegmund (1977) that uniformly in x = m'?, Po{T < m| X(m) =
6im — x} = o(m™"), and hence by (B.5) and (B.6) it suffices to find an approximation for

m!/2logm
(B.7) m2 j d(m*(0; — ) — xm™*)Egrm(x) dx.

m1/8

A Taylor series expansion and some calculation with Wald’s identity shows that uniformly for
x < m’log m ‘

Egtm(x) = x/(0 — %2 01) — x*/mb} + o(x%/m),

which when substituted into (B.7) yields the theorem.
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For the entries in Table 1, the quantity (B.2) was added to (B.4) to obtain a slightly better
approximation to E,T. It seems doubtful that estimating the excess over the boundary in the
correction term [(r>m) Eo(T — m|sm) dPs, is worth the effort, since this term is already
relatively small in those cases where the over-all approximation can be expected to be accurate.
The entries in Table 2 were obtained from the Brownian motion approximation with mean
and variance given by (5) and (6).

APPENDIX C
Approximate significance level for Bernoulli data

Let X, yn, H, I, and I, be as in Section 3. The stopping rule T defined by (4) may be
rewritten

(C.1) T =first n=my suchthat [,>a,

where a = b*/2. The significance level of the sequential test studied in Section 3 is given by
(7). In this appendix an asymptotic expression similar to (7) is obtained for P, {T < m} as
m — 0, my — ©, b — o in such a way that b = m'?6, = m¥*6,. The method utilizes the
nonlinear renewal theorem and an interesting adaptation of the methods of Lai and Siegmund
(1977). Since the computations are rather elaborate, they are only given heuristically. The
following likelihood ratio identity is also very helpful in simulating a.

Let F; C F> C - .. be an increasing sequence of sub-o-algebras of a basic o-algebra F. Let
P and Q be two probabilities on F such that the restriction P™ of P to F, is absolutely
continuous relative to the corresponding restriction Q™ of Q. Let L, = dP™/dQ"™ be the
likelihood ratio of these restrictions. One version of the fundamental identity of sequential
analysis says that for any stopping time o and any event A such that A N {¢ = n} € F, for all
n’

(C2) PAN {6<x}) = f L, dO.
AN (o<}

(The proof follows at once by writing {o < ©} = U5~ {0 = n} and using the additivity of the
integral.)
In what follows P, ,,) will be as in Section 3 and

1 1
0= f J’ P,y dp1 dp;.
0 0

Taking P = P, ) gives

(C3) Lp,=dP{),/dQ™ = <s") (;L) portongPn T (n 4 12,
where s, = Y1 x; and s* = Y7 y,. The identity (C.2) gives representations for P, {T < m}

and P {T > m, (2l.)"/? > c} which are useful in estimating these probabilities by Monte
Carlo methods. One samples (x1, y1), (x2, y2), -+ according to Q and estimates P, {7 <
m}, for example, by averages of I(r<m)Lt. (See Siegmund, 1975, for a general discussion of
such importance sampling in sequential analysis and Lai and Siegmund, 1977, for an
application in a context similar to the present one.) This estimator has three advantages over
direct simulation: (i) its variance is smaller; (ii) the expectation under Q of min(7, m) is smaller
than under P, where it essentially equals the maximum sample size m; and (iii) Ppp){T <
m} may be estimated simultaneously for several values of p using the same random numbers.
For estimating a(p) for a test with ¢ small compared to b this technique is not variance
reducing, but advantages (ii) and (iii) hold in this case as well.

In contrast to the case of normal variables, where a direct representation of the probability
that 7< m by means of (C.2) provided the starting point of a fruitful asymptotic analysis, in
this case an indirect approach seems advisable. Let u > 0, v > 0, and let
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(C4 P= J Pyt (1 — §)° d¢/Bu+ 1, v+ 1),
SO
L,=dP"™/dQ"™
(€ =(n+ 1) (:) <s'f,)/3(u FLv+ Du+v+2n+1) <;‘:s" “_:zs'i)

Of course, P defined by (C.4) depends on « and v. If u — o and v — « in such a way that
u/(u + v) = p, then the distribution with density £“(1 — £)"/B(u + 1, v + 1) converges weakly
to a point mass at p, so for each fixed m

(C.6) P{T < m) — Ppp{T <m).

Hence for large « and v with u/(u + v) = p an approximation for P{T < m} “should be” an
approximation for P, {T < m}.

Fix 0 < p1, p2 < 1. Stirling’s formula and the strong law of large numbers applied to (C.3)
show that with P, ,, probability one, as n — oo

log L, = I, + % log n + % log pq/pi1q1p2q> + u log p + v log ¢
C.7
€D —log 27" — log B(u + 1, v + 1) + o(1),
where p = % (p1 + p2) and ¢ = 1 — p. Suppose now that a = b*/2 — ®, my — ®, and m —
w in such a way that b = im"’> = fym{/>. Substitution of (C.7) into (C.2) and an argument
similar to that of Lai and Siegmund (1977) yields i

P{T=m} ~ % [Bu + 1, v + D] (7 'a)/%e™®
1,1
X f f f e‘(lT-—aF(T/a)l/Z(p—q—/plqlpzq2)l/2 dP(p,,p,)ﬁuqv dpl de
0 Jo J{(T=m)

~ % [Bu+ 1, v+ D] Yz 'a) /%™

8 f f a(py, p)U(p1, p2)1* (PG/prq1p292) " P"G" dpr dps,

(C.8) {(Prp2):0:<[21(p1,p:)]*<b0)

where

p(p1, p2) = lima.o E(pl,m)exp[—(lT - a)]

exists by an application of Theorem 1 of Lai and Siegmund (1977). (Actually, in order that
this theorem be applicable it is necessary that a certain random walk’ associated with the
process I, be nonarithmetic, which is the case for all p;, p, with at most a denumerable number
of exceptions. This suffices in view of the subsequent integration over p; and p,.)

Now suppose that u — o and v — o« with u/(u + v) = p < %. Some calculation shows that
the measure K, .(dp1, dp:) = [B(u + 1, v + 1)]7'5“3" dp: dp. has total mass converging to 4p
and converges weakly to the uniform distribution concentrated on %(p: + p2) = p. Hence,

a'/?e® times the right-hand side of (C.8) converges to

a2 f &, 2 — DU 2 — HI™?

(C9) 029N (&8 <[21(E 2p-)]*<b0)

[pg/E01 — &)2p — H)(2q — 1 + §)]V* dt.
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Together with (C.6) this suggests that
(C.10) Pupo{T = m} ~ C(p; b, 01)a"?e™® O<p=s1lh,

where C(p; 6o, 6:) denotes the expression in (C.9). For % =< p < 1, a similar result holds with
C(g; 6o, 6:) in place of C(p; 6o, 61).

It should be emphasized that the preceding argument is only heuristic, although it seems to
be possible to make it rigorous by taking u and v as functions of m which tend to « slowly
with m. The final result appears to agree formally with a similar very general result of
Woodroofe (1978a), which is not directly applicable in this case because Woodroofe’s condition
L is not satisfied.
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