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LARGE SAMPLE THEORY FOR AN ESTIMATOR OF THE
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This paper introduces and studies the large sample properties of an
estimator for the mean survival time from censored samples. Let X}, - - , X, be
independent identically distributed random variables with F(x) = P[X; > x].
Let Yl,- -+, Y, be independent identically distributed (and independent of
X1, ,X,) censoring times with G(y) = P[Y, > y]. Based on observing only
Z, = min(X;, ;) and which observations are censored (i.e., X; > Y;), we give a
class of estlmators of the mean survival time p = f 3"F(x)dx The estimators
are of the form p = "F(x)dx, where M, 100 as ntoo and F is an estimator
of F depending on the Z;’s and the censoring pattern. Conditions of F, G and
{M,} for the asymptotic normality of i are stated and proved in Section 2
based on approximations detailed in Section 3. Section 4 gives conditions for
strong consistency of g with rates, while Section 5 examines the meaning of the
conditions for the case of the negative exponential distributions for F and G.

1. Introduction and formulation of the problem. Let X|,- - -, X, be iid.
random variables with right sided continuous distribution function F (that is,
F(x) = P[X, > x]) with F(0) =1, and Y}, - -, Y, be iid. (independent also of
(X;, * *, X,)) random variables with right sided continuous distribution G such
that G(0) = 1. In several survival analysis models (for example, see Breslow and
Crowley (1974), Gehan (1969), Gross and Clark (1975), and Kaplan and Meier
(1958), and the references cited therein), we do not observe the true survival times

X,, - - -, X,; rather we observe only right censored times, censored by Y, - - - , Y,
respectively. That is, we observe only
(11) (81, Zl)s T, (6n’ Zn)
where fori=1,---,n,
(1.2) 8i = I[X.-<Yi]’ and Z,- = min{X‘-, )/I}’

In the situation described above, an important characteristic is the mean survival
time p = — [x dF(x) = ($F(x) dx which we shall assume is finite. The purpose
of this paper is to obtain estimators of y using (8,, Z,), - - - R (8,, Z,). One obvious

estimator of p is [§° F (x) dx provided the stochastic process Fisa good estimator of
F. Two estimators F of F are the product limit estimator of Kaplan and Meier
(1958) and its Bayesian generalization of Susarla and Van Ryzin (1976). Substitut-
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ing the estimator I:"u of Susarla and Van Ryzin (1978) for F in [F(x) dx gives an
estimator (of u) whose asymptotic properties are difficult to study since lim,
lim,_, . Var(F,(t)) = oo. In this paper, we consider estimators of the form,

(1.3) = Jo"E(x) dx

where M, 70 as nfoco and Fis an estimator of F, and obtain conditions on F, G,
and {M,} so that i — p almost surely, and f is asymptotically normal. A method
similar to the method given here for the almost sure convergence of i can be
adopted to obtain a mean-square convergence result for fi.

We point out that Sander (1975) obtained estimators for [IF(x) dx, T fixed,
which are asymptotically normal whenever T' < o0 and F(T)G(T) > 0, and indi-
cated that it is extremely difficult to obtain the distribution theory for the
estimators of [JF(x) dx whenever T = oo or F(T)G(T) = 0; in particular, estima-
tors for p = [F°F(x) dx. See Theorem 1 and the remark following it in Sander
(1975). Since it is impossible to estimate F(x) (and, therefore, any functional of F
involving F(x)) whenever G(x) = 0 without further assumptions it is assumed
throughout this paper that '

(A1) T = sup{¢|tis in the support of F}
< sup{¢|t is in the support of G }.

Since the results and the methods used to prove them are similar when 7T = o0
and when T < o, we deal only with the case T = oo from here onward.
Throughout, the arguments of functions are suppressed whenever they are clear
from the context. Denote the indicator function of any set 4 by [4], convergence in
probability by — », convergence almost surely by —, ;, and convergence in law by
—. Also the following notation is used throughout.

(14) H = FG;
(1.5) A(s) = P[8,=0,2Z, <s] = —[3F dG, s >0
(1.6) f(s) = P[8,= 1,2, <s5] = —f3G dF, s> 0
(1.7) nH, () = 2.,[Z, > -],

and

(1.8) nl,() = =1_,[8,=0,Z < -]

Throughout, F~!, G~' and H ~! stand for 1/F, 1/G and 1/ H, respectively.
To define the estimator ji considered in this paper, we first need to introduce
some notation. Let

(1.9) N*() = numberof Z(j=1,---,n) > -,

and

(1.10) F(u) =

N+(u) , 2+N+(Zj) [8!'=0’Zj<“]
n TN 1+ N*(2Z)
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for u > 0. The estimator.ji is defined by

(1.11) i = [ME(u) du

where M = M,too at an appropriate rate. The motivation for defining i as above
comes from the facts that [F(u) du — [QF(u) du = p as n — oo, and that ﬁ(u)
defined by (1.10) can be seen to be a good estimator of F(u) for each u in view of
the large sample results obtained in Susarla and Van Ryzin (1978). The estimator
(1.10), which is a slight variation of the Bayes estimate, allows us to follow through
the proofs given in Susarla and Van Ryzin (1978). These proofs depend on the
validity of certain logarithmic expansions, and such expansions are valid for the
modified estimator given by (1.10). .

The plan of the rest of the paper is as follows: Section 2 states the asymptotic
normality result for the estimator i defined in (1.11), and discusses the conditions
of the theorem. After presupposing the needed approximations which are proved in
Section 3, we give a proof for the asymptotic normality result for i in Section 2.
The asymptotic variance calculations are relegated to Appendix A. Section 4 states
theorems concerning the almost sure consistency of [i, and indications of their
proofs are provided in Appendix B. Section 5 elaborates the main results of the
paper in the context of exponential distributions for F and G. The paper is
concluded with a few remarks including a mean square result for f.

2. Asymptotic normality of the proposed estimator fi of (1.11). In this section,
we state the following asymptotic normality result for .

THEOREM 2.1. (Asymptotic Normality of i of (1.11)). Let F, G, and M satisfy the
following requirements.

(A2) 0? = [PH X (f*F du)’ dH < oo,
(A3) n~iH (M) - 0,

and

(A4) n"i[MH*G" 'du — 0.

Then n%(ﬁ, — [{'Fdu) —N(0, 62) where o is defined in (A2).

The proof of Theorem 2.1 rests upon the fact (proved in the next section via
various lemmas) that n%( fi — [3F du) has the same asymptotic distribution as that
of (S, — E[S,]) where

(2.1) S, = ni{yMQ2H "' — H,H ), df, + (MG~ 'H, du)
with
(22) pu() = (JMF du)[- < M].

THEOREM 2.2. S, — E[S,]—>eN(0, 0®) where o is defined in (A2) provided
n~M?H (M) - 0.
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ProoFr. The proof involves showing that S, is asymptotically normal by using
the m~ethod of proof of Theorem 7.1 of Hoeffding (1948). By the definitions of H,
and H, given by (1.7) and (1.8) respectively, we have

a1 B pa(Z,
n18, = 2n 'Z‘,;;,L(Q[Sj =0,Z < M] + n'S"_ (2 MG~ gy
H(Z)

(2.3) —n7?Z 35 [ Z > Z,]H_2(Z,)NM(Z,)[8, =0,Z <M]|

= (5) =25, 2). (5. 20)
where X’ stands for summation over all (j, k) such that 1 < j < k < n and
20,((81,2)), (8, 2,)) = 2u(Z)H(Z))[8, = 0,7, < M]
+ 2,uM(Zz)H_1(Zz)[82 =0,7Z, < M] + foz‘/\MG_ldu

(24) + [ MG du — nT_l{[Zl > Z,lun(Z,)H*(Z,)[8,=0,Z, < M]

+[Z,> Z,Jup(Z)H*(Z))[8,=0,Z, < M]}

We now apply Hoeffding’s (1948) method (his Section 7, and in particular, proof
of his Theorem7.1) of proving the asymptotic normality for the U-statistics since
n‘%S,, can be expressed as a sum of identically distributed random variables as
described by (2.3) and (2.4) for each fixed n. For applying the method of Hoeffding
(1948), let

(2.5) ¥, ((8,,2,)) = E[®,|(8,,2,)], and ¥Y,,=9,
for each n. Now a direct computation shows that
2%, ((81,2)) = [§MGT du + n~N(n + Dy (Z)H(Z))[8,=0,Z, < M]
(2.6) — n7(n = DENME 2, dH + E[ (F"MG du]
+ 2E[ pp(Z,)H™N(2,)[8,=0,2Z, < M]].
Also, (5.13) of Hoeffding (1948) shows that

_1 4(n - 2) 2
2.7 Vv 2§, ) = — Var(¥, + ———— Var(¥, ,),
( ) ar(n n) n(n _ 1) ar( n,l) n(n _ l) ar( n,2)
where a lengthy calculation shows (see Appendix A) that
(2.8) 4Var(¥, |) = [MH"*([PFds)*dH + O(n~'H™'(M)).

The rest of the proof involves showing that Var(¥,,) = Var(®,) =
O(M?*H™~%(M)) which in turn shows (as in the proof of Theorem 7.1 of Hoeffding
(1948)) that the asymptotic distribution of n“%Sn is the same as that of
n~'S7_12¥, (8, Z)) in view of the condition n~'M2H%(M)— 0. That
Var(¥, ,) = O(M?H™*(M)) is the content of the following lemma.

LEMMA 2.1.  Var(¥, ,) = Var(®,) = OM?H*(M)) as n?co.
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PrOOF. As will be shown below, each term in the right-hand side of (2.4) has a
second moment bounded by a constant multiple (c¢;,c,, -+ are constants) of
M?2H~2(M). In particular, the following inequalities hold.

E[[8,=0,Z, < M)2(Z)H %(2Z))] < e;H (M).
Also,
E[(JM6= )] = oSG du)’ dH (1)

= =2/"G™(0)(JoG ™ (u) du)(f> dH(1)) dv
= 2MF(0)( fG"(u) du) dv
< 2[MoF(v)/G(v)dv < ¢, M?H™\(M).

Finally, notice that

E[[Z, > Z,]i5(Z) H4(Z,)[ 8, = 0,2, < M]]
< —cfE\ME H 3 dH < ¢ ,H X(M).

All three inequalities complete the proof of the lemma.

Returning to the proof of the theorem, we point out the intent of the above
lemma is that by following the pattern of the proof of Theorem 7.1 of Hoeffding
(1948) it can be shown that the asymptotic distribution of n~ %S,, is the same as that
of n™'37_,2¥, (((8,, Z,)), a sum of i.i.d. random variables for each fixed n. Since
4Var(¥, ;) —o? (see Appendix A), by (2.8) and the condition n~'M?H"* (M) —
O,n"*E;;,Z‘I',,) 1((8;, Z;)) can be shown to be asymptotically normal by using the
standard arguments.

In the following remarks, we discuss the conditions of Theorem 2.1 (see also the

examples in Section 5).

REMARK 2.1.  (A3) and (A4) of Theorem 2.1 are required in ascertaining that the
asymptotic distribution of n3(ji — MFdu) is the same as that of S, — E[S,] while
(A2) and a condition implied by (A3) are required for Theorem 2.2 which gives the
asymptotic distribution of S, — E[S,]. Observe that (A3) implies that
n~'M?*H % (M) -0 since p = [°F(x)dx < o by assumption. The asymptotic
variance ¢2 given in (A2) was conjectured by Breslow and Crowley (1974) (see (8.2)
of their paper).

REMARK 2.2. It should be possible to obtain an analogue of Theorem 2.2 (and
hence also Theorgm 2.1) without (A2), that is, in the case when o2 =
JEHX([®Fdu)*dH = oo since (A3) and (A4) imply that ni(i — [MFdu) has the
same asymptotic distribution as the centered version of n"Z;‘_IZ‘I',,’ (8, Z)))
whose variance multiplied by » = a2 — co. Consequently, we can show that under
(A3) and (A4), 17327 (¥, (8, Z))) — E[Y¥, (8, Z)]}/0p—e N, ).

REMARK 23. In general, the centering factor [MFdu in ni(j — [MFdu) of
Theorem 2.1 cannot be replaced by p = [;°Fdu as the following example illustrates.
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Let F(u) = e™%, G(u) = e~ "%, both for u > 0 and 7,0 > 0. Then (A2) holds iff
8 > m. Moreover (A4) = (A3) and also that (A4) is equivalent to

(2.9) n~le240+5mM _, 0,
If the centering factor [;”Fdu is replaced by p = [°Fdu, we also need to have
(2.10) ne~%m _ 0.

Obviously, if (2.9) holds, then (2.10) does not hold. Consequently, with > 7, the
example is complete.

REMARK 2.4. In case we are interested in estimating [/ F du where T* < oo and
F(T*)G(T*) > 0, the asymptotic normality of (7 Fdu — [I"Fdu) follows im-
mediately from Theorem 2.1. This case, with F as the Kaplan-Meier estimator
rather than as our (1.10), follows from Sander (1975, Theorem 1).

REMARK 2.5. In case T < oo but F(T)G(T) =0 (a case not included in
Remark 2.4), we chose M so that M 1T, and (A2) through (A4) hold.

REMARK 2.6. F defined by (1.10) has all the large sample properties given in
Susarla and Van Ryzin (1978, 1980) for the ﬁa defined in that paper. In particular, for
each u, f:‘(u) is mean square consistent with rate 0(n~!), almost surely consistent
with rate o(logn /n%) and additionally, the process {ﬁ(t)lO <t < u} converges
weakly to a Gaussian process, with all the results holding if F(u)G(u) > 0.

3. Approximation (2.1) to né(ﬁ — JMFdu). We recall first that the proof of the
main result of Section 2, namely Theorem 2.1, depends on the fact that n2(ji —
Jo'F du) can be approximated by S, — E[S,], with S, defined by (2.1), for asymp-
totic distribution theory results. The purpose of this section is to justify rigorously
this approximation or reduction. Throughout this section, we use (A3) or (A4) only.

To arrive at the desired approximation, we write Fof (1.10) using (1.9) as

(3.1) F = HW, where nH/(u) = N* (u).

Consequently, we have

(32) F—F=H(W,-G")+ G (H,— H)

where H is défined by (1.4). The integral on (0, M] of the second term of the

right-hand side of (3.2) is easy to deal with since it is only a constant multiple of
the difference between an empiric distribution function and the true distribution

function.
Now consider H,(W, — G~ !'). Note from a logarithmic expansion that

H”(VV” _ G—I) = H”(ean,, _ elnG—')
(3.3) = ¢ {H,(mW,-InG™")

+27'H (InW, — In G")Ze‘}
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for some ¢ between 0 and In W, — In G~ . Hence,
(34) 2G|H(W,—G") -~ HG (InW,-InG™")|= He(InW, — InG~')".

LemMA 3.1. Foru < M, H,e® < 2n"'(n + 1).

PROOF. Let a be any probability measure with support in [ M, o). Then (1.3) of
Susarla and Van Ryzin (1976) shows that (N* (#) + DW,(u) < (n+ )foru < M
since the left-hand side is (n + 1) times the Bayes estimate of F under squared
error loss function. Therefore, H,(u)W,(u) < (n+ 1)N* (u)/{n(1 + N* (u))} <
n~'(n + 1) for u < M. Now observe that G~ 'H,e* < HW, + G"'H, < n"'(n +
1)(1 + G™") on (0, M], since H, < 1. G < 1 completes the proof.

In view of the above lemma, and (3.4), one has, on (0, M],

(3.5) |f{H(W,— G ") — HG (InW, —InG™")} du|
< i (n+ DMG(In W, — InG') du.

We now state conditions on F, G, and M under which n%(right-hand side of
(3.5)) > 0.

LemMma 3.2. If
(A4) n"i(MH 4G du — 0,
then ni (MG~ '(In W, — In G~ ")? du — ,0, and hence
(3.6) ni| (M H(W, — G™') — HG '(InW, — InG™')} du| —,0.

ProoF. The result follows immediately by making the following changes in the
three lemmas of Section 2 of Susarla and Van Ryzin (1978). (1) Assume that

u < M, and (2) take « to be a probability measure with support in [ M, o).
In view of (3.2) and (3.6), we need to consider only

(3.7) ni (M HG (InW,—InG™') + G '(H, - H)}du

for finding the asymptotic distribution of n%(ﬁ — JMFdu) where ji is defined by
(1.11). The next step in our further reduction is to replace H, and In W, (u) =
2706,=0,Z, < u]ln{(2 + N* (Z;))/(1 + N* (Z;))} in the first term of (3.7) by
H and ‘

(3.8) J{2H(s) = H(s)H*(s)} dH(s)

for u < M respectively. Replacing H, by H follows easily since sup{n%|H,,(u) -
H(u)||0 < u < o0} converges to a random variable in probability, and since (A4)
implies that (*G~'(In W, — In G™') du — ;0 as in the proof of Lemma 3.2, the first
part of the above plan is completed thus reducing (3.7) to

n MG 'H(In W, — InG™') + G '(H, — H)} du

(3.9) = nifM{F(InW, - InG™") + G"'(H,— H)} du.
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By making the changes suggested in the proof of Lemma 3.2, it follows from
Section 4 of Susarla and Van Ryzin (1978) that the right-hand side of the above
equality has the same asymptotic distribution as that of

(3.10) ni (MG Y(H, — H)du + n: F(x)(fo(l s df, — ‘f))dx

Since the assumption of finite mean implies that [}MF(x)dx < JooF(x)dx < o0, we
close this section by provmg the fo]lowmg lemma which allows replacing the
integral [¢'n(1 + nH,)~ dH by [fQH™'— H H™ 2)dH,, in (3.10) yielding (2.1) +
constants.

LemMA 3.3.  If (A3) holds, then

1 x n 2 Hn 5
n2 sup0<x<M fO l—m - ﬁ + H2 dHn —-)PO.
n

Proor. By algebraic manipulation, one has
In(1 + nH, ()™ = H'(u) + H 2(u)(H,(u) — H(x))|
< A+ ADH X u)(1 + nH,(u)) ™" + H '\ (u)(1 + nH,(u))™"

where A, = sup{|H,(u) — H(u)l |0 < u < ©0}. Hence n2|n(1 + nH,(u))™' —
2H Y(w) + H(u)H X(u)| < nz/\ A+ nAN)DH2(M)1 + nH (M) +

H (MY + nH (M) for u < M. E[(1 + nH(M)™"] = 2,,0( M+
1)"H’(M Y1 — HM)"™ ! < c(nH(M ))‘l for some constant c, the result follows
from the above 1nequa11ty and the fact that n? /\,, converges in probability to a
random variable since n~zH™ 3(M) — 0 when (A3) holds.

4. Almost sure consistency of ji of (1.11). In this section, we state a result
concerning the almost sure (a.s.) consistency of fi as an estimator of u. We state
here the main result and the needed lemmas for it, with the proofs of various
lemmas relegated to Appendix B. Throughout denote sup{| f(x)||0 < x < M} by
Il f || ¢ for any function f on (0, o0), and ¢,,c,,- - - denote constants.

We start with the following basic inequality.

4.1)
|i = [o'Fdu| = |[Fdu — [*Fdu| = | [}'(HW, — HG™") du]
< MGTY(M)|H, = Hlly + MIH(W, = G ")y = I+ 1
where the inequality follows by a triangle inequality after adding and subtracting
the integral [;*G~'H, du. Now observe that
(4.2) I = O(M(loglogn)/niG(M))
by the law of iterated logarithm. To deal with II, we observe that, as in Section 3,

I < o M||G™'H,(nW, = InG™ )|,y + ;M ||G™'H,(In W, — nG~')’| M
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which can be weakened to
(43) II < MG~ (InW, —InG™ ")y + ;M||G(In W, — InG')’||,,

since H, < 1. A rate for the a.s. convergence of II to zero can be obtained by
obtaining a rate for

(4.4) M|G '(InW, —InG "), >0 as.
By the definition of W, in (3.1), we have

(4.5) InW,(u) = 27_,22,[8=0,Z, <u]l7'2+N* (z,))~",

and also

(4.6) InG~'(u) = E[[8,=0,Z, < u]H“(Zl)j = [¢H'dA.
LemMa 4.1.  If a,, are positive constants such that

(B1") 3®_,a2/n*H (M) < o,

then ||27_,22,[8,=0,Z, <u]l”'(2+ N* (zj)) |y = O(a;!)as.
LemMMA 42. If0<2a<1l,and 0 <2B <1 <p,

(B1) ©_af/H?»(M)nP < oo,
and
(B2) liminf n*H(M) > 0,

then ||S7.,[8,=0,Z, < u](2+ N* (Z))" = [¢H"dH |
= 0(max{a;',logn/n"~29/2}) as.
Considering (4.5), (4.6), and the above two lemmas, we obtain that
@.7) 167 (W, = InG™ )|l
= O(G™'(M)max(a;,, (logn)/n1=29/2)) as.
under (B1’), (B1) and (B2). Hence, we have the following theorem.

THEOREM 4.1. (Strong consistency of ji with rates). Let (B1), (B1) and (B2) hold.
Then

(48) i — [MFdu = O(G™'(M)Mmax(a,’ ,(logn)/n1=29/2)) as.
The factor [MF du can be replaced by p = [5°F du resulting in
THEOREM 4.2. If (B1'), (Bl), and (B2) hold, then
(4.9) i —p = O(f§Fdu, G~\(M)Mmax(a; ', logn/n""2/?) as.
REMARK 4.1. (Bl) with Bp > 2 and p > 4 implies (BI). We will use this
implication in the examples given in the next section. (B1) and (B2) are not directly

comparable to the conditions (A3) and (A4). Examples satisfying (B1"), (B1), and
(B2) are given in the next section.
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ReMARK 4.2. If we are only interested in estlmatlng p* = ["Fduwhere T* < o0
and F(T*)G(T*) > 0, then fi* = [ *F du, with F defined by (1.11), can be shown to
be an a.s. consistent estimator of p* with o((log n)/n) by using the methods of
Section 3 of Susarla and Van Ryzin (1978). This was the situation considered by
Sander (1975) in her asymptotic distribution theory considerations for estimators of
p*, with F taken to be the Kaplan-Meier (1958) estimator.

5. Choice of M, (= M) and an example. M satisfying (A3) and (A4) of Section
2, and (B1) and (B2) of Section 4 exist as will be shown here. Such a choice of M
will obviously depend on F and G. But if F and G belong to exponential or gamma
families of distributions, M can be chosen to be 1ndependent of any unknown

parameters rather easily.
To choose {M,},letl, =k + 1fork =1,2,---,g|0askfoo and 0 < 2,28 <
1 < p. The first observation we make here is that both (A3) and (A4) are implied

by
(5.1 n~°M,H V(M )G (M,) — 0.

Find n, (> n,_,) so that

ng®(k + DH-V2)(k + )G N k+1) < e, k=12
Such a choice of n, is possible for each k since N~ %H ™ “V?)(q)G~(a) - 0 as
N — oo for each fixed a. Now define
(5.2) My =k +1 for n, < n < ngyy.
{M* } as defined above satisfies (5.1), and with a = 0(n?), with 0 < y < 8 < 1,

and p(B —v) > 1+ a also satisfies (B1) of Section 4 since (5.1) implies that
H??(M}) can not go to zero any slower than n~* Now for each fixed M}*, define

N, (> N,_,) so that for a fixed § > 0,
(5.3) n*H(M}) > 6  forall n > N,

Now we define our required sequence {M,} as follows.
(54) M, = M} for N, < n< Ny, /=12,

It can now be checked that {M,} defined by (5.4) satisfies (A3) and (A4), and also
satisfies (B1) with p > 4 and Bp > 2 and (B2).

Now we consider negative exponential distributions for Fand G. Let F(u) = e~ %,
G(u) = e ™ for u > 0 and 8, n > 0. (See also Remark 2.3). It can be seen that in
this situation, (A4) implies (A3) and that (A4) is equivalent to n~2eMG1+40) _; 0
while (B1) with p > 4 and (B2) are equivalent to

T abe?MPO+m /pbfr < o
with Bp > 2 and for 0 < 2a < 1,
liminf n%~¢+m™ > ¢
respectively. Now by taking M = (Inn)® with 0 < § < 1, we see that all the above

three conditions are satisfied if a, = 0(n”) with 0 <2y < 1 and y < B8 < 1 since
exp{— (8 + n)p(Inn)®} — 0 slower than n~? for each a > 0. For this choice of M,
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Theorem 4.1 shows that ji — [{*Fdu = 0(n™?) a.s. for any 0 < 2a < 1. If, on the
other hand, we want to use Theorem 4.2 to obtain a rate for i — [;°Fdu(= i —
6~') - 0, a.s. then M should be chosen so that

[2Fdu = e = G~'(M)Mmax{a,',n®* " "?logn} = Me™n™"
where 0 < 2y < 1, and « and y are chosen so that the extreme right-hand side
holds with a, = n”. This gives In M + (6 + n)M = yInn. This equation is difficult
to solve. If B* > 8,7 > B > 0, then we take M = y(Inn)/(B + B*) in which case
(5.5) jp—0'=f— [PFdu = O(lnn/n"?/(B+E)) a5,

If bounds on @ or 7 are not available, then take M = (Inn)//, where /,, — co slower
than In n. In this case, N
o
(5.6) f—0' = j— [PFdu = 0(e ")) as.
where y > 1. This last rate might be too slow to be of any practical significance.

6. Concluding remarks. We first remark that one can obtain rates for the
mean square consistency of [i. The proof of the following theorem involves the
details of Section 2 of Susarla and Van Ryzin (1978), and proceeds as described
below. We write i — [MFdu as [M(F — F)du. Consequently, E[(i — [MFdu)*] <
M[ME[(F(u) — F(u))*]du. Hence, by a triangle inequality, notice that E[(& —
JMF du)?) < 2MIME[HE(w)(Wi(u) = G~ ()? + G~(u)(H,(u) — H(u))]} du.
Upper bounds for E[H2(u)(W,(u) — G~ '())?] and E[G™*(u)(H,(u) — H(u))’]
can now be obtained by proceeding as in Section 2 of Susarla and Van \Ryzin
(1978).

THEOREM 6.1.

nE[(ﬁ - fg"qu)’] = O(M[MHG 2 du).

For illustrating the above theorem, consider the example of Section 5. We obtain
from the above theorem that
( (1 —etM))2
# 9

— O(n—lMeM(60+2n))

E[(a - P au)’| = E

with M(= M,)1o0. Also, if B* > 8,1 > B > 0, then

E[(3—07"] = E[(i —J3F du)’] = O(n~2/{2+ G0

where 2M =Inn/{B + (4 + y)B*} with y > 0.

Our second remark concerns o2 of (A2). The form of o of (A2) was conjectured
by Breslow and Crowley (1974) (see (8.2) of their paper). Thus this paper rigorously
shows that the asymptotic form for o2 is true for a particular ji, given here by
(1.11).
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The results presented here can be extended to estimators of the form | (’)"ﬁa(u) du
where

[8=0, 2 <u]

Alu) = —2) {a[zj, ) + N*(Z) + 1

a(R*) +n 77! a[Zj, oo)+N+(Zj)

is the Bayes estimator derived under squared error loss (see (1.3) of Susarla and
Van Ryzin (1976)) under appropriate changes in conditions (A3), (A4), (B1), and
(B2). (A3) and (A4) will be replaced by the following three conditions:

(1) n=1[Ma(u, )G " Y(u) du — 0,
) n~1H (M) max{1,a"'(M, ©)} - 0, and

3) max{n_%f{,”H 4G~V du, n7 ' (Mo (u, 0)H ~*(u)G ~(u) du} — 0.
(B) and (B2) will be replaced by

(1) woain P {H " 2?(M)a (M, ©)} < o with p > 4,
and
) lim inf n°% ~'(M, 0)H(M) > 0.

The estimator [MF, (u) du will also be an admissible estimator for p under
squared-error loss if a is assumed to satisfy (additionally) that its support equals
(0, o). The estimator i defined by (1.11) cannot be obtained as a specialization of
the above estimator f{)”ﬁa(u) du. Two important advantages of (i over this last
estimator are: (1) its simplicity for computational purposes, and (2) the fact that
weaker conditions are needed to obtain its asymptotic properties.

APPENDIX A

In this appendix, we want to obtain (2.8) where 2¥, | is defined by (2.6).
Observe that

4 X Var(¥, |) = Var{ JBAMG =N du + u (Z)H ~N(Z)[8, =0, Z, < M]
— (5" "Mup H ~2 dH

+ % [ “M(ZI)H_I(ZI)[SI =0,Z < M] + foz'/\Ml“MH_2 dﬁ]}
= Var{4d+ B— C+ D}.
Now we see that Var(D) = O(n~2H ~*(M)) since p,, is bounded, and that
JBAME =2 < 2F (MG~ (M) = 2H (M)

where we have used the equality dH = — F dG. Consequently,
(A.1) 4 X Var(¥, ;)

= Var(4 + B— C) + O(n"2H " (M)) + O(n"'H "(M))
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provided Var(4 + B — C) is bounded for large n. Observe that the boundedness
of Var(4 + B — C) and the fact that Var(D) = O(n~*H ~*(M)) imply that the
Cov(4 + B — C, D) = O(n"'H ~'(M)). Thus, (A2) will imply (2.8) if

(A2) Var(4 + B — C) = [MH~X(J*F ds)’ dH

where H(u) = P[6, =1, Z, < u].
Since it can be easily seen that

E[B] = E[C] = [Yu,H ' aH,
(A3) Var(4 + B — C) = Var(4) + E[Bz] + E[Cz]
+2E[AB] — 2E[AC] — 2E[ BC].
We calculate below each of the terms in the right-hand side of (A.3). All the

calculations use integration by parts, and the integral equality (f5’g(?) dr? =
2(5g(DlSo8(s) ds] dt.

(A4) Var(4)

— 12(J MG " du)? dH (1) — (S (MG ~" du) dH (1))

2(MF(v) [5G ~"(u) du dv — 2[{'F(v)[4F(u) du dv
(A.5) E[B*] = [¥u}H *dH

(A6)  E[C?] = = [&(§ iu(s)H ~X(s) dFi(s))” dH (1)

2 ¥uag (0) H ~(0) & iag () H ~*(u) dH (u) dH(v)

21 M, ()(FNMG ' (u) du) H ~'(2) dH(t)

(A7) 2E[ AB)
= 2 M(J{\MG ~(u) du)(JMF(v) do)H ~\(1) dH (1)
= 2YF(0) [5G ~\(w)/SH ~'(¢) dH (1) du dv
(A8) — 2E[BC] = 2/ up()H (1) fgnr(s)H>(s) dH(s) aH(1)
(A9) — 2E[AC] = +2[3(JeMG™ " () du)(J§ Mprg(s)H*(s) dH(s)) dH(t)
= +2f0<u<s<M,u,M(s)G"(u)H_z(s)f?dH(t)dudﬁ(s)
+ 2o s cuentirs ()G~ (u)H™2(s) 2 dH(t) dudH(s)
= —2f0<u<:<M,LM(s)G“(u)H"(s)dudﬁ(s)
— 2ocsenbha(s)H *(s) dH(s)
= 2y oucocnF(0)G N (u)(J2H(s) dH(s)) dudv
= 2o cscmble(s)H*(s) dH(s).
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By adding (A.4) through (A.9), we obtain that
(A.10) Var(4 + B— C)
= 2focucocr{F(v)G™(u) — F(u)F(v)} dudv — M2 H-2dH.
Since
— A H2af = —2["(JMF(u)[MF(v) dodu)H™(s) dH(s)
= 2ocucoanF(W)F(0)fo(—H?) al
= 2ocuconFWF(0){1 = F {06 (u) + [FH2dA) dudo,
(A.10) gives (A.2) completing the proof for (2.8).
APPENDIX B
In this appendix, we provide proofs for Lemmas 4.1 and 4.2 of Section 4.
PrOOF OF LEMMA 4.1.  Since
(B.1) IS7_,52,[8=0,Z, < u]lI7'2 + N* (Z,)) llu
< S [8=02Z <u](1+N* (Z))'Q+N* () 'lIn
by a weakening leading to a geometric series. We have
(B.2) left-hand side of (B.1) < n(1 + n* (M)) 7>
Now let € be a fixed positive number. Then
(B.3) P[a,(left-hand side of (B.1)) > ¢] < P[a,(right-hand side of (B.2)) > ¢]
< e (na, Y E[(1+ N* (M))~*]
by Markov’s inequality. Since
E[(1+N* (M))7Y]
2o )k + DTHEM)(1 — H(M))"™* < C(nH(p)™
for some constant C, (B.3) gives the result in Lemma 4.1 in view of (BY’).
PrOOF OF LEMMA 4.2. Observe that
(B4) =_,[8=0,Z <ul(2+N* ()" = [¢n(2 + nH,(s))” dH,(s)
where nH,(S) = Z}_,[Z; > s], and nﬁ,,(s) = 37_,[6,=0,Z; < 5s]. Hence, by a
triangle inequality,
(BS) |Z7_,[8=0,Z < u]@+N* (Z) - JeH "dH |y
< n(2 +nH,) " = H 'y + | feH ™ d(H, = H)ll
nilH,— Hly+2 28, Hlly

< =]+ 1
H(M)2 + nH, (M) H(M)
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where the second inequality follows by applying integration by parts to the second

term.

Since E[||H, — H||%] = O(n~%?) for any ¢ > 0 due to Lemma 2 of Dvoretzky,
Kiefer, and Wolfowitz (1956), and since E[(2 + nH,(M))™?] < c,(nH(M))™? for
some constant ¢, for any ¢ > 0, (B1) implies / = O(a; ") as. because a,?e?Pla,l
> €] < E[I”] < ¢/n?/?H*(M) for some constant c. Also, by following the proof
of Theorem 1 of Singh (1975), it can be shown that || ﬁn — H||,, = O(logn/n?) as.
Consequently, II = O(log n/n ~2®/2) under (B2). In view of inequality (B.5), the
proof of the lemma is complete.
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