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CONDITIONAL INDEPENDENCE FOR STATISTICAL
OPERATIONS

By A. PuiLip DAwID
University College London and The City University

A general calculus of conditional independence is developed, suitable for
application to a wide range of statistical concepts such as sufficiency, parame-
ter-identification, adequacy and ancillarity. A vehicle for this theory is the
statistical operation, a structure-preserving map between statistical spaces.
Concepts such as completeness and identifiability of mixtures arise naturally
and play an important part. Some general theorems are exemplified by applica-
tions to ancillarity, including a study of a Bayesian definition of ancillarity in
the presence of nuisance parameters.

1. Introduction. Concepts of conditional independence play an important role
in unifying many seemingly unrelated ideas of statistical inference (Dawid, 1976,
1979a; Dawid and Dickey, 1977a, 1977b). If random variables X and Y are
independent, given Z, we may write X v Y|Z. The most fruitful intuitive interpreta-
tion of this statement is that the conditional distributions of X, given Y and Z, are
in fact governed by the value of Z alone, further information about the value of Y
being irrelevant. This intuitive property extends readily to statements such as
X1 0|7, in which X is a random variable with distributions governed by a
parameter ©, and 7 is (say) a function of X: a moment’s reflection will show that
this is just the requirement that T is sufficient for © based on data X. Similarly,
T . ® (with the conditioning variable trivial) if and only if 7 is an ancillary statistic.

If T is sufficient, and ® has any prior distribution, then the symmetry of
conditional independence shows that ®.. X'|7, which says that the posterior distri-
bution of © is determined by T alone. This Bayesian characterization of sufficiency
would appear to be due to Kolmogorov (1942). It has been taken up in a very
general setting of conditional independence by Le Cam (1964, page 1439).

This approach suggests an obvious way to deal in general with the above
extensions of conditional independence to cases involving parameters: if X, Y and
Z are variables in a statistical model (which may be functions of the parameters as
well as of the data), we might write X . Y|Z if this statement holds in the joint
distribution generated by giving the parameter an arbitrary prior distribution.
However, this natural approach is not entirely satisfactory. For example, in the
above case of sufficiency, ®. X |T for all prior distributions implies only that T is
pairwise sufficient (Martin, et al., 1973). Another difficulty arises in considering
prediction sufficiency (Torgersen, 1977), where we consider data (X, Y) with joint
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distribution depending on a parameter ©, and wish to predict Y from X. From a
Bayesian viewpoint, a function T of X is “sufficient” for this purpose if, for any
prior distribution, ¥ 1. X|T. Now this can arise in two essentially different ways: in
both cases, Yu X|T in any of the sampling distributions, but in the first case we
have T sufficient for © based on X (so that 7 is adequate in the sense of Skibinsky,
1967); while in the second, we have the conditional distribution of Y given T not
depending on O. From the sampling theory point of view it seems worthwhile
distinguishing these two states of affairs, and so we are led to seek a general
definition of conditional independence which will be more sensitive than that
motivated by the above Bayesian considerations.

In this paper we attack the problem of constructing such a rigorous general
theory of conditional independence, which should be adequate for most applica-
tions. We shall need to deal rigorously and meaningfully with such heuristic
notions as “the distributions of X given T and ©”, and to do this we shall use the
idea of statistical operation (Morse and Sacksteder, 1966; Sacksteder, 1967). This is
a slight generalization of Markovian operator (Neveu, 1965, V.4), which is like a
conditional expectation operator and itself generalizes the notion of a transition
probability (or Markov kernel). Sections 2 through 4 below are devoted to some
background theory for such statistical operations.

An important consideration is that, as with conditional expectation, we may get
several versions of the answer when we apply a statistical operation, and shall not
wish to distinguish between them. In order to take account of this we introduce the
idea of a statistical space, in which certain sets are ignorable, in Section 2. Section 3
defines general statistical operations and gives some important examples. Section 4
introduces a dual approach to statistical operations, analogous to the passage, in a
parametric family of distributions, from a distribution over the parameter-space to
the induced marginal distribution of the data. It also introduces the important
concepts of bounded completeness and strong identification (identification of
mixtures) for a statistical operation.

In Section 5 we introduce the general concept of conditional independence for a
statistical operation, and show how it encompasses the various intuitive properties
such as parametric sufficiency (X « ®|®), sufficiency (X . ©|T), pointwise indepen-
dence (X 1 Y|®), adequacy (X w(Y, ©)|T), etc. Sections 6 and 7 deal with varia-
tions on the result (X1 Z and Xu Y|Z)e X 1 (Y, Z) and some converses. Fi-
nally, in Section 8 we present applications of the theory: to rectify a well-known
fallacious argument, and to consider the relationship between a classical and a
Bayesian approach to ancillarity in the presence of nuisance parameters.

2. Ignorable sets. This section introduces the concept of a statistical space,
which takes into account the fact that many statistical concepts (such as density
functions or conditional expectations) are not uniquely defined, but have several
equivalent versions which we shall not be interested in distinguishing. Intuitively,
the event that two such versions differ is in some sense ignorable. Because the
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statistical operations to be introduced in Section 3 generalize the concept of
conditional expectation, it is necessary first to investigate the sense in which
different versions may be equivalent. The formalism presented here encompasses
most of the technicalities which are needed in dealing with sets of measure zero.

2.1. o-ideals. Let & be a o-field of subsets of . For many statistical
purposes, there will be sets in & which can be regarded as ignorable. For example,
if we have a single probability measure P over &, we can ignore E € & if
P(E) = 0; while if & is endowed with a family ¥ = {P, : A € A} of distribu-
tions, E € & is ignorable if P,(E) = 0 for all A € A. We shall denote the classes
of sets obtained thus by §(P), $(?) respectively.

In the latter case it will often be useful to work with the product space X X A,
having the induced o-field &*, where 4 € &* if 4, € &b, all A € A. (Here
A, = {x :(x, A) € A4}, the section of A at \ € A.) We would wish to ignore a set
A € &*if P,(4,) = 0, all A € A. We shall denote the class of such sets by §*(%P).

A suitable abstract formulation of the concept of a “family of ignorable sets”
(which covers the cases above) is the o-ideal, as given by the following definition.

DEFINITION 2.1. Let & be a o-field, and § C & a family of sets satisfying
W) Tey;
(ii) 9 is closed under countable union;
i) I €Y, E€b=1INEESJ.
Then 9 is termed a o-ideal (in &).

Clearly & itself is a o-ideal in &, but we shall exclude this case as of no interest;
thus we may suppose § not to contain the whole space %, in which case it may be
termed a proper o-ideal. We note that {J} is a o-ideal (the trivial ¢-ideal) in &. An
arbitrary intersection of o-ideals is again a o-ideal. (It follows that any subclass of
& generates a o-ideal, the smallest o-ideal containing it; however this may not be
proper.)

If § is a o-ideal in &, we shall call (&, %) a statistical space.

2.2. Equivalence. Let (&, %) be a statistical space. Denote by £(&) the space
of all & -measurable real functions (random variables), and by £*°(&) [E7(&)] the
subspace of all bounded [nonnegative bounded] functions.

If = is a proposition that may be true or false of points in the underlying space
%, we write 7[$] to denote that = holds for all points outside some set in §. (If
§ = 4(P) or 9(9), we shall write #[ P] or 7[?P].) We can define a relation ~ (to be
explicit, ~g, ~p Or ~g) on £(&) by: U~ Vif U = V[9], and this is readily seen
to be an equivalence relation. Since events in § are to be construed as ignorable,
we shall not wish to distinguish between equivalent random variables. Thus we are
really only concerned with the quotient space L(&, ) consisting of the equivalence
classes of £(&) under ~, (written L(&, ?) if § = 9(%P), etc.) and its subspaces
L®(&, $), LY(&, §) generated by £°(&), £2(&) respectively. (If U is such an
equivalence class, any U € U may be called a version of U). So long as we only
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deal with a countable number of operations, these quotient spaces inherit much of
the algebraic structure of their generating spaces. For if U, ~ V(i = 1,2, - ),
then there exists / € § such that, for all /, and all x & I, U(x) = V,(x). So if we
perform, pointwise, any arithmetic operation (summation, supremum, etc.) on the
U’s and again on the V’s, we shall get equivalent answers. Henceforth we shall
apply such operations without further comment.

We can extend the notion of equivalence to sets in &. For 4, B € &, we write
A ~ B if x, ~ xg(x, denoting the indicator variable taking value 1 in 4 and 0
elsewhere); that is to say, 4 ~ B if the symmetric difference AAB € 9. Now
consider two sub-o-fields %, § of &. We write & C § if, for all F € %, there
exists G € § such that F~ G.If F C § and § C F, we call F and § equwalent
o-fields, and wrlte G ~ 3.

Denote by ¥ the o-field generated by % and §. It is easy to see that F = {E €
& : E~F, some F € 9}. Thus § F C § if and only if ¥ c 8, and F ~§ if and
only if ¥ = §.

LEMMA 2.1.

A FVE~FVE~F\vE;
i Fngc¥Fng;

(i) FNn8~%ng.

PROOF. (1) and (ii) are trivial. For (iii), take S € $ N §. Thus S € §, and for
some F E GF, S ~ F. It follows that F €3 =&, and so F€ F N &, so that

Fn8cCFns.

In general it is not not true that ¥ N § ~ Fn§.

The following lemma is essentially the same as Lemma 7.1 of Bahadur (1954).

LEMMA 22. U € (%) if and only if U ~ V for some V € £(%F).

It follows that we could, without loss of generality, consider only completed
sub-o-fields of & (that is to say those containing ¢), and random variables
measurable with respect to these.

3. Statistical operations.

3.1. Conditional expectation. Let (X, S, P) be a probability space, and & a
subfield of S. We denote by P® the restriction of P to &, and introduce the
o-ideals § = §(P)in &, and § = $(P® in &.

For any U € B°°(5) we can define the condzttonal expectation of U given & :
U=EU |6), with U € B°°(8) Such a U is not uniquely determined: any
variable V such that V ~ gU also serves as a version of E(U|&), and only such
variables so serve. Thus the conditional expectation operation may be regarded as
a map Il : £°(8S) » L®(&, %). Furthermore, if U ~¢U’, then E(U|&)
~4E(U’|b), so that an alternative representation is as a map from L* (S, ¢) into
L>(&, 9). (In fact this extends to a map from L'(S, P) into L'(&, P®), which has
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the properties of a Markovian operator (Neveu, 1965, V.4).)

The map IT : £2(8) - L®(&, $)(or I1 : L=(S, §) —» L®(&, 9)) has the follow-
ing properties.

(P1). Linearity. Il(a, U, + a,U,) = a, 11U, + a,.I1U,.

(P2). Positivity. U > 0=11U > 0.

(P3). Normalization. 111 = 1.

(P4). Continuity. If (U;) is a countable sequence decreasing monotonically to 0,
then so is (IIU,). (In fact (P4) plays no essential role in the sequel, and could
probably be removed).

In many statistical problems we deal with operations which behave very much
like conditional expectation above. We present below some important examples,
which will recur throughout this paper, involving a family ? = {®, : A € A} of
probability distributions over &. We may suppose A to have been endowed with a
o-field IC such that the map A ~» P,(A4) is JC-measurable for all 4 € . (We may
equivalently regard & as a Markov kernel from (A, I() to (%X, §).)

EXAMPLE I(a) If U € £°(S), we may define a function Uon A by: (7()\)
Ey(U). Then U € £>() (Meyer, 1966, IX, 3), and is uniquely defined; equiv-
alently, U € L>(, 9,) where $, = (D}, the trivial o-ideal. Writing U =
ILU, II, : B°(8) — £%°(I() satisfies (P1) through (P4). In this case, I, is just a
representation of & itself. Since U, = U,[?P]= U1 = Uz, we can alternatively
consider IT; : L=(S, P) — L% (K).

ExaMmpLE II(a). Let & be a sub-o-field of &, and construct the statistical space
(&6*, 9% in X X A, with §$* = §*(P), as in Section 2.1. For U € £°(S) we can
consider the “conditional expectation of U given & and A’ : l7(x, A) =
E\(U|&)(x). Then U is in £°(&*), but is only defined modulo §*. The induced
map I, : £2(8) - L*(& *, §*) satisfies (P1) through (P4). Again we could take
IT, : L2(S, P)— L=(&*, 9*).

REMARK 3.1. It would often be convenient if & * in Example II(a) above could
be replaced be the ordinary tensor product o-field & ® JC. This will be the case if,
for any U € £°(5), we could choose versions of lA](x, A) to be jointly & ® IC-
measurable. Then we will call the o-field & regular (with respect to ?). If so, we
can take IT, : L2(S, P)—> L=(6 @ I(, ) where § = §* N (& @ I).

If A is countable, then any o-field & is clearly regular. If & is separable
(countably generated) then & is regular-with respect to any % ; this may be shown
by an argument based on Meyer (1966, VIII, 10). It now follows that & will be
regular with respect to @ if & = F \/ 9(?) for some separable ¥, since we can
then take E,(U|&)(x) = E\(U|F)(x). In particular, if & is separable and ¥ is
dominated, this property holds for any completed subfield & of &, as follows on
applying Lemma 3 of Bahadur (1955) to the probability space (%X, S, n), where p is
such that $(p) = $(9).



CONDITIONAL INDEPENDENCE 603

ExampLE III(a). Suppose &, ¥ are sub-o-fields of &, such that & is sufficient
for ? over ¥ (and thus over & \/ ¥) : that is, for any U € £°(¥) there exists
Ue £°(&) which serves as a version of E,(U|&) for all A € A. We shall write
U = Eg(U|6). Then E¢(U|6) is defined modulo P° = {P®: P € P}, and we
thus get a map II;: £°(F) —» L=(&, P°), or II, : LT, P%) - L®(FE, 9°),
again satisfying (P1) through (P4).

3.2. Statistical operations. The above examples motivate the general concept
of a statistical operation. Let (&, $), (¥, ) be two statistical spaces.

DEFINITION 3.1. A map IT : L*(F, §) —» L®(&, 9) satisfying (P1) through (P4)
is termed a statistical operation (s.0.) over (%, $), given (&, 9).

If, as seems reasonable, we regard statistical spaces as the principal objects of
statistical study, then statistical operations are the structure-preserving maps. We
thus have a statistical category of some interest (Sacksteder, 1967).

If $C& and § C 9, then L2(%) C £®(&), and U, = Uy[$]= U, = U,[9].
Thus the identity mapping of £°(%) into £%(& ) induces a trivial s.o., the natural
injection, over (%, ¢) given (&, 9). The case ¥ = &, § C 9 is of some special
interest.

LetIT : L*(F, $) - L®(&, $) be a s.0., and define §;; as {F € F : [Ix, = 0},
where X denotes the equivalence class of x, under ~¢ Then Iy is a o-ideal
containing ¢, and it is easy to see that II factors through the natural injection
IT, : L2(F, $)— L*(F, %). The induced s.o. form L®(F, 9;) into L2(&, 9)
may also be denoted by II. We obtain the same induced s.o. if we start with the s.o.
from £*(%) into L*(&, 9) got by composing IT : L*(F, ) — L®(&, §) with the
natural injection from £*(%¥) into L®(%, ¢). Thus we may restrict attention to
s.0.’s which have the form II : £°(%) — L®(&, 9), equivalent to IT : L*(F, 9y;)
— L*(&, 9). We call 9;; the o-ideal induced by II1.

3.3. Construction by sufficiency. Statistical operations which arise from the
sufficiency construction of Example III(a) are of particular interest. We shall say
that such a s.o. is constructed by sufficiency from (9; &, ¥); it is a s.0. over
(F, $(P%) given (&, $(P?)).

By means of an appropriate auxiliary construction, it will frequently be possible
to regard a given s.0. as constructed by sufficiency. For instance, in the set-up of
the examples of Section 3.1 above, let 9N be the family of all probability
distributions on JC. We note that §(9N) is trivial, since, if H, € JC is nonempty,
we can choose Ay € H,, and construct M, € I such that M(H) = 1 for A\, €
H, My(H) = 0 otherwise; and thus My(H,) > 0. For M € 9L denote by Q,, the
distribution over & ® JC given on & X I by : Qp(S X H) = [P (S)dM(N).
Then identifying & with & X {A} C & ® I(, etc,, it is clear that IC is sufficient
for 2 = {Qy : M € 9} over & and, if IT* is the s.o. constructed by sufficiency
from (2; ¥, §), then IT* = II,.
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For Example II, suppose & is a regular sub-o-field of & with respect to <. Then,
taking II, : £2(8) - L*(& ® ¥, 9), for U € £*(S) any version of IL,U will
clearly do as a conditional expectation of U given & ® IC, for any Q € 2. Thus
II, may itself be regarded as constructed by sufficiency from (2; & ® I(, §), so
long as § = $(28®%), which is in fact so (Kudo, 1978).

In general, let (&, 9) be a statistical space. If M is a finite measure on & such
that M(I) = O for all I € 9, we shall call M absolutely continuous with respect to 9,
and write M < §. We denote by IN(&, ) the family {M : M <« 9}, and by
M, (&, 9) the subfamily of probability measures.

We always have § C $(I(&, 9)). If § = $(OM(&, 9)), we shall call § re-
flexive. Any o-ideal of the form $(9N) is reflexive. Conversely, suppose § is
reflexive, and let IT : £°(%) - L°(&, 9) be a s.o. For M € 9 (&, 9), define Q,,
on ¥ X & by : Qu(F X E) = [pUdM, where U € Il(xz). Although Q,, is finitely
additive, it may fail to be o-additive. We can show o-additivity under further weak
restrictions: see, for example, Caillot et Martin (1972, Proposition I-8). If, for all M,
Q) is o-additive, then each Q,, extends to a distribution on ¥ ® &, and II may
then be constructed by sufficiency in the same way as for II, above.

4. Duality. This section generalizes the familiar notions of (i) (bounded)
completeness of a family of distributions, and (ii) identification of mixtures of
distributions. These concepts are seen to arise naturally in the study of statistical
operations, are closely related, and have important consequences.

Let (&, 9) be a statistical space. Then the spaces L*(&, ) and OM(&, ) are in
duality with respect to the bilinear product (M, U)> = [UdM, where U is an
arbitrary version of U. If II : L=(%F, 9)— L=(&, 9) is a s.0., we can define its
transpose II' : M (&, §) — OM(F, ¢) by the requirement (II'M, U = (M, I1U .
Note that IT" maps M, (&, §) into IM,(F, ¢), and is completely determined by its
restriction to I, (&, 9).

If IT is constructed by sufficiency from (¥ ; &, ), then § = §(9°), § = $(9?),
and, for any P € @, II'P® = P% If 1 : L®(%, $) - L=(&, 9) is the natural
injection, then IT" : M (&, §) — IM(F, $) is given by restriction: II'M = M7

In general the maps II: L®(%, $) > L®(&, ) and II': M(5, 9) >
M (¥, $) are many-to-one. We obtain, important properties by requiring that they
be one-to-one.

DEerINITION 4.1, If the s.0. IT : L=(F, 9) = L=(&, 9) is one-to-one, we call IT
boundedly complete. If I1 is constructed by sufficiency from (?; &, F), we also say
that % is boundedly complete for & (with respect to ).

Clearly II is boundedly complete if IIU = 0= U = 0; or, regarding II as a
many-valued map from £%(%) to £%°(&), II is boundedly complete if IIU ~,0 =
U ~4 0. In the context of Example I(a), this recovers the definition of Lehmann
and Scheffé (1950, 1955).
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The above concept can be strengthened if IT is constructed by sufficiency from
(P; &, %). In this case, denote by £!(&, P) the set of &-measurable variables that
are P-integrable for all P € &, and by L'(&, P) the set of equivalence classes
under ~gs. Then the sufficiency construction extends IT to a map from LY (%, %)
into LY(&, ). If this extended map is one-to-one we shall say that ¥ is complete
for & (with respect to ). Equivalently we require that, for U € LY(F, 9P),
EgU|6&) = 0[D®] if and only if U = 0[P7].

For the transpose map we introduce the following definition.

DEFINITION 4.2, If the map IT' : M (&, §) » IM(F, ¢) is one-to-one, we say I1
is strongly identifying. If II is constructed by sufficiency from (?; &, ¥), we say ¥
strongly identifies & (with respect to ).

This property is normally studied under the title “identifiability of mixtures”
(Teicher, 1960, 1961, 1967; Barndorff-Nielsen, 1973; Chandra, 1977). It is only
necessary to check that the restricted map II: I, (&, §) — M, (F, §) is one-to-
one. Note that if IT, in Example I(a) is strongly identifying, then a fortiori any
parameter-function which induces JC is identified in the usual sense.

4.1. Two theorems. The following two results, which will be needed for Theo-
rem 7.3 below, are of some interest in their own right.

First, consider a single probability distribution P on a o-field &, and let &, % be
sub-o-fields of S. We can consider the statistical operations which arise by taking
conditional expectations over ¥ given &, and over & given ¥.

THEOREM 4.1. % is complete for & with respect to P if and only if & strongly
identifies % with respect to P.

ProOF. Let the induced statistical operations be II, : L'(¥, P) —» L'(&, P),
and I,  L'(&, P) - L'(¥, P). Suppose first that II, is complete, and let P,, P, be
measures on ¥ such that P, < P% We must show that II,P, = II,P,= P, = P,.
Now it is easy to see that II}P, = P/, say, is given by P/(4)= [,UdP =
J4E(U]|&)dP¥(4 € &), where U, € dP,/dP% € L\(%, P). If now P| = Pj, then
E(U, — U,|&6) = 0[P®] whence, by completeness of II,, U, = U,[P?], and so
P, = P,

Conversely, suppose II, is strongly identifying, and let U € £'(F, P). We have
to show that E(U|&) = O[P®]= U = O[P%]. Set U, = max{U, 0}, U, =
max{— U, 0}, so that U = U, — U, and U, € £' (¥, P). We can define finite
measures M,;, M, over S by: M(S) = [4U,dP, and it may be seen that II,M,% =
ME. Hence if E(U|&) = O[P®) then M¥ = MY and so, by the strong identification
M?Z = M}, so that U = O[P%].

For the next theorem we recall (Halmos and Savage, 1949) that a o-field 9 is
termed pairwise sufficient for P over & if, for all P, P, € 9P, 9 is sufficient for
the pair {P,, P,} over &. In this case 9 is sufficient over & for any subfamily of
% which is dominated on % \/ &. Furthermore, under mild regularity conditions,
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pairwise sufficiency implies sufficiency more generally (see, e.g., Kusama and
Yamada, 1972).

THEOREM 4.2. Let 0D, &, F be sub-o-fields of S, with ) C & . Suppose D and
& are each sufficient for P over %, and that F strongly identifies & (with respect to
D). Then 90 is pairwise sufficient for ¥ over &.

ProoF. Take P,, P, € ®, and let W, € £2(D) be a version of dP,>/d(P, +
P)?. Then W, = 1 — W, is a version of dP,’/d(P, + P,)?. Define events 4, : “W,
=0" (=12 and 4;:“0 < W, < 1”. Then A4,, A, A, form a °)-measurable
partition.

Take D € %) with D C A,, and define a finite measure A over %) by: A(S) =
P,(S N D)+ Py(S N D). Then A< P2 (i = 1, 2), and so we can unambiguously
define measures M, (i = 1, 2) over & by: M(S) = [P(S|D)dA. By sufficiency of
) over F, M = M. Also, note that for any U € £°(S), [ UdM, = [ E(U|D)dA,
where E; denotes (conditional) expectation for P, Thus M(S) = [xsdM; =
JE(xs|D)dA = [E[E(xs|®&)|D]dA (since 9D C &) = [E(xs|®)dM,. In particular,
for F € %, M(F) = [Eg(xz|&)dM® whence, since M = M}, by strong identifi-
cation M = ME. We thus have, for U € £°(&), [UdM, does not depend on i.
But fUdM; = [E(U|D)dA = (,E(U|D) - d(P, + P,). Now letting D vary, we
deduce that E\(U|90) = E,(U|D)[P, + P,] on A4,.

Take particular versions of E(U|%) (i = 1, 2), and define V € £*°(D) by : V =
E(U|D) on A, U A3, V = E,(U|D) on A4,. Then V serves as a version of the
conditional expectation of U given 9, for both P, and P,, and so the result is
proved.

5. Conditional independence.

5.1.  Definitions and examples. Let P be a probability distribution over a
o-field 5, and @, B, C sub-o-fields of S. The familiar concept of conditional
independence of @ and % given C (with respect to P) can be characterized as
follows: for any U € £'(@, P), there exists a C-measurable version of E,(U|® \/
C) (see for example Meyer, 1966, II, T51).

This motivates the following general definition. Let II be a statistical operation
over 9 given (S, ), and suppose @ is a sub-o-field of I, and B, € sub-o-fields of
S satisfying B v/ C = §.

DEFINITION 5.1. We say @ is independent of B given C (with respect to II), and
write @ 1 B |C[II), if, for all U € £°(®), there exists a version of ITU which is
C-measurable. If C is trivial, we may say @ is independent of B (with respect to TI),
and write @ 1 B [IT)].

In checking that @ . B |C[II], it is enough to verify the definition for all
indicator functions of sets in @. Note that % plays no essential rle in Definition
5.1; nevertheless it is helpful to have it in the notation.



CONDITIONAL INDEPENDENCE 607

_Lemma 5.1. @ B |C[II] if and only if, for U € L*(@), TIU € £=(C, 9), where
C=CVvd.

Proor. From Lemma 2.2.

If @B |C[II], we can regard II as yielding a s.o. over & given (@, 9) (or
alternatively given (G, 9§ N €)). Such an induced s.o. will be denoted by IT*. Then
IT: B°(@)— L™(5, %) is given by II = I II*, where II, is a natural injection.
Conversely, the existence of such IT*, satisfying II = II,IT*, implies @« B |C[II].

Now suppose & is a family of distributions over &, and let @, %, C be
sub-o-fields of S. We shall be interested in conditional independence for s.0.’s
constructed by sufficiency.

DEFINITION 5.2. We say @ is independent of % given C (with respect to ?), and
write @ 1 B |C[P] if

(i) % \/ @ is sufficient for ¢ over &; and

(i) @ . B|C[II], where II is the s.0. over @ given (B \/ C, 9) constructed by
sufficiency from (?; % Vv C, @).

Equivalent to Definition 5.2 is the following: for U € £*(&), there exists
V € £°(C) such that E,(U|B \/ C) = V[P], all P € P. It follows that C is
sufficient for @ over @, and EgU|C) = ExU|B \/ C)[?].

At this point we may note that Theorem 4.2 continues to hold if the condition
D C & is replaced by Fu D |&[?P]. The proof is virtually unchanged.

LEMMA 5.2. The following properties hold.
() RLB|C[M]e @w(B Vv C)|C[H).

() @ LRB|C[), D C & = DuB|C[I].

(i) €L B|IC[P]= (@ V C)LB|C[D].

(iv) @ B |C[P]le B €|C[P].

V) RuB|IC[PL, P CP =RuB|C[P]

Proor. For (iv), see, e.g., Meyer, loc. cit. The rest are trivial.
We now illustrate with our standard examples the scope of the general concept
of conditional independence.

ExAMPLE I(b). Sufficient parameters. Suppose that, in the labelled family of
distributions {P, : A € A}, the parameter A is not identified: that is, there exists a
function, ¢ : A —> ¥ say, such that Y(A,) = y(A) =P, = P, . Let H be the
sub-o-field of 9 generated by ¢ : { = {K € I : K = ¢y "(G), some G C ¥}.
Then, for any 4 € S, the map A ~» P,(A4) is H-measurable, and so the dependence
of the distributions on y alone may be expressed as: & . J|J[I1,]. In this case the
induced map IT} : £°(8§) — £°(K) represents the same family of distributions,
but reparametrized by .

If I is trivial, S . IC[I1,] is equivalent to: P, does not depend on A: that is, & is
an ancillary o-field.
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When & IC|K[I1,], we may call K a sufficient parametric o-field, and, if K is
generated by i, we may term y a sufficient parameter (Barankin, 1961).

ExaMpLE II(b). Sufficiency. Consider the property: S & *|& [IL,], where & is
regarded as a sub-o-field of &* in the natural way. This says that, given U €
£2(8), we can find ¥ € £°(&) such that, for all A € A, E,(U|&) = V[P,], and
this is just the requirement that & be sufficient for ? over §. We have therefore
rigorized the intuitive identity between sufficiency and conditional independence
discussed in Section 1. The induced s.o. II} is essentially the same as II, of
Example III(a).

If & is regular, the above property is equivalent to: & . IC|&[I1,] (regarding
&b, ¥ as sub-o-fields of & ® I(): i.e., the observation is independent of the
parameter, given a sufficient statistic (cf. X ®|7, Section 1). Clearly, if & is
sufficient then & is regular.

EXAMPLE II(c). Pointwise independence. Now let ¥ C & and restrict I, to act
on £°(%). Consider: ¥ 1.& *|H[IL,]. For U € £%(F), we get W € L£°(%) satisfy-
ing: for all A, E,(U|&) = W[P,]. Since W is nonrandom, this merely asserts the
probabilistic independence of & and & for every P,, more intuitively expressed as
% 1 &|IC[I1,] (or, in random variable terms, X u Y|0).

5.2. Adequacy. Let P be a family of distributions over S, and @, B, @
sub-o-fields of &. Following Skibinsky (1967) (who, however, took C C @) we call
C adequate for @ with respect to B and P if

(i) C is sufficient for ¢ over @; and

(i) B @|C[P), forall P € 9.

THEOREM 5.1. C is adequate for @ with respect to % and 9 if and only if
@uLB|C[D].

ProOF. (Skibinsky, 1967, Theorem 1). That conditional independence implies
adequacy is trivial. So suppose the adequacy condition holds, and let U €
£2(@), P € 9. By (ii) and the symmetry property (Lemma 5.2 (iv)) E,(U|%® \/ @)
= Ep(U|C)[P] = E«(U|C)[P] by (). Thus EgHU|C) serves as a version of
Ep(U|% \/ C) for all P € P, whence @ . B |C[D].

CoROLLARY. If @u B|C[P), and C is sufficient for P over B, then B u
€|C[?].

Theorem 5.1 is important in three different ways. First, it exhibits adequacy as a
special case of conditional independence. Secondly, since many instances of
conditional independence may be expressed in the form of Definition 5.2 by using
an auxiliary construction by sufficiency, conditional independence may be studied
by means of known results on adequacy. Finally, the two-stage definition of
adequacy proves useful in verifying conditional independence in two separate
steps.
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6. Extension of the future. The title of this section refers to the following
simple well-known result for ordinary conditional independence in a probability
space (§,P): @u(B VO D < (RuC|D and @uB|(C \/ D)). Here we in-

vestigate generalizations.
6.1. Direct implication.
THEOREM 6.1. @ (B \/ C)D[]= @ 1 B |(C \V D)II] and @ .. C|D[IT*].

The proof is trivial. Note that IT* : £°(&@) — L®(C \/ D, §*), say, is the s.o.
induced by II through the property @ . |(C \/ D)[II]. Theorem 6.1 holds in
particular if [II] and [IT*] are both replaced by [?] or (recovering the standard
result) [P]. The case that D is trivial is of some special importance.

In the general case, the symmetry of simple conditional independence is absent.
We must therefore investigate separately the implications of (% \/ C). @|D[IT].
The first result is trivial.

THEOREM 6.2. (B V C) @|D[II]=> Cu &|D[II].

THEOREM 6.3. Suppose (B \/ C) &|D[?P], and further that C \/ D is sufficient
for P over B. Then B L Q|(C \/ D)P].

REMARK 6.1. The sufficiency condition is a weak one. For if, as is supposed, D
is sufficient for ¥ over B \/ C, then 9 is sufficient over B \/ C \/ . Since
DCCVDCBVEV D, it follows that C \/ D is at least pairwise sufficient
over B \/ C\/ 9D, and thus over % . However, sufficiency may fail to hold in
pathological circumstances (Burkholder, 1961).

PrOOF OF THEOREM 6.3. By Theorem 5.1, we only need to show that B . @|(C
\V D) P], for each P € P. But (D Vv C)u &|D[P], and so the standard result
applies.

COROLLARY. (B V C)n@[P]= B . R|C[P].

ProoF. Taking 9 trivial, we have that P®V¢ does not depend on P € &, and
so the sufficiency property holds trivially.

6.2. Converse implication.

THEOREM 64. If @ uB|(C\V D)NHU] and @ . C|D[II*], then Qu (B
C)|eD[IT].

The proof is straightforward. IT* is again interpreted as in Theorem 6.1.

At this point a reinterpretation of Theorem 5.1 is instructive, along the lines of
Example II. Introducing the parametric o-field JC, and taking, for simplicity, all
o-fields to be regular, the two conditions for adequacy may be reexpressed as: (i)
@ 1L H|C, and (ii)) @1 B |(C \/ K) (where the omitted s.0.’s are obvious). Theo-
rems 6.1 and 6.4 show these to be equivalent to @ (B \/ I0)|C, a reexpression of
R uB|C[D].
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THEOREM 6.5. If Bu @|(C\V D)NDP] and C.R|D[P], then (B \V C)u
QID[P].

ProoF. The result holds for a single distribution. Thus by Theorem 5.1 we need
only show that ¢ is sufficient for ¥ over B \/ €. But 9 is sufficient over ©, and
thus over C \/ D ; and likewise C \/ % is sufficient over B \/ € \/ 9. The result
follows (Bahadur, 1954, Corollary 5.1).

7. Variations on a theme. We already know that (*)@. (B V C)|D = (a)
@uB|(C\V D)and (b) @ C|D; similarly (*) implies (c) & « C|(® \/ D) and (d)
@1 % |%D. In the converse direction, we have (a) and (b) = (*), (c) and (d) = (*).
We now turn to investigate the consequences of assuming (a) and (c), or (a) and
(d), and in particular find further conditions under which these assumptions imply
that (*) holds.

We first consider (a) and (c) together.

Lemma 7.1. Let B CS,CCS. Suppose @ S|B[I) and @ 1. S |C[II). Then
RuS|(B N C)II, and conversely.

The proof follows from Lemma 5.1. 3
COROLLARY. An equivalent condition to the above is: RQuS|(B n O] (or
R@uS|(%B N CII.

ProOF. From Lemmas 2.1 (iii) and 5.1. Note that B n Cc %, B n C c C.
The above results immediately yield the following.

THEOREM 7.1. Suppose @+ B |(C \V D)NII] and @ LC[(B \/ D)II]. Then
Q@Qu(B N OB VD)N(CV DI and conversely. Equivalently, @ 1.(%H \/
OB Vv D)n (CV D]

COROLLARY. Suppose (B \/ D)N(C\V D)~D. Then @ . B|(C \/ D)II]
and @ L CI(B VvV D] QL (B V C)D.

Note that (B N C)V D C (B V D) N (C\V D) so that, if the condition of
the corollary is to hold, it is necessary (but not sufficient) that ® N € C 9. The

case 9D trivial is of some importance.
We now turn to consider the joint conditions (a) and (d).

LEMMA 7.2. Consider the following diagram of statistical spaces and statistical

operations between them, where for example @ — C denotes a s.o. II, : L®(@, %) —
L>(C, $°). We require $¢ = 9%3.
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Suppose 11,11, = I1,I1,, 11, = I1,IL;, and II; is boundedly complete. Then 11, =
III1, (and so the whole diagram is commutative).

Proor. ILII, = ILII, = II,ILIL,. Thus IT,(II, — ILII,) = 0. Since bounded
completeness is equivalent to I, being one-to-one, the result follows.

THEOREM 7.2. Suppose @ . B|D[P] and @ L B|(C \/ D)P). Suppose further
that B \/ D is sufficient for P over C (and thus over C \/ D) and that C \/ D is
boundedly complete for B \/ D with respect to P . Then @ L (B \/ C)|D[?P].

ProoF. In the diagram of Lemma 7.2, replace % by B=R\VD, QC by
C = @\ D, and let the o-ideals be given by the P -null sets in the corresponding
o-fields. Take II,, IIs to be the natural injections, and II,, II, and II; to be
constructed by sufficiency. Also let Iy : L*(@, P) — L*(PH, P) be constructed
by sufficiency. Then € L B [D[P]= QuB|D[P]=>TIg = III,, and @ B |(C
VD)NP]= QuB|C[P] =TI, = ILII,. It is clear that II, = IL,II,. The condi-
tions of the lemma therefore hold, and so II; = ILII,, equivalent to @ .. C|D[P],
or @ L C|D[?P]. On combining this with € 1. B |(C \/ D)[?], using Theorem 6.4,
the result follows.

COROLLARY 1. Suppose @ w B |D[P] and @ L B|(C \/ D)NP], and, for each
P e P, C\ D is boundedly complete for B \/ D with respect to P. Then @ (B
V O)D[P].

The proof follows from the theorem, applied for a single P, and the fact that
is sufficient for & over @. In the case that % \/ 9 is sufficient for & over C, the
condition of the theorem is, in general, weaker than that of Corollary 1.

COROLLARY 2. Suppose B 1 @|D[P] and B . &|(C \/ D)P]. Suppose further
that D is sufficient for P over C, and, for each P € 9, C\/ D is boundedly
complete for B \/ D with respect to P. Then (B \/ C)n&|D[?P].

The proof is straightforward.

Lemma 7.2 and Theorem 7.2 may be considered as generalizing Basu’s theorem
(1955): if, in a statistical model with parameter ®, 7T is a boundedly complete
sufficient statistic and S an ancillary statistic, then S and 7 are independent (given
©). This follows from the lemma, on letting D be trivial, %% be the parametric
o-field and @, C the o-fields in the sample-space corresponding to S, T respec-
tively. The proof parallels that of the theorem, on making natural choices for the
IT’s (in fact the theorem itself can be applied since € is regular, so that the II’s may
be constructed by sufficiency).

Theorem 7.2 and its corollaries are somewhat difficult to understand if D is
nontrivial. The bounded completeness condition may be roughly interpreted as
follows. Imagine % to be generated by a random variable D, and denote by P, the
distribution P conditioned on D = d (assumed possible), and let P, = { P,}. Then
we require that, for almost all 4, C is boundedly complete for % with respect to ¥,
(or w.r.t. Py, all P € 9). Regularity conditions could make this precise, effectively
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reducing the case of general ) (by looking at conditional distributions) to the case
6D trivial. We shall not go into further details here.

The following theorem, again exploring the consequences of the joint conditions
(a) and (d), does not appear to be related to known results.

THEOREM 7.3. Suppose B 1 @|D[P] and B @|(C \/ D)P]. Suppose further
that B \/ D strongly identifies C \/ D with respect to ¥. Then, so long as ) is
sufficient for P over C, (B V C)L@|D[P].

ReMARK 7.1. The sufficiency condition will normally hold. For by Theorem 4.2,
taking & = C\/ D, F = B \/ D, D will certainly be pairwise sufficient over C.
In particular, sufficiency will hold in the case that 9 is trivial.

Proor oF THEOREM 7.3. The strong identification clearly holds with respect to
any P € ® and hence, by Theorem 4.1, C \/ % is complete, and so boundedly
complete, for B \/ D with respect to P. The result now follows from Corollary 2
to Theorem 7.2.

Once again the strong identification condition can be roughly interpreted as
requiring that % strongly identify C in the distributions conditional on 9.

8. Applications. In this section we illustrate some of the uses to which the
calculus of conditional independence may be put. For further examples see Dawid
(1976, 1979a, 1979b, 1979¢), Dawid and Dickey (1977a, 1977b).

8.1 A fallacious argument. (Dawid 1979b). Consider a statistical model with
parameter ©. Let T be a sufficient statistic, and suppose that the statistic .S is
independent of T for all values of ©.

Basu (1955) argued that S must be ancillary, as follows: the distribution of §
given O is the same as that of S given 7 and © (since S 1 T'|®), and this does not
depend on O since T is sufficient. He later (Basu, 1958) pointed out that this
appealing result was false, and provided a counterexample and correction. The
problem has been further discussed by Koehn and Thomas (1975).

We can set up the above problem within the framework of Example II. Let IC be
the parametric o-field, and & and ¥ the o-fields in the sample space generated by
T and S. Define the statistical space (&*, §*) as for Example Il(a), and let
IL, : B%°(%) > L®(&*, 9*) be the s.o. corresponding to “conditional distributions
for S given (7, ©)”. Then, by sufficiency of T, ¥ L & *|&[IL,], and by the point-
wise independence of S and T, ¥ 1 & *|J([IL,]. Taking these conditions together we
deduce, from Lemma 7.1, the equivalent conditions: (a) ¥ J-L<‘5*|<‘5 N f}C[HZ], (b)
F 16 *|6[IL]; or (c) LES*I‘JC[H] where 5 =6 N C6, HX=5nIC
9C. (Note that (b) is equivalent to: & is adequate for & with respect to %.)

Now E € & if and only if E € & and EAE € 9* for some E € ‘JC This last
requirement is equivalent to: P,(E) = 1 for § € E, Py(E)=0for 8§ & E. That is,
E is a strong zero-one set, as defined by Breiman, et al. (1964), and & is the o-field
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of such sets. Each E € & determines the _corresponding E € I uniquely: E =
{6 : Py(E) = 1}; and it is easily seen that }C = {E : E € &) (compare Skibinsky,
1969). Basu’s original argument holds if and only if & (and thus () is trivial; that
is to say, if there does not exist a splitting set (Koehn and Thomas, 1975) in & :
set of E € & for which P,(E) =0 or 1 for all 8, both values being taken.

In the general case, suppose & is induced by a statistic W (a function of T), and
s by a parameter ® (a function of 0). Although W may not be constant overall, W
will be constant with probability one for each value 8 of ®, and the value of this
constant may be taken as ®(4). We can interpret (b) above in terms of adequacy,
as implying that the conditional distribution of S given W may be chosen
independently of ©. Likewise, (c) shows that the sampling distribution of S can
only depend on the value of ®. These twin properties are the appropriate generali-
zation of ancillarity for rectifying Basu’s argument.

As an example, let © take values in (— 1, 0) U (0, 1), and let the data be X, X,,
independently distributed, being uniform over the interval (0, ®) for ® > 0, or
(©, 0) for ® < 0. Let T = max(|X,|, | X,|) - sign(X,), U = (X; — X,)/T. Then T is
sufficient and U ancillary. Take S = U + sign(X,). Then S is independent of T for
all @, but is not ancillary. Here we can take W = sign(X,), ® = sign(®).

8.2. Marginal ancillarity. Let @ be a family of distributions for data X over
&, parametrized by ©. Recall that a statistic or o¢-field is said to be ancillary if its
distribution is the same for all values of ®. The importance of ancillary statistics in
the theory of inference is that no information relevent to inference about © should
be lost if one modifies the distributions in ¢ by conditioning on the observed value
of an ancillary statistic (Birnbaum, 1962).

Now suppose that @ = {P, ,} is parametrized by a pair of parameters (6, ®),
where © is the parameter of interest and ® a nuisance parameter. There is no
universally acceptable definition of a statistic being “ancillary for ®” (which would
again justify conditioning for purposes of inference about ®). In this section we
examine two attempts at such a definition, one classical, the other Bayesian, and
use conditional independence to investigate the relationship between the two. For
further background, criticism, and extensions to sufficiency, see Dawid and Dickey
(1977b), Dawid (1979c).

Let IC be the full parametric o-field, and &, & the sub-o-fields of IC induced by
© and P respectively. Let & be the sub-o-field of & induced by the statistic S. The
s.0. over & given JC corresponding to the family of distributions over & (con-
structed as in Example I(a)) is denoted by II,.

DEFINITION 8.1.  (Basu, 1977). We call S specific ancillary for © if S 1 ©|®, that
is: & w I |F[11,).

If & is trivial, so that there are no nuisance parameters, this recovers the
standard definition of ancillarity. In general, it requires that the distributions of §
“do not depend on ©” but only on the nuisance parameter ®.
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If conditioning on S is to provide a useful simplification of the problem of
inference for O, it would be convenient if the following property were also to hold.

DEFINITION 8.2. We call S ©-inducing if X »®|(S, ©), so that the conditional
sampling distributions of X given S are governed by © alone.

When S is both specific ancillary for ® and ®-inducing, it is termed S-ancillary
for ® (Barndorff-Nielsen, 1978). This has been taken as a justification, from a
sampling theory viewpoint, for basing inference for ® on the simpler conditional
sampling distributions of X given S.

A possible Bayesian approach is the following. If we had a prior distribution
over JC, we would get a single joint distribution over I ® &, and we might
consider S to be ancillary for © if, marginally, S+ @ (that is, S+ 9) in this joint
distribution.

Now since the property S 1 ® may be expressed in terms of the distribution for S
given O, it may be investigated as soon as the conditional prior distribution for ®
given © is determined.

We therefore introduce a family 2 = {Q,} of distributions for ®, labelled by ©,
to be interpreted as the prior conditional distributions for ® given ®. The marginal
prior distribution for © need not be specified. Each Q, induces a joint distribution
0y for (@, X) given by Q¥(® € F, X € A) = [Py (X € A)dQy(¢). Thus 2* =
{QF} gives the family of conditional distributions for (®, X) jointly, given ©.
Restricted to &, the family 2* gives the distributions for X given ©, the nuisance
parameter ® having been marginalized out, and our Bayesian can confine himself
to considering these distributions.

DerINITION 8.3. We call S marginally ancillary for © if S is ancillary for the
family 2 *.

This definition depends, of course, ca the choice of 2. If there are no nuisance
parameters there is nothing to choose, and again the standard definition is
recovered.

The property of marginal ancillarity is again most useful when S is also
©-inducing, in which case S is termed D-ancillary for © (with respect to 2). In this
case, a Bayesian whose conditional prior distributions for ® given © are given by 2
can obtain his marginal posterior distribution for ® by combining his prior
marginal distribution with the likelihood generated from the simplified conditional
sampling distributions of X given S (Dawid, 1979c).

Definitions 8.1 and 8.3 have different motivations, and it is interesting to
investigate the extent to which they overlap. We shall proceed by supposing that S
is simultaneously specific ancillary and marginally ancillary for ®. The results
below state, roughly, that if the prior dependence between ® and ® is sufficiently
strong, this conjunction can occur only if S is ancillary for (®, ®) in the usual
sense; while if the dependence of the distributions of S on the parameter ® is
sufficiently strong, then it can only occur if ® and ® are a priori independent.
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Suppose that Definition 8.1 holds. Then P, (S € 4) = P,(S € A), say, serves
as a version of Qf(S € A4|® = ¢) for all ¢; that is, ® is sufficient for 2 * over S. If
Definition 8.3 holds also, then S is ancillary for 2*, and we can therefore apply
Basu’s theorem (Section 7) to yield the following result.

THEOREM 8.1. Suppose S is both specific ancillary and marginally ancillary for ©,
and suppose further that, in the family 2 of conditional prior distributions, ® is
boundedly complete. Then S 1. ®[2*].

The conclusion of Theorem 8.1 is that we can choose a common version for
0(S € A|® = ¢), for all (6, ). But since P, (S € 4) is one version of this
quantity, it follows that S is almost ancillary, in the sense that there exists P(A4),
say, such that P, (S € 4) = P(4) so long as ¢ & Ny, where Q)(® € Ny) =0,
all 4. In particular, for any Bayesian whose conditional distributions for ® given ©
are given by 2, S 1 (0, @), and he can treat S as a totally ancillary statistic.

The condition of bounded completeness in Theorem 8.1 imposes a strong
relationship between ® and © in the prior distribution: for example it cannot occur
if ® 10. The conclusion implies that the dependence of S on the parameters is
extremely weak. In the following result these properties are effectively inter-
changed.

THEOREM 8.2. Suppose S is both specific ancillary and marginally ancillary for ©,
and suppose further that, in the sampling distributions, S strongly identifies ®. Then it
must hold that ® .+ O(F is ancillary with respect to 2) in the prior distribution.

Note that, since S 1 0|®, the sampling distributions of S do depend on ® alone.
The proof proceeds by introducing the family of all prior distributions over § and
combining with 2 * to yield a family 2" over 3 ® &. We then find that S+ F[2'],
S J|9[2], and S strongly identifies F with respect to 2. The result follows
from Theorem 7.3.

8.3. Two-point mixtures. Finally, as a very simple application of Theorem 7.3,
we prove the following result. It is probably due originally to G. Udny Yule,
although it is continually being rediscovered, particularly in relation to the collapsi-
bility of contingency tables.

THEOREM 8.3. Let (X, Y, Z) be random variables, with Z having just two possible
values. Suppose X and Y are independent, both conditionally on Z and marginally.
Then either X or Y must be independent of Z.

The proof follows from the following lemma, on applying Theorem 7.2 with
@ =0(X), B = o(Y), C = 0(Z), and 9 trivial, and P = {P}, where P is given
by the joint distribution of (X, Y, Z).
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LemMa 8.1.  With notation as above, if Z has a two-point distribution then exactly
one of the following properties holds.

@) B C[P]

(ii) C is complete for % with respect to P.

ProOF. We may code the values of Z as O and 1. Then any C-measurable
variable has the form aZ + b. If E(Z|®){= P(Z = 1|B)} is nondegenerate, then
(i) does not hold, while (ii) does, since only if a = b = 0 will we have E(aZ +
b|B) = O[P]. Conversely, if E(Z|B) is degenerate, then (i) holds while (ii) does
not.

9. Extensions. The abstract framework of statistical operations and condi-
tional independence introduced in this paper has been motivated by the wish to
rigorize the intuitive concept of conditional independence in such a way as to be
applicable in a very wide range of statistical problems. For most purposes it should
prove adequate, but it is possible to bring in still further abstraction, and with it
relax some of the regularity conditions imposed. One direction is to replace
statistical operations by statistical morphisms, introduced by Martin, et al, (1971).
Roughly speaking, these bear the same relationship to pairwise sufficiency as
statistical operations do to sufficiency. Their use would enable pairwise sufficiency
to replace sufficiency throughout this paper, and render unnecessary the sufficiency
conditions of Theorems 6.3 and 7.3, as well as the several requirements that a
o-field be regular. A further small step to abstraction retrieves the formalism of Le
Cam (1964). However, while mathematically very well behaved, this is rather far
removed from everyday statistical structures.

Indeed, the framework presented here may seem somewhat more abstract than
needed, but I believe it to be necessary if it is to cover all the desired applications.
In practice it will be important to know, for example, when statistical operations
can be treated as regular conditional distributions (see, for example, Neveu, 1965,
Proposition V.4.4, for a special case). Such will often be so, and ease considerably
the interpretation of the results.
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