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THE n~2-ORDER MEAN SQUARED ERRORS OF THE MAXIMUM
LIKELIHOOD AND THE MINIMUM LOGIT CHI-SQUARE
ESTIMATOR!

By TAKESHI AMEMIYA
Stanford University

The n~2order mean squared erros of the maximum likelihood and the
minimum chi-square estimator of the logit regression model are derived and
the latter is shown to be superior for many parameter values considered. The
maximum likelihood is shown to be better if the bias of each estimator is
corrected to the order of n~!; however, the difference is shown to be negligibly
small in many practical situations.

1. Introduction. Berkson [1944] proposed a noniterative estimator for the
dichotomous logit regression model, which has been extensively used by re-
searchers in various fields and commonly referred to as Berkson’s minimum logit
chi-square estimator. As was first shown by Taylor [1953], the estimator has the
same asymptotic normal distribution as the maximum likelihood estimator when
the number of observations of the dependent variable for each value of the vector
of independent variables goes to infinity. Note that in situations where this number
is small, Berkson’s estimator tends to break down even though the maximum
likelihood estimator can be used. Berkson [1955] evaluated the exact mean squared
errors of the minimum chi-square and the maximum likelihood estimator for
certain simple models and showed that the mean squared error of the minimum
chi-square estimator is smaller in all the cases considered. In this paper we evaluate
the mean squared errors of the two estimators to the order of n~2 (n being the
“average” number of observations) and show that the superiority of the minimum
chi-square estimator in terms of the mean squared error generally holds for a much
broader class of models than those considered by Berkson. We also evaluate the
n~2order mean squared error matrices of the two estimators after correcting for
the bias to the order of n~! and show that in this case the maximum likelihood
estimator is superior. A special case of this last result can be found in Ghosh and
Subramanyam [1974], who obtained it as an application of their general theorem
concerning the second-order efficiency of the maximum likelihood estimator in the
exponential family. The numerical study of various examples shows that the
difference in the mean squared errors between Berkson’s estimator and the maxi-
mum likelihood estimator is considerable, whereas the difference between
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n ~2-ORDER MEAN SQUARED ERRORS 489

Berkson’s estimator and the bias-corrected maximum likelihood estimator is always
less pronounced and mostly negligible.

The order of the presentation is as follows: In Section 2 we present our basic
model, define frequently used symbols, and give the first few moments of the
binomial random variables for the later reference. In Section 3 the validity of the
asymptotic expansion to be used later in the paper is briefly considered. The
derivation of the approximate mean squared error matrices for the maximum
likelihood and the minimum chi-square estimator is given in Sections 4 and 5. The
approximate biases of the estimators are also obtained. In Section 6 the approxi-
mate mean squared errors of the bias-corrected estimators are given. In Section 7
the mean squared error matrices are numerically evaluated for many examples
both real and artificial. Finally, brief conclusions are stated in Section 8.

2. Model and notation. Let the =7_,n, observable dichotomous random vari-
ablesy, (¢t =1,2,- -+, T;»=1,2,- - -, n,) take the value 1 or 0 according to the
probability distribution
(1) P, = 1) = =P,
where x, is a K-dimensional vector of known constants and §; is a K-dimensional
vector of unknown parameters. We define r, = n,'S%_,y,. Then the vector
r=(r,ry -, ry) constitutes the set of sufficient statistics of the model. The two
estimators of B, we consider—the maximum likelihood and Berkson’s minimum
chi-square—are both given as functions of r. In the asymptotic expansion we will
use later, we will assume that T is a fixed number greater than or equal to K and
each n, goes to infinity at the same speed. We will designate this common speed
as n.

Some frequently used symbols are defined as follows: w, =r, — P,, P = (P,
Py - P, u=(u, uy---,up),and X = (x;, xp, - - -, );T)’. Subscripts s, ¢,
and 7 will denote a particular element of the vector r, P, or u and a particular row
of the matrix X. They range from 1 to 7. Subscripts i, j, k£, and / will denote a
particular element of the vector 8 or x,. They range from 1 to K. The subscript »
will be used in all the other circumstances. The symbol D(c,) denotes the T X T
diagonal matrix whose ¢th diagonal element is c¢,. The symbol {c,} denotes the
T X T matrix whose s, rth element is c,. Similarly, {c;} denotes the K X K matrix
whose i, jth element is c;.

We will need the following moments of u,, which one can find, for example, in
Johnson and Kotz ([1969] page 51);

) Eu? = P(1-P) ,
nt
Pt(l B Pl)(l B 2Pz)

2 ’
nt

(©) Eu} =
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and
3PX(1— P)* P(1—P)[1—-6P(1—P
(4) Eu’4 = t ( > t) + t( t)[ . l( I)] .
nl nt
We will also use the fact that Eu’, Eub, - - - are at most of the order of n, 3.

3. Asymptotic expansion. Before setting out to evaluate the mean squared
errors of the estimators to the order of n~2, we will briefly consider the validity of
the asymptotic expansion used in our study so that we can meaningfully relate our
results to the exact results obtained by Berkson [1955].

Let b be either the maximum likelihood or the minimum chi-square estimator of
Bo- Then b can be written as

Q) b = h(r) if res
= q(r) if res,

where A is a bounded infinitely differentiable function, ¢ is a bounded func_tion, S
is a subset of the Euclidean T-space such that lim___P(r € S) = 1, and S is the
complement of S. From (5) we have

n—o0

MSE*(b) = 2, 5[ A(r) = Bo][#(r) = Bo] P(r)
(6) +2,e5(a(r) = Bo][4(r) — Bo]'P(r)
= M* + N*,

where MSE* denotes the exact mean squared error matrix. Our approximation of
MSE*(b) is done in two steps. First, expand A(r) in a Taylor series around P
retaining the terms that involve up to the third derivatives of A. Denote the
approximation of h(r) — B, thus obtained as &(#) and define

(7 MSE(b) = =, ese(r)e(r) P(r) + =, e5e(r)e(r) P(r)

=M+ N,
where MSE denotes the approximate mean squared error matrix. Then, M — M* is
the order of n~? because of the result stated at the end of the previous section.
Second, we approximate MSE(b) by dropping all the terms of order n~3 and
smaller (that is, retaining the term of order up to n~2). Thus, our approximation is

good to the extent that the term of order n~3 is small and to the extent that
2,c5P(r) is small. This latter condition ensures the smallness of N and N*.

4. Maximum likelihood estimator. The logarithmic likelihood function of the
model is given by

(3) log L = %n,r, log F, + ztnt(l — r)log(l — Ft)a
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where F, = [1 + exp(—x/B)]”'. Note that F, is the logistic function evaluated at
x,B, whereas P, is the same function evaluated at x;8,. Differentiating (8) with
respect to B8 and setting the vector of derivatives equal to the zero vector, we obtain
the normal equations

)] . Zmn(r, — F)x, = 0.

We rewrite (9) simply as
(10) g(B,r) =0

where g is a K-dimensional vector.

There are certain values of r for which no finite value of 8 satisfies (10). For
example, r, = 1 for all ¢ is such a value. Therefore we choose a set S, in the
Euclidean T-space such that for any r in S,, (10) yields a bounded solution 8, and
define the maximum likelihood estimator 8 by

(11) g(B,r) =0, orequivalently B, =h(r), if res
B = q,(r) if res,
where g, is an unspecified bounded function. We choose the set S, in such a way

that lim, , P(r € S,) = 1, which is possible under general assumptions on the
matrix X.

We will expand A(7) in a Taylor series around P for r in S,. Noting g( 8¢, P) = 0
we have
323 3B,

’66 it 222’8r8r8r

. 9B
(12) B, — Bo= 2,'6—6'11, 12 e

U Uy

=vy; + vy + v,

where B, and B,, are the ith element of B and B, respectively and all the partial
derivatives are evaluated at r = P.

We will express the partial derivatives that appear in the right-hand side of (12)
as functions of the derivatives of g with respect to 8 and r. This can be done by
solving the equations obtained by differentiating (10) three times with respect to r.
Thus we obtain

(13) B - (xpx)"'x'D(n),
where D, = D[n,P(1 — P)],

2,3
(14) ror = 21k Qrs

where {y,} = (X’D,;X)"", and
(15) Q. = D(n)X(X'D,X)™'X'D(x,)D(2P, — 1)D,X(X'D,X) "' X'D(n,).
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We also obtain

83,3,' Yk an(S’ t) 98
(16) e 2 Ou(s, t)w + zkYik_éB/— o

where Q,(s, 1) is the s, rth element of Q,.

From (12), the mean squared error matrix of B to the order of n~2, denoted as
MSE,, is given by
(17) MSE, = {Evy,vy;} + { Evyvy,} + {Evyoy ) +{ Evyo,)

+ {Evyo)}) + {Evyoy).

We will evaluate each of the four matrices that appear in the right-hand side of (17)
without a transpose. In doing so, we will use the moments of u, given in equations
(2), (3), and (4) and drop any term smaller than the order of n~2. Many lengthy
steps are omitted in the following derivations.

From (2) and (13), we readily obtain

(18) {Ev,0,) = (X'D X))~

This is the usual asymptotic mean squared error matrix and the only term which is
of order n~'. All other terms are of order n~2

From (3), (13), and (14), we can obtain, after some algebraic manipulation,
(19) {Evzivlj} = — %(X’D,X)_IX'DZADZX(X’DlX)_',

where D, = DQ2P, — 1) and 4 is the matrix obtained by squaring each element of
the matrix 4 defined by | .
(20) A=DX(X'D,X)"'X'D:.
Defining the Hadamard product * by {w,} * {z,} = {w,z,}, we can also write
A=AxA.

The evaluation of the remaining two terms is rather involved. Ignoring the terms
of a smaller order than n~2, we have

3

Y

1 ’
Evyv,; =3 E3 3, nyx,

2
st
a3ﬁi Ps(l - Ps) Pt(l - Pt)

ar,or? ng n,

1)

1 ’
- izszrns‘x/xs

where v; is the jth row of (X'D,X)~ !, Inserting (16) into (21) and interchanging the
summation signs, we obtain

ay; _
Ev3ivlj = %Etszk(t’ t)nt_ lPr(l - Pt)-allﬁl_lfzs(XlDIX) lxsnsPs(l - Ps)‘Yj{xs
ad t,t _
@) +13 S 01 - 2) A0 s (0 DX) B (1 - Py
=d. + e

/] UM
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We will first evaluate {d;;}. Using

dx'Dx)”! _ -
(23) —L—a—‘él_)_. = (X'D,X)”'X'D,D, D (x,)X(X'D,X) g
we obtain after considerable algebra
(24) {d;} =X(X'D,X)"'X'D,D,D;X(X'D,X)"",

where D, = D[x/(X'D,X)”'X'D,D,1], 1 is the vector consisting only of ones, and
D, is the diagonal matrix whose rth diagonal element is the ¢th diagonal element of
A. (In other words, D, = I « A, where * is the Hadamard product.) In evaluating
e; next, we need the following expression:

30 (t, 1) _ ! ax'Dx)"!
3B, ™ TTop,

+2n2/(X'D,X) "' X' D(n) "' DID(x,) D(x, ) X(X'D,X) ™' x,
—n3x(X'D\X)”'X'D,D2D(x,) D(x,)X(X'D,X) ™ 'x,.

When (25) is inserted into e, e; becomes the sum of three terms corresponding to

the three terms in the right-hand side of (25). Thus,

X'D,D,D(x,)X(X'D,X) ™ 'x,
(25)

(26) e; = ey + ey + ey

Each of the three terms in (26) is evaluated as follows:

(27) {ey;) = (X'D,X)”'X'D,AD,X(X'D,X)"",

(28) {e3) = (X'D,X)"'X'D(n)"'D\D,X(X'D,X)"",
(29) {esy} = = 3(X'D,X)™'X'DID,X(X'D,X)".

This concludes the evaluation of { Evsvy;}.
Finally we will evaluate { Ev,v,;}. We have
azﬁi azﬁj Pt(l_Pt) Ps(l_Ps)

! 9r.or, oror n n
s t s t (4 s

-1
Evy0y, = 32,2

> 82'3', az'BJ' Pt2(1 - Pz)2

(30) T ar? n?
lzazﬁi P,(l—P,) EazﬁjP,(l—P‘)
4 t 2 t 2
or; n, or; n,
=my; + my; + my,
Using (14) we can derive
(31) {my;} =3(X'D,X)"'X'D,AD,X(X'D,X)"",

(32) {my;} =3(X'D\X)™'X'D,AAD,X(X'D,X)"",
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and
(33) {my,;} =3(X'D,X)"'X'D,D,1I'D,D X(X'D,X)"".
Combining (17)—(33), we finally obtain
MSE, = (X'D,X)""
+3(X'D,X)”'X'D,AD,X(X'D,X) ™"
+ (X'D,X)"'X'D,D,D,X(X'D,X)""
(34) +2(X'D,X)"'X'D(n) "' D, D X(X'DX)""
- (X'D,x)"'x'D?D,X(X'D,X)""
+1(X'D,X)"'X'D,AAD,X(X'D,X)""
+1(x'D,x)"'Xx'D,D,11'D,D,X(X'D,X)"".
The approximate bias of the maximum likelihood estimator to the order of n~!,

denoted by BS,, can be easily obtained by taking the expectation of the first two
terms in the Taylor expansion (12) as

(35) BS, =1(X'D,X)"'X'D,D,1.

5. Minimum chi-square estimator. Berkson’s minimum logit chi-square estima-
tor is defined by

B' =[2rntrr(1 - rr)xtxt/]—lzrnrrr(l - r;)[IOg L }X,

1—r
(36) =h(r) if res,
= g,(r) if re §2,

where g, is an unspecified bounded function and S, is a subset of the Euclidean
T-space such that § is bounded for all r in S,. Like S;, we can choose S, so that
lim,_,  P(r € §,) = 1. Subtracting S, from both sides of (36), we obtain

n—oo

~ _ r P
(37) ﬁ _BO =[2rnrrr(l - rt)xtxt/] 'E,n,r,(l - rr) IOgl _t - IOg _r Xy
r, 1 - P,
for res,.

The right-hand side of (37) involves the product of three different nonlinear
functions of r,. We will approximate each of the three functions by the first few
terms in its Taylor series expansion around P and then calculate the mean squared
error matrix of the product of the three terms.
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Retaining the terms of the order up to u?, we have

[2r(0 = r)xx] " = (X'D,X)"" + (X'D,X)”'X'D(n,)D,D(u)X(X'D,X)""
+ (X'D,X)"'X'D(n)D(u?)X(X'D,X)""
+ (X'D,X)”"'X’'D(n)D,D(u)X(X'D,X)""

(38) X'D(n)D,D(u)X(X'D,X)""

=B, + B, + B, + B,.

Similarly we have

(39) nr(l —r)=nP(l — P)— n(2P, — u, — nu?

=w, + w,, + wy,.
Retaining the terms of the order up to %, we have

t

T,
logl_r —log1
t

_P’

(40) - 1 "+ 2P, -1 u2+3P’2_3P'+1u3
P(1—-P)" 2px1-P) " 3P¥1-P)

=2z, + 2y + z3.

Inserting (38), (39), and (40) into the right-hand side of (37) produces 4 X 3 X 3 =
36 terms. However we need to retain only 11 terms involving a cubic or smaller

power of u, for our purpose. Denoting these eleven terms by §, v = 1,2, - - , 11,
we have
(41) B—Bo=Z ik

We now evaluate £’s as follows:
(42) § = B\Z,wyzyx, = (X'D1X)_]X'D(":)“-

(43) &+ & = B 2wy, 2x + BZ,wyzy,x,

—2X'D,X)”'X'D(n)’ D 'Dy,
where u? is the T-vector whose rth element is u>.

(44) & = BZ w2y, x, = (X'Dlx)_]XID(”t)D(“r)sz(X'Dlx)alX'D(”:)“-

(45) &= B,3,wy,z5,x, =2(X'D,X)”'X'D(n,)’D,2D(3P? — 3P, + 1)u?,
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where u> is the T-vector whose ¢th element is u?.

(46) §6 = BlthZtZerr = - %(X,DlX)_ IX,D(nt):;Dl_ZDZZ'ﬁ'
(47) ¢ = B3, wyz.,x, = — (X'D,X) "' X' D(n,)*D; .
(48)

& + & = B2 ,w,,2,,x, + B, ,w,,z,,x,
= —X(X'D,X)"'X'D(n,)D(4,)D,X(X'D,X) ™' X' D(n,)*D{ 'D,u>.
(49) &= BZ,wy,z;,x, = (X'D,X)"'X'D(n)D(4?)X(X'D,X) ™' X' D(n,)u.
(50) £ = B2, wy,z),x,
= (X'D,X)™'X'D(n)D(u,)D,X(X'D,X) ™' X' D(n) D(w,) D,
X(X'D,X)”'X'D(n,)u.

Note that of the above eleven £’s, £, is a linear function of u, £, through £, are
quadratic functions of u, and the rest are cubic functions of u.

Next we will evaluate E££), for », » = 1,2, - - -+, 11 omitting the terms of the
order of n~3 and smaller. Some of the derivations are rather involved, but we will
only state the final expressions. We have

(51) E& ¢ = (X'Dx)™\.

(52) E&{s+ &+ &) =X(X'DX)'X' D1 -2D)X(X'D,X)"".
(53) E(% + &) + &) =3(X'D,X)"'X'D,(11 + 21)D,X(X'D,X) " ".
(54)  E&g, = (X'D\X)"'X'DyA +D,11'D, + D))D,X(X'D,X)"".

(55) E@ + &) = - (X'D,X)"'X'D?D,X(X'D,X)""
-Y(x'D\X)"'Xx'DAVD,DX(X'D,X)"".

(56) E& ¢ = (X'D,X)"'X'D(3P? - 3P, + )X(X'D,X)™".
(57) Et ¢ = —3(X'D,\X)"'Xx'D2x(X'D,X)"".

(58) E¢ ¢, = —=3(X'D,X)"'x'D(n)"'D,X(X'D,X)""
(59) Et (¢ + &) = —3(X'D,X)"'X'D,D,D;X(X'D,X)”"

- (X'D\X)"'X'D?D,X(X'D,X)”",
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where D5 = D[x/(X'D,X)”'X'D,1}.
(60) E{ts = (X'D,X)"'X'D(n)"'D,X(X'D,X)""
+2(X'D,X)"'x'D(n)"'D,D X(X'D,X)"".
(61) E&&i = (X'D,X)”'X'D,D,D:X(X'D,X) ™"
+(X'D,X)"'X'D}D X(X'D,X)""
+ (X'D,X)"'X'D,AD,X(X'D,X)"".

From (41) and (51)—(61), we finally obtain the mean squared error matrix MSE,
of B to the order of n~2 as

MSE, = (X'D,X)""
+3(x'D,X)"'x'D2X(X'D,X)""
+3(X'D,X)”' X' DAY D,X(X'D,X)""
-3(x'D,X)"'x'D?D,X(X'D,X)""
+3(X'D,X)"'X'D,AD,X(X'D,X)"

+ (X'D,X)"'X'D,D11'D,D X(X'D,X)""
(62 -2(X'D,X)"'x'D(n)"'D,X(X'D,X)”"
- (X'D,X)"'X'D,D,D,X(X'D,X)""
+4(X'D,X)"'X'D(n)"'D,DX(X'D,X)""
+2(X'D,X)"'X'D,D,D,X(X'D,X)”"
-2X'D,X)"'X'D, DAY D,X(X'D,X)""
-3(X'D\X)”'X'D,1'D,D,X(X'D,X)"".

One way to check the accuracy of the mean squared error formulas (34) and (62)
is to see if both formulas are reduced to the same expression when we assume
T = K, the case where the maximum likelihood and minimum chi-square estima-
tors are identical. Assuming X is invertible, both formulas become

MSE = X~ 'D7Y(x) ' +3X~'D D, *(x) !
(63)
+2X7'D(n)"'DN (X)) +1X T'D DLV DLDT (X)L

The approximate bias of the minimum chi-square estimator to the order of n~!,
denoted by BS,, can be easily obtained by taking the expectation of 34 _,¢, as

(64) BS, = (X'D,X)"'X'D,D,1 —1(X'D,X)”'X'D,1.
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6. Correction for bias. Ghosh and Subramanyam [1974] proved a general
theorem about the second-order efficiency of the maximum likelihood estimator in
the exponential family and applied it to a special case (n, = n, K = 2, and only the
intercept is unknown) of our model to show that the n~2-order mean squared error
of the maximum likelihood estimator after the bias to the order of n~! has been
corrected is smaller than the corresponding expression for Berkson’s estimator. We
will prove that this is also true for our model. The theorem of Ghosh and
Subramanyam cannot be directly applied to our model since they assume n, = n
for all ¢.

We define the bias-corrected maximum likelihood and minimum chi-square
estimators respectively as follows:

(65) B. = B —BS,(h)
and
(66) B. = B —BSy(B),

where BS, and BS, have been shown in equations (35) and (64) and the term within
the parenthesis indicates the value at which the bias is evaluated.

We will first derive the n~2-order mean squared error matrix of ,éc. Write (12) in
vector notation as

(67) B =By =v, + v, + vs.
Then we have
(68) B. — Bo=v, + (v; = Ev)) + v3 = [le(:é) — BS(Bo)]

since Ev, = BS,;(B,). Applying a Taylor expansion to the last bracketed term
above and omitting the terms that do not contribute to the n~2-order mean
squared error, we get

dBS,

W

Therefore, the n~2-order mean squared error matrix of Bc, denoted by CMSE,, is
given by

(69) B, — By=v, + (v, — Evy) + vy —

aBS, JBS,
(70) CMSE, = MSE, - BS, - BS| — E— 0,0 — Bowi =z

= (X'D,X)"" +X(X'D,X)"'X'Dy(4 + AA)D,X(X'D,X)"".

For the derivation of the second equality above, the reader is referred to Amemiya
[1979].

The n~%-order mean squared error matrix of B;, denoted by CMSE,, can be
similarly obtained as

aBS aBS;
—2 .0, — Ev,v
aBI 1“1 1¥1 aB

= (X'D,X)"" + (X'D,X)™'X'Dy(3I — Dy + A)D,X(X'D,X)"".

(71) CMSE, = MSE, — BS, - BS; —
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From (70) and (71), we have
(72)

CMSE, — CMSE, = (X'D,X)™'X'D,(34 +3I — D, — AA)D,X(X'D,X)"".
The above is semi-positive definite because
(73) 34+ -D,—LAdA =34 —AA) +i(A -1+ (4 -1)
and matrices A — A4 and (4 — I) * (A — I) are semipositive definite. The last
statement follows immediately once one observes that the Hadamard product
A * B is a principal submatrix of the Kronecher product 4 ® B. (See Minc and
Marcus [1964] page 120.)

Consider another estimator obtained by correcting the maximum likelihood

estimator in such a way that it has the same bias to the order of n~! as the
minimum chi-square estimator. That is to say, define

(74) Bs = B —BS,(B) + BS,(B).
If we denote its n~2-order mean squared error matrix by DMSE,, we can easily
show

3BS,

JBS,
(75) DMSE, = CMSE, + BS, BS; + E—z2 o0} + Evpoj— B’.

Therefore, from (71), (72), and (75), we get
(76)

DMSE, = MSE, — (X'D,X)™'X'D,(34 +3I — D, — ;AA)D,X(X'D,X)"",

which shows that 8, has a smaller n~%-order mean squared error matrix than
Berkson’s minimum chi-square estimator.

7. Numerical evaluation. We have evaluated MSE, given in (34) and MSE,
given in (62) numerically by choosing various values for the independent variables
and the parameters. In all the examples we have computed, both reported and
unreported below, each diagonal element of MSE, turned out to be larger than the
corresponding diagonal element of MSE,. However, we have been unable to prove
or disprove that MSE, — MSE, is semipositive definite. For the same examples, we
have also computed DMSE, given in (76), which we have theoretically proved to be
smaller than MSE,. In the following tables, we report the values of the diagonal
elements of MSE,, MSE,, and DMSE,. The last value always appears within a
parenthesis. We have also computed CMSE, but will not report its values. It has
turned out that in a majority of cases CMSE, lies between MSE, and MSE, but in
a few cases it is larger than MSE, or smaller than DMSE,.

We will first evaluate these matrices in the same examples for which Berkson
[1955] calculated the exact mean squared errors. The characteristics of Berkson’s
four examples are as follows: Throughout the four examples we have B’ =
(0, 0.08473) and n, = 10 for all ¢.
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ExAMPLE 1.
e 4]
P'= (03, 05 0.7)
EXAMPLE 2.
X’ =[ 1 1 1 ]
—0.52297 0.47854 1.48006
P'= (0391, 06, 0.778).
ExaMPLE 3.
X’=[(l) } 5.00155]
P’ =(05, 0.7, 0.845).
ExXAMPLE 4.

x =1 1 1
0.63827 1.63614 2.63309

P'=(0632, 08, 0.903).

Table 1 gives the exact mean squared errors calculated by Berkson and the
approximate mean squared errors calculated according to the formulas (34) and
(62) in each of the four examples described above. The mean squared errors of the
bias-corrected maximum likelihood estimator defined in (74) are given within
parentheses.

Table 1
Exact and approximate mean squared errors in Berkson’s four examples
Estimation of 3, Estimation of 3,
MLE MIN x2 MLE MIN x?2
Example 1 Exact .187 154 322 271
Approx. 175 .162 .301 .286
(.162) (-285)
Example 2 Exact 230 .206 341 272
Approx. 220 .208 315 295
(.208) (-293)
Example 3 Exact .430 394 .404 274
Approx. .408 .391 37 336
(:391) (:330)
Example 4 Exact 1.103 689 466 .208
Approx. 1.078 .983 532 447

(974) (:428)
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An agreement between the exact and the approximate mean squared errors in
Table 1 is satisfactory. From (6) and (7) we know that the difference between the
exact and the approximate mean squared errors is equal to the sum of M — M*
and N — N*, both of which decrease as n, increases. M — M* decreases at the rate
approximately proportional to [#,P,(1 — P,)]", whereas N — N* decreases at a
less predictable way but eventually at a faster rate. The results in Table 1 are
encouraging when we consider the fact that n,P(1 — P,) in these examples is at
most 2.5.

The advantage of the approximate formulas (34) and (62) is that they can be
readily computed in many models for which the evaluation of the exact mean
squared errors would be extremely difficult. We have computed them for many
examples, of which we will report here four artificially created examples and one
example taken from econometric applications. The results of the other examples
can be found in Amemiya [1979].

In the next four examples we fix

(=1 1 1T 1 1 1
X[123456]

and vary B as follows:

EXAMPLE 5.

B’ = (—0.5677, 0.1622)

P’ = (.04, 0.4395, 0.4797, 0.5203, 0.5605, 0.6).
EXAMPLE 6.

B’ = (—1.9408, 0.5545)

P’ = (0.2, 0.3033, 0.4311, 0.5689, 0.6967, 0.8).
ExaMPLE 7.

B’ = (0.2093, 0.1962)

P’ = (0.6, 0.6460, 0.6895, 0.7299, 0.7668, 0.8).
ExAMPLE 8.

B’ = (—1.5825,0.1962)
P’ = (0.2, 0.2332, 0.2701, 0.3105, 0.3540, 0.4).

In these examples, 8’s are chosen to produce different patterns of the spread of
probabilities. We fix n, = 1 for all ¢ and give the diagonal elements of (X’'D,X)™!
and MSE — (X’D,X)~! separately in Table 2. The mean squared errors of the two
estimators differ only in the second term and the sign of the difference is
independent of n, as long as n, is the same for all ¢. If n, = n for all ¢, one should
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compute the mean squared error matrix by the formula n~'(X'DX)"!+
n~MSE — (X'D,;X)™"]. For example, if n = 10, one computes the mean squared
error of the maximum likelihood estimator of 8, to be 0.3573 + 0.03329 = 0.39059.
In the results of Table 2, the minimum chi-square estimator comes out the winner
in all the eight cases. In this and the subsequent tables, the diagonal elements of
DMSE, are given within the parentheses.

TABLE 2
Approximate mean squared errors
in four artificial examples with two regressors

Estimation of 8, Estimation of 3,

MLE MIN x2 MLE MIN xz
Example 5 Order of n~! 3.573 0.236
n-2 3.329 0.233
(-1117)  -1004 (-0053) —0.045
Example 6 n! 4.797 0.325
n—2 7.786 0.571
(—3930) -1825 (-0253) —0.098
Example 7 n~! 3912 0.290
n=2 4.099 0.379
(-2.070) —1333 (—0221) —0.105
Example 8 n! 4.854 0.290
n—2 7.317 0.379
(—4351) —1916 (—0200) —0.105
We also did similar calculations for
111 1 1 1
X = >
L1 4 9 16 25 36
B! 1 1 1 1 1
X' =1 2 3 4 5 6 |,
11 -1 1 -1 1 -1
and
(1 1 1 1 1 1
X' =1 2 3 4 5 6|
|11 4 9 16 25 36

and the results were similar to those in Table 2, the minimum chi-square estimator
having a smaller mean squared error in every case.
The next example is taken from an econometric application. Parameter values

are set at actually estimated values.
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ExaMpPLE 9. Adopted from Theil ([1971] page 635)
», =1 positive production plan revision
=0 negative revision
X, =1
x,, =1 negative surprise on orders received
= positive surprise

x3, =1 inventories are considered too large

=0 too small
1 1 1 1
X'=l0 0 1 1
0 1 0 1

n, =89, n, =82, n,=43,n, = 164
B’ =(1.30, —2.23, —0.98)
P’ =(0.7858, 0.5793, 0.2829, 0.1290).

TABLE 3
Approximate mean squared errors in Theil’s example

MLE MIN 2

Estimation of 83, 0.05291 0.05218
(0.05211)

Estimation of 8, 0.06919 0.06826
(0.06807)

Estimation of 8, 0.07113 0.07003
(0.06996)

Thus, in this actual econometric example, the minimum chi-square estimator has a
smaller mean squared error in all the cases. We obtained similar results with
another econometric example adopted from Amemiya and Nold [1975].

In each of the examples both reported and unreported, we also computed the
approximate bias and its square for the two estimators according to the formulas
(35) and (63). The minimum chi-square estimator usually had a smaller squared
bias than the maximum likelihood estimator but with less regularity than in the
comparison of the mean squared errors. At any rate, the squared bias was much
smaller than the mean squared error in every case, which implies that the estimator
with a smaller mean squared error always had a smaller variance (to the order of
n~?) as well. As for the signs of biases, there was no significant pattern to speak of.
This fact does not contradict the results of Section 6 since the bias is evaluated at
the value of the estimator in defining the bias-corrected estimator.
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8. Conclusions. In this paper we have derived the mean squared error matrices
to the order of n~2 for the maximum likelihood and Berkson’s minimum chi-square
estimator in the dichotomous logit regression model. We have numerically
evaluated the matrices in many examples both real and artificial and found that in
all of the cases the minimum chi-square estimator has a smaller mean squared
error. Only a few of the results are reported here. See Amemiya [1979] for the other
results. This confirms the results obtained by Berkson [1955] in a few examples for
which he was able to calculate the exact mean squared errors of the two estimators.
The usefulness of our approximate formulas lies in that they can be computed at a
minimal computational cost. However, we have not been able to show theoretically
that the n~2-order mean squared error of the minimum chi-square estimator is
smaller than that of the maximum likelihood estimator in general.

We have also derived the n~2-order mean squared error of the maximum
likelihood estimator after correcting its bias in such a way that it has the same
n~l-order bias as the minimum chi-square estimator and showed that it is smaller
than that of the minimum chi-square estimator. However, the numerical evaluation
in many examples, both reported and unreported in this paper, show that the
difference in the mean squared error between the minimum chi-square estimator
and the bias-corrected maximum likelihood estimator is never significantly large:
i.e., not large enough to negate the computational advantage of the minimum
chi-square estimator.

Berkson [1957] computed the exact mean squared errors of the maximum
likelihood and the minimum probit chi-square estimator in the examples analogous
to those considered by Berkson [1955] and showed that the superiority of the
minimum chi-square estimator holds in the probit models as well. We have not
derived the n~2-order mean squared errors of the probit estimators. The formulas
would be more lengthy than the analogous formulas for the logit estimators, though
they could be obtained by the same techniques.

Acknowledgments. The author is indebted to Tom Rothenberg for valuable
comments and to Jim Powell and Paul Hunt for carrying out the computation in
Section 7.
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