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PARAMETER ESTIMATION OF AUTOREGRESSIVE
INTEGRATED PROCESSES BY LEAST SQUARES

By HIRONAO KAWASHIMA
Keio University, Yokohama

This paper deals with the asymptotic properties of so-called autoregressive
integrated moving average processes. Moreover, it is shown that least squares
estimates of the parameters of a Gaussian autoregressive integrated process are
consistent and also best asymptotically normal.

1. Imtroduction. In their well known book, Box and Jenkins (1976) give
autoregressive integrated moving average processes as mathematical models for
prediction and control of nonstationary time series. The integrated process can be
described by a constant parameter linear stochastic difference equation in which
some of the characteristic roots are exactly equal to 1 in absolute value and other
moduli of the roots are less than 1. Mann and Wald (1943) first considered the
properties of least squares estimates of parameters in a stochastic difference
equation when its characteristic roots are all less than 1 in absolute value or the
case of stationary autoregressive process. Anderson (1959), White (1958), Rubin
(1950) handled the first order difference equation with a root greater than 1 in
absolute value. Recently, Stigum (1974, 1976) studied the case of higher order
equations in which some of the moduli of the characteristic roots are greater than
1. However, the case of integrated process is omitted from their considerations and
the limit distribution of least squares estimates of parameters were not handled
even in the lower order case.

This paper deals with the asymptotic behavior of the integrated processes and
especially for Gaussian autoregressive integrated processes, we show that least
squares estimates of the parameters are consistent and best asymptotically normal.
The basic propositions essential for the derivation are the following: first the
parameters of integrated processes have special structure (see Lemma 1); secondly
an integrated process has an exact representation by the convolution of the
stationary process obtained from taking the difference of the original process and
nonsummable series (see Lemma 2); thirdly a sample covariance function of the
process divided by some powers of the sample size, converges to a constant (see
Theorem 1). '

Two basic relations are proved in Section 2 and the asymptotic properties of the
process are discussed in Section 3. In Section 4, consistency and best asymptotic
normality of least squares estimates of the parameters of a Gaussian autoregressive
integrated process are proved.
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2. Preliminaries. We consider a discrete parameter, real valued random pro-
cess x(?) = x(t, w), weQ(P), where @ is the basic probability space with the
probability measure P. Let B be a shift operator defined by Bx() = x(t — 1). The
pth difference of x(¢) is given by

Vix(#) = x(¢) — x(¢ — 1) = (1 — B)x(¢),
VPx(t) = V27 Ix(f) — V77 Ix(¢ — 1) = (1 — BYx(¢).

A nonstationary discrete parameter random process x(?) is called an autoregressive
integrated process of order (n,p), if the pth difference of x(f) is a stationary
autoregressive process of order n, that is

1) 1-aB—---- —aB")Vx(t)=e(t), t=012,---,
where e(?) is a zero mean white noise process with a common variance o2 and the
roots of (1 — @B — - - - —a,B") = 0 all exist outside the unit circle. (Note that
the characteristic polynomial of (1) is given by B™" — g,B~ "D — ... —g )
Expanding (1 — B)? by the powers of B and regrouping the coefficients of B/,
j=0,1,---,n+ p, we see that x(¢) satisfies the following stochastic difference
equation.

) (1-aB— - —a,,,B"*?)x()=e(t), t=0,1,2, - - - .

Now suppose we have observed the sample path of x(7), where orders (n, p) are
assumed to be known, from time 0 to N + n + p — 1. If we define a matrix X,
vectors yy, @, €, as given below, then (2) can be written as

3) Yy = Xya + ey
where
x(n + p) x(n+p—1) ,t e, x(0)
x(n+p+N-1) x(n+p+N-2) ,---, x(N-1)
E[XN(”"'P -1, ’XN(O)]
a; e(n + p)
a= ey = .
Qpip en+p+N-1)

On the other hand, the sequence V?x(¢),p <t < N + n + p — 1, can be calculated
from the sequence x(¢), 0 <¢ < N + n + p — 1, and hence we rewrite (1) to the
following (4) by using the matrix VX, and vectors Vy,, a.

4 Vyy = VXya + ey
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where

( V2x(n + p)

Vyy = ’
([ V’x(n+p+ N —1)

Vex(n+p—1) sttt V2x(p)

VXy = : )
LV"x(n+p.+N—2) yorry, V(p+ N-=-1)
‘a

a= .

\a"

As we can see from the definitions of a and a, they are related to each other and
the next lemma gives the exact relationship between the two parameter vectors.

LeMMA 1. Let x(¢¥) be an autoregressive inteégrated process of order (n, p). Then
we have

(%) a=Da— Qd

where

D=[dPd- -, P""d] ((n + p) X n matrix),

d=|“?|((n + p) X 1vector),

...........

P= ((n + p) X (n + p) matrix),

and d is the coefficient of B’ when expanding (1 — BY, ie., (1 — BY =d, + d,B
+ -+ +d,B".
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ProoF. Noting the definition of d and the property that P"*? = @ (a null
matrix) holds, we can show (5) immediately.

EXAMPLE. Whenp =2andn=2,wehavea, =a;, +2, 00 = —2a,+a,— 1,
a; = a; — 2a,, a, = a,, which is equivalent to
1 0 -2
=2 1 _ 1
a 1 a, + 2 a, ol
0 1 0

Next statement can be proved directly from Lemma 1 and the definition of
V2x(¥).

COROLLARY 1. Let x(f) be an autoregressive integrated process of order (n, p).
Suppose x(t) are observed from time 0 to time N + n + p — 1 so that we can define
yn by (3) and Vyy by (4) simultaneously. Then we have

(6) VXy = XyD, Vyy=yy+ Xy0d.
The least squares estimate a, of a based on y, and X, is given by &, =
(X%Xy)"'X\yy and the estimated error is given by a@ — a@y = — (X5 Xy) ' Xyey.

Therefore, in order to evaluate the asymptotic properties of & — &,, we must know
the behavior of x(¢r) when ¢ approaches to infinity, which we shall examine in the
following section.

3. Asymptotic properties of integrated processes. A random process x(?) is
called an autoregressive integrated moving average process of order (n, p, m), if the
pth difference of x(¢) satisfies

A(B)V?x(t) = B(B)e(?),
@) AB)=1—-aB—+-- —a,B"n>0,a,+0,
B(B)=1-bB—--- —b,B", m >0,b,, # 0,
where e(f) is a zero mean white noise process with a variance o2, the roots of
A(B) = 0, B(B) = 0 all exist outside the unit circle and two polynomials have no
common factor. In this section we evaluate the asymptotic properties of integrated
processes of the form (7). For this purpose, we give an exact representation of x(¢)
in a slightly general form.

LEMMA 2. Let z(t) be an arbitrary finite valued sequence defined over 0 < t < oo.
Then, for any fixed q, 0 ¥ q < o0, z(¢) has a unique representation given by

(3) z(t) = 2}:% ﬁuV"Z(t -J)+ 2?:('1)&'ij(j)’ t2gq,
where
1 (G+qg-2)

f1= : . >l g>1,
7T @ -l G- / 1
gt prr 1

7
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Proor. First we note that, since V'z(f) = V"*1z(¢) + Vz(¢t — 1) is valid for all
r > 0 and any ¢ > r, the following equality holds.

) Vz(e) = 2D V(e — j) + Viz(r).

We shall prove the representation (8) by mathematical induction. If we substitute

r = 0 in (9), then we obtain the representation of z(¢) by V'z(¢) and z(0), that is
z(1) = Zi2pViz(z — j) + z(0).

On the other hand, it is easy to show j;' =1,,=12---,tand gj = 1. Hence,

(8) holds for g = 1. Now suppose (8) is valid for some g. Substituting (9) to (8) for
r = g and changing the order of the summation, we obtain

2(f) = Y (oo fL )V 2(e = ) + {(Z5284%1)Ve(g) + 29258/ V2()) ).

t!
From elementary calculations we have Zi§ f%, = m =g/,
i + q)! .
oSl = (Jq!j?) = f44". This shows that (8) holds for ¢ + 1.
In the case of the integrated process defined by (7), we are only interested in the
representation when ¢ = p in Lemma 2, that is

(10) x(t) = iR VPx(t — j) + 2825, gj’ij(j) =Y, + 2,

Note that Y, is defined by the convolution of the stationary process V?x(f) and the
nonsummable sequence f7, ;.

If the process x(¢) is Gaussian, then V?x(?) is a strictly stationary process with
EV?x(t) = 0and E V?x(t + 7)VPx(t) = R(7). Since the spectral density function of
an autoregressive moving average process is a rational function of e~ ™,
lim,_, R(7) = 0 holds and this implies that V?x(¢) is ergodic (see Gikhman and
Skorohod (1969) page 133). Therefore, for each we(2, we can define the quantity
8N(k> w) by

(11) Sy(k, @) = = ‘ NAYPx(j + k, @)VPx(jy @) — R(K).

Next lemma shows that the asymptotic behavior of 8,(k, w) is uniform in k.

LemMA 3. Let VPx(t, w) be a Gaussian stationary autoregressive moving average
process. Then, for any sequence {ky}

limy_,  Oy(ky, w) =0  wp. 1,

where 8y (ky, w) is given by (11).
ProOF. We shall show that the inequality
E3%_ |6n(ky, w)]* <

holds independent of the choice of the sequence {ky}. Since V?x(¢) is Gaussian,

E|8y(ky, ‘*’)lz = 2.-o J-o {R(’ j)z + R(i —j+ ky)R(i —j — kN)}
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for any ky. In view of the relation |R(i)| < R(0), it follows that
R(O . ..
(1D Bl F < RDSLZNIRG - )+ RG =) + Kl

for any k. The assumption that V?x(¢r) is an autoregressive moving average
process implies that there exist constants C and p such that

|R(2)| < CpM,
where 0 < p < 1. If ky, > 0, then define / by / = i + ky and if k), < 0, then define
I by Il = j — ky. In both cases the inequality (12) becomes

CR(0) CRO)
N?

E|8N(kN, w)|2 21_0 EN lplx—Jl + zN l+|kN|2N 1 p|1_m|}

2CR(0) i
< 2 (Z2 SN} <C,

From this inequality and the assumption that the process V?x(¢) is Gaussian, we
can show that for any sequence {ky}, limy_, 8y(ky, @) = 0 holds w.p. 1. This can
be shown by following the proof of the law of large numbers for weakly stationary
processes (see for example Doob (1953), Theorem 6.2).

LEMMA 4. Let x(t) be an autoregressive integrated moving average process of
order (n, p, m) and suppose 2% _, 1E|x(j)* < oo holds. Then, for any fixed | > p, we
have

SENTZE S g V()P < C(@N¥Y, w1,

where C(w) is a constant which depends only on wefl.
Proor. Define C,_, by C,_; = 2max{|dy|, - - - , |d,_;|}. Then we have
SN S gt V()] < G SR TISIISE I glg X ()] Ix ()|
< GLD(YERN (248’

where D(w) = maxog ;¢ ,—1{|x(U, @)[*}. From Z220E|x(j)]* < o0, D(w)’ is finite
for each weQ, w.p. 1. On the other hand, we see that

k! k!
p—1,k — $p-1
21-031 .I'oj! (k —))! <» (k= -1

holds for any & > 1 > p. Thus, we obtain
- |2 _
B0 g V(D] < PG D@V T k(K = 1) - - - (k- p +2))?

< C(w)N2e=D+1,

This proves the lemma.
Now we are ready to prove
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THEOREM 1. Let x(t) be a Gaussian autoregressive integrated moving average
process of order (n, p, m). If 21__0E|x(j)|2 < oo, then for any T we have
(13) Lim,_ Xy(I + T)Xy(I)N ~@*D = (7 ™| H(e™)f(N)d\ = R(7), wp. 1,
where
(i) f(\) is the spectral density function of V?x(t) and

B(e i)\) 2
A(e™™ |’
Gi) xy(1) is @ N X 1 vector defined by xy(I) = [x(I), x(I + 1), - - -, x(I + N =

D}
(iii) H(e™) is defined by H(e™) = lim.y_ o Hy(e™) in LY_, ., where Hy(e™) =

=2 ohn()e™ and
(14) () = [

fA) = '2;

ffeaN 7%, 0<j<N-1,
0, Jj=>N,j<o.

Proor. Since we have xy(I + Dxy(l) = SN 'Visr + Zot )Xy + Z)),
where Y, and Z, are defined in (10), we shall first evaluate the asymptotic behavior
of SNy, , . Y,. If we define the values of V7x(j) by V?x(j) = 0 for j <p, then
we have

EI;C+.I\,,_]Yk+,Yk = k-ozN-'_lfp+1Vpx(k +i+ _1)21-0 lfp+lvp'x(k +1- 1)

where N, =N+ [+ 7—p, N,= N + [ — p. By interchanging the order of the
summation and using the yariable dy(k, w) defined by (11), we obtain

SN Y Y = SN 2N SN[ R(T —J + D) + y(r —j + )]
=4, + A4,
In view of the spectral representation of R(7), we can rewrite the term 4, as
Ay = NJ7eM3I05" 1M SN s 1™V A

1 (N+p-—1!
pl (N1
+ —]Ié, where K is a constant. From the definition of hy(j) we can show im-
mediately that limy_, . (Z5%olAy+,(J) — An( _])|2)2 = 0 holds for any v > 0. There-
fore, there exists a function H(e™) in L?_, ,, such that limy_, ., >— 2 I™ | Hy(e™) —

H(e™)]’d\ = 0 and this implies limy_, /™ .| Hy(e™) — H(e"‘)l?(}\)d}\ 0. Conse-
quently, we have

Moreover, since )_o' %) = , we have ||hy|l; = Z;2oav()) = —

limy_ AN ~@*D = 7 M| H(e™)Pf(N)dA = R(r), wop. 1.
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On the other hand, let {k¥} be a sequence defined by

|8n (K (), w)| = MaXogigN,—1,0< <N, —1

(15) Ek_OV”x(N +1+7—j—k)Vx(N+1—i—k)

_R(T_j+i),N=1,2>39"',

for each fixed weQ,, @, C Q, P(R,) = 1. Since V?x(j) = 0 for j < p, we can rewrite
(15) as

0w (k¥ (w), w)| = WFEIZ‘-B'V”JC(N + ky — k)VPx(N — k) — R(k})|,

where N*=min{N +/+7—j*—p,N+1[—i*—p} and kf(w) =7 —j* +
i*. The result of Lemma 3 tells us that for any positive number &, we can find a
constant M = M(e, w) such that the inequality |8y(ky, w)| <&, (N > M), holds
whenever we,, 2, C @, P(,) = 1. Therefore, if N* > M, then we obtain
|6y (k¥(w), w)] < & and if N* < M, then we get |y(k¥(w), )| <
MN ~'max; ., < /|8,(k%(w), w)|. Moreover, by following the procedures of Lemma
3 we can easily show that

o E{SM18,(k, o)k ~0+2)/2)? < oo

holds for any fixed B8, 0 < 8 < 1/2. Thus, for any we;, @5 C @, P(2;) = 1, and
k¥ (w), IkN(w)I <N+ 7+ 1—p, we have MN 'max,, uy|8,(k}(w), )| <
Cp(W)NB~ @, where Cy(w) is a finite constant which depends only on w and M.
Noting that the set 2, can be determined independent of the choice of the sequence
{ky}, we can define a sequence {k#%(w*)} for each w*e N3_,Q;, P(N3.,2) =1,
and with this sequence we have

18y (k2 (w*), &*)] < Cy(w*)(e + N8-(2)),0 < B < 1/2,
for any N > M(e, w*). Therefore, we obtain
AN TCPD < 32 ol ()] ol ()| (K (*), @*)] < Cw*)(e + NA(2)).
This shows that lim,_,  A4,N ~@*D = 0, w.p. 1. Thus, we have
limy, oo (Z5 " Yiea . YN =%+ = [7 ™| H(e™)f(N)dN = R(r), w.p. 1.
The result of Lemma 4 and this equality imply that
limy_,  (S¢N Y, , Z)N~@*D =0, wp. Ll

Hence we have lim,_, _x\(/ + Dx()N ~®*D = R(r), wp. 1.
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Now define a (k + 1) X (k + 1) matrix R(k) by
R©), RQ@), .- , Rk —1), Rk
R(k) = : :

R(k), R(k—1), ------ . R,  R@©)
Then, we obtain

THEOREM 2. For any fixed k > 0, we have
det R(k) # 0.

Proor. If det Iﬁ(k) = 0 holds, then there exists a nontrivial (k + 1) X 1 vector
o = [ug, u;, - - -, w] such that R(k)u = 0. Without restricting the generality, we
may assume that u, = 1. Since R(k) is a symmetric matrix, R(k)u = 0 implies that
(16) RO =uRt-1)+uwRt—-2)+ -+ +uR(t - k)
holds for any ¢ > 0 with the initial values R(k), R(k — 1), - - - , R(0). From the
existence and the uniqueness theorems of the linear difference equation (16) and
from the spectral representation (13) of R(7), we see that R(r) is the covariance

function of some autoregressive process of order k (see Doob (1953) page 505).
Hence, we have

2 2

. o 1
H(EeMPHA) = 2| ———|,  ae],
HEH) = 5t =
where U(e™) =1 — uje™™ — - . - —y.e ™ and o, is a nonzero constant. Since

ﬁ(’r) is the covariance function of some stationary process, the zero points of
U(1/z), z = re™, must lie inside the unit disk. Noting that f(A) # 0 for —7 < A <
m, we obtain

2

IH(ei)\)|2=g_f_ A(e—i}‘) _ﬁ A(e_i}‘)
o2 | B(e~™)U(e™™) 2| V(e™™)
2| AEeM ] A .
= A ACD [ ey,
o’ | V(e™)
where V(e ™) =1- pe ™ — . .. — Oy e AR J(e™) =A(e”P),

P(e™) = V(e ™). Without restricting the generality, we may assume that the two
polynomials A(z), I7(z) have no common factor.

Now since Hy(e™) belongs to LZ_, ., and hy(j) = 0, j < 0 holds for any N,
Hy(z) belongs to the Hardy class H? in |z| < 1 for any N (see Duren (1970) page
38). From the completeness of the space H?2 H(z) also belongs to H?in |z| < 1. In
view of the canonical factorization theorem of H2, we obtain

H(z) = C(2)S8(2) Sx(2)
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where
(i) C(z) is the outerfunction of H(z) given by

C@) = exp| 37 /7, S loglH(e Ml |

(ii) S,(2) is the Blaschke product of H(z) given by

|2k| Iy — 2

S,(z) = 2'TIL.
(%) Yz 1 - zkz
where / is a nonnegative integer and {z,} are the zero points of H(z) in
|z] < 1 and z, # O for all k;
(iii) S,(z) is the singular inner function of H(z) given by

e + z
Sy(z) = exp ILem dp(?) |,

where pu(?) is a bounded nondecreasing singular function (p'(¢) = 0, a.e.).
If we write S,(2)S,(z) = z'P(z), then P(z) is analytic in |z] < 1 and satisfies
P(0) # 0. This is because the sequence {z,} satisfies z, # O for all k and S,(z) does
not vanish inside the unit disk. Thus, P(z) possesses the Taylor expansion P(z) =

=52.0p,2’ with py # 0. Noting that C(2) is also analytic, we have

H(z) = 3Z2.61(j)2) = 2'C(2)P(2) = 2'252 062/ 2 op2) =2 5% o2,
and if we compare the /th power of z, then we obtain A(/) = ry = c,p,. Since C(z)
is an outerfunction and |H(e™)| = |[H(e™)| holds a.e. A, we obtain
fi\( ei}‘)
I?( eik)
Noting that the zeros of A(z) and 17(2) all exist outside the unit disk and by
Jensen’s formula (see Ahlfors (1966) page 206) we obtain

40
V(O)

0,

1
¢o = C(0) = exp[ 27/

4!

17 = exp[log ] — 0.

On the other hand, since we have A(j) = —2—7-7— J™  H(e™e ™dA,

. 1 . i i 1
O = b lO)] < (551 [H(E™) = Hyle™)fadd
holds by Parseval’s relation. Thus, we see that A(j) = lim,_, . hy(/) holds for any j
and in particular for j = /, we have

for _ L1 (+p=1
(18)  h(1) = limy_,, 70 = limy NP = =0,

from (14). Consequently, from the relations (17) and (18), we see that
0=h(l)=pyco# 0
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holds and this leads to a contradiction. Hence, we see that there is no nonzero
vector u such that R(k)u = 0 for any fixed k£ > 0.

4. Asymptotic properties of least squares estimates. In view of Lemma 1 and
Corollary 1, we shall show in the next theorem that & — @&, can be approximated
by the corresponding estimates calculated from VZx(z).

THEOREM 3. Let x(t) be a Gaussian autoregressive integrated process of order

(n, p). If Z220E|x(j)* < oo, then we have
limy., . [[N*(a — dy) — N2D(a — 4y)]| =0,  w.p. 1,

where ay = (VX3 VX)) 'V X Vyy.

PrOOF. From the relation (5), we obtain

a —dy = D(a— ay) — (a&y + Qd — Da,)
by adding and subtracting the term Da,. Noting the relation (6), we get
(ay + Qd — Diy) = (X3 Xy) "' X;Vyy — D(VX[VXy) ™ 'VX, Vyy
= (XI(IXN)_IXJ(IINV)’N’

where I, = (Ey — VX (VX% VX))~ 'VX}). If we denote the Euclidean norm of a

vector x by ||x|| and define the matrix norm of 4 by ||4| = (rdA4 ')%, then we have

X; Xy ) X
N|

lléy + Qd — Dédy|| < ”(W I(Iy Vyy )N = @P+ D72

1
X . Xy\71)? 1
< {"(N—lﬁ) } Iy Vyn)N ~2 N 2.

Since Iy isa N X N idempotent matrix and V”x(?) is an ergodic stationary process,
we have

j=n+p

1
. 1 . 1 ntp— ~12)\2 1
iy (VYN H) < limy_ 20557 792 ()F) = RO

Thus, we can show the existence of a finite constant C(w) which only depends on w,
wef?, such that
! A l
IN(a — &y) — N2D(a — ay)|| < C(@)tr{R(n + p — 1)"'}ZR(0)iN 7+,
This shows that the statement of the theorem holds.
We are now ready to prove

THEOREM 4. Let x(t) be a Gaussian autoregressive integrated process of order
(n, p). If ZE20E|x(J)P < oo, then we have

limy_ dy = a, w.p. 1,

that is, &, is a strongly consistent estimate of a.
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ProoF. From Theorem 3, we have ||[(a@ — @y) — D(a — ay)|| < K(w)N 72, w.p.
1, where K(w) is a finite constant which only depends on w, wef2. On the other hand
the estimated error of 4, = (VX3 VXy) 'VX}Vy, is given by

VX,V X, )—l VXey

N N

Since V?x(t) is ergodic, we see that lim,_, [|a — 4| = O, w.p. 1. These two facts
show that

(3 =) = = (VXX VXiey = - (

limy_ lléy —a| =0, w.p. 1.
As a direct consequence of Theorem 3, we have

THEOREM 5. Let x(t) be a Gaussian autoregressive integrated process of order
(n,p). If Ef:olE |x(J)> < oo, then the least squares estimate &, of a is a best
asymptotically normal estimate, namely

Ni(a — &) — ®(0, 6°DT;'D’) in law as N — o0.

where
R(0), R(), .- , R(n-1))
R(1), RO, -~ , R(n-2)
T, =
R(n—-2), R(n-3), ------ , R(1)
R(n—-1), R(n-2), ------ , R(0)

and R(7) = EV?x(t + 7)VPx(?).

ProOF. From Theorem 4, N %(a — @y) converges to N %D(a —a,) wp. 1. On
the other hand N %(a — 4y) converges in law to a zero mean normal random
variable with covariance matrix oI, ! (see Whittle (1952)). Therefore, N i(a— @ )
converges in law to a zero mean normal random variable with covariance matrix
o’DT; 'D’. Since 4, is an asymptotically minimal variance estimate of the parame-
ter a and in view of the relation (5), we see that @, is a best asymptotically normal
estimate of a.
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