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MINIMAX ESTIMATION OF LOCATION PARAMETERS FOR
SPHERICALLY SYMMETRIC DISTRIBUTIONS
WITH CONCAVE LOSS!

BY ANN COHEN BRANDWEIN AND WILLIAM E. STRAWDERMAN
The City University of New York and Rutgers University

For p > 4 and one observation X on a p-dimensional spherically symmet-
ric distribution, minimax estimators of § whose risks are smaller than the risk of
X (the best invariant estimator) are found when the loss is a nondecreasing
concave function of quadratic loss. For n observations X, X,, - - - , X,,, we
have classes of minimax estimators which are better than the usual procedures,
such as the best invariant estimator, X, or a maximum likelihood estimator.

1. Introduction. Since Stein [9] and Brown [5] proved the inadmissibility of
the best invariant estimator of the mean vector in 3 or more dimensions, many
classes of minimax estimators which are better than the best invariant estimator
have been found for quadratic loss and general quadratic loss. (See Brandwein and
Strawderman [4] for a discussion of these results.) However, for other loss func-
tions, little is known about improving on the best invariant estimator even for the
multivariate normal distribution. (Berger [2] has some results for losses which are
polynomials in the coordinates of (§ — #)). Here we provide minimax estimators
for the mean of a spherically symmetric distribution for the following loss function:

L(8,8)=fI5 - 61
where f is a nondecreasing concave function. The risk of any estimator § is
E,L(, 6). An estimator 8, is better than another estimator §,, if it has a smaller
(<) risk for all 8 (the risk of §; must dominate the risk of §,) and strictly smaller
for some 4.

Given X, one observation on a spherically symmetric distribution about 8, we
find classes of minimax estimators with respect to any nondecreasing concave loss
function of |8 — #||%. Specifically, when the loss is a nondecreasing concave
function of quadratic loss, e.g. |8 — 8|, for values of “a” given in Theorem 2.1,
8, (X)=(1—ar(IX|DIIX|I~>X is better (has smaller risk than X for all § and
strictly smaller for some #) than X provided (i) 0 <r(-) < 1; (i) r(J| X | is
nondecreasing; and (iii) 7(|| X ||*)/||X ||* is nonincreasing.

Of particular interest is the problem of estimating the mean of a p-dimensional
(p > 4) multivariate normal distribution for these nonquadratic loss functions. In
Section 3, we will find classes of minimax estimators for the normal mean when the
loss is f(||& — 0]*) = ||6 — 8|7 for 0 < ¢ < 2.

Received February 1978; revised January 1979.

'Research supported by National Science Foundation Grants MCS77-01654 and MCS75-23343-A01.
AMS 1970 subject classifications. Primary 62C99; secondary 62F10, 62H99.

Key words and phrases. Minimax estimation, spherically symmetric, multivariate, location parameter.

279

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Statistics. MK

www.jstor.org



280 ANN COHEN BRANDWEIN AND WILLIAM E. STRAWDERMAN

It is important to recognize that the results given in Section 2 apply to the
multiple observation case. When sampling n observations X, X,, - - -, X,,, the
problem becomes an estimation problem for one observation, since any spherically
symmetric, translation invariant estimator based on X, X,,- - -, X,, also has a
spherically symmetric distribution. This situation is discussed in Section 4.

2. Minimax estimators of location parameters with respect to concave functions
of quadratic loss. Consider X a p X 1 random vector having a spherically symmet-
ric distribution about 4. It is well known [8] that the random vector X is the best
invariant procedure and minimax with respect to the following loss:

(2.1) L(8,8) =116 - 81°)
where f(-) is a nondecreasing concave function and
18 = 61 = =2.,(8 — 6)"

The problem of finding minimax estimators which are better than X with respect
to the loss L(8, 8) given in (2.1) has been solved for the special case of quadratic
loss f(-), the identity (see Brandwein [3]). However, for a general concave f(-), such
results have not been given until now, as far as we know, even for the multivariate
normal distribution. In this section, we find classes of minimax estimators with
respect to loss (2.1), which are better than X for p > 4.

The estimators we look at are of the form

22) 8, (X) = (1 = (ar(1X17) /11X |17))X.
Using these estimators, Brandwein [3] proved the following theorem for
quadratic loss (i.e., f(¥) = u):

THEOREM A. If X has a p-dimensional (p > 4) spherically symmetric distribution
about 8, then the risk of 8, (X), given above by (2.2), is less than or equal to that of
X for all § with strict inequality for some 0 provided:

MDo<Kr()<1,

(@) (|| X|]?) is nondecreasing,

3) r(IX1»/|1X||? is nonincreasing,
and

(4) 0<a<@r-2/p)/EXI7?
where E denotes the expected value when 0 = 0.

To prove §, ,(X) is better than §, ,(X) = X under the conditions of this theorem,
Brandwein shows that if,

(23) B, (X) = ||IX = 0| - ||5, (X) — 0%,
then the difference in risks,
R(8,,,0) — R(8,,,, 0) = EgA, (X) > 0
for all # and strictly positive for # = 0. Specifically, if G is any cdf for
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R = ||X — ||, and conditions (1)-(4) of Theorem A hold, then
EA, (X) = [Ey(A, (X)|R) dG(R) > 0
for 0<a< (2(p—2)/p)/E;R™%
(24) and
E, (X) = [EyA, (X)IR) dG(R) >0
for 0<a < ((p—2)/p)/EGR™* and 0<r()<l1

where E; denotes the expected value when R has distribution function G. Since the
conditional distribution of X|(|| X — @||> = R?), (denoted by X|R), has a spherical
uniform distribution on the surface of the sphere (||X — 8|*> = R?), E(|| X~ =
ER ~2. This with (2.4) implies the theorem is true.

With these preliminary remarks given, we can now prove the following theorem.

THEOREM 2.1. If X has a p-dimensional (p > 4) spherically symmetric distribu-
tion about 9 then §, (X) given by (2.2), is better than X and is thus minimax with
respect to the concave loss f(||8 — 0|%) given by (2.1), provided:

@ANo<r(:)<],

(i) 7(||X||?) is nondecreasing,

@ii) (|| X|?)/||X||* is nonincreasing,

(iv) 0 < E4f'(R?) < oo,
and

(v) 0<a<@p—2/p)/E4yR?
where H(R) = [8f (S dG (S)/($f'(S?) dG (S), G is the cdf of R and Ey denotes
the expected value when R has cdf H. Moreover, if 0 <r(-)< 1 and 0 <a <
(p — 2)/p)/E4xR ™28, , is better than X.

PrROOF. We begin by showing that the difference in risks, between §, (X) = X
and §, ,(X) is nonnegative.
Clearly,

R(8,,,,0) — R(3,,,0) = Eof(IX — 8 — Egf(|5,, (X) — 8]
(2.5) = E[E[f(1X — 8|
- fIX = 81> —A, (X)X - 6] = R*]]

= Ef(R?) = Egf(R* - A, (X))
where A, (X) is given by (2.3).
Since f(+) is a nondecreasing concave function, for any points s and ¢, f(s) < f(¥)
+ f(5)(s — 9. Thus, f(R* = 4, (X)) <AR?) + f(R}(~A, (X)). This, together
with (2.5) implies that

R(8,,,, 0) — R(S,, ,, 0) > Ef (R*A, (X) = E[ f(R?)E,(4, (X)|R)]

(2.6) = [f'(R*)Ey(4,, (X)|R) dG (R)
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JE4(8,, (X)|R)f'(R?) dG(R)
J/f(R?)dG(R)
= Jf'(R?) dG(R) [E,(4,, (X)|R) dH(R)

where G is the cdf of R = || X — || and H(R) = [§f' (S dG(S) /[Tf (SHAG(S).
Moreover, since f{(-) is nondecreasing, f(R?) > 0 and thus H is a cdf by (iv).
We see from (2.4) that

@7 JEy(,, (X)|R) dH (R) > 0

ifp >4and 0 <a < 2(p —2)/p)E4R 2 Since [f'(R?) dG(R) > 0, combining
(2.7) we have R(8,, ,, 0) — R(S, ,,0) > 0for 0 <a < (2(p —2/p)/E4R ™%

‘Moreover, since by (2.4) [ EyA, (X)R)dH(R) >0 for 0<a < 2(p —
2)/p)EyR™~? and 0 <r(:) < 1,8, (X) is better than X for a in this interval,
provided [f'(R?) dG(R) > 0, which is so by (iv).

This completes the proof of the theorem.

Note that when r(-) = 1, our class of minimax estimators reduces to the Stein
class of estimators 8,(X) = (1 — (a/||X||»)X. In addition, as stated in [3] due to
the work of Baranchik [1], it is clear that §,"(X) = max(0, (1 — a/|| X|[%))X is also
minimax with respect to quadratic loss. Thus, it is clear from the proof of Theorem
2.1, that for the same a’s, §," will also be minimax with respect to the loss function

16— 01P).
3. Examples.

3.1.  Multivariate normal distribution. Of particular interest is the problem of
estimating the mean # of a multivariate normal distribution with covariance matrix
the identity (MVN(6, I)), for certain nondecreasing concave loss functions of
16 — 6> As is well known, the multivariate normal distribution is the only
spherically symmetric distribution with independent coordinates (see Kac [7]).

For quadratic loss, we know from the work of James and Stein [6] and Baranchik
[1], that &, (X) = (1 — a(r(| X |[®/| X ||*)X is minimax for 0 < @ < 2(p — 2) and
better than X for 0 < a < 2(p — 2) provided r(]| X ||?) is a nondecreasing function
and 0 < r(-) < 1. We will now show that for 0 < a < 2(p — 2)(1 — 3/p), and, in
addition to the other assumptions on r(-), r(|| X ||*)/|| X|* is nonincreasing, §, ,(X)
is better than X (and thus minimax) when the loss is |6 — #|| and p > 4. This will
be a simple application of Theorem 2.1. '

6 — 0> =6 — 0], f(u) = u? and it follows that f(R» =1/@2R). Also,
it is well known that when X ~ MVN(, I) that | X — (> = R? has a chi-square
distribution with p degrees of freedom (xpz). So, R has a density which we will
denote by g(R) and EyzR ~2 is given by

= [f'(R?) dG (R)

E,R™* = [PR%(R) dR /¥R "'g(R) dR

= EGR™3/E;R™\.
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Since R? ~x2

EyR™*=E,R™3/E;R " = r(” . 3)/21*("’ 5 1) =1/(p - 3).

Applying Theorem 2.1, §, ,(X) is better than X under conditions (i)-(iv) for
0 <a<2(p-2)1-—3/p), when the loss is ||§ — 8]
Similarly, with respect to the class of loss functions,

L(5,0)=1|6—-0|* for 0<g<2
we have EyjR™?=(p + q — 4)~". Therefore, §, (X) is better than X when
0<a<2(p-2)1-4-29)/p).
We have therefore exhibited a class of minimax estimators which are better than
X for the multivariate normal distribution tor losses other than quadratic loss.

3.2.  Uniform distribution on the sphere (| X — 0|*> < S?). If X has a p-dimen-
sional uniform distribution on (]| X — 8|*> < S?) then, R = || X — 6|| has a density,
of the form

g(R) =pR?"'/S? for 0KR<S
=0 elsewhere.

With respect to quadratic loss, Brandwein and Strawderman proved in [4]
that 8, (X) is better than X for 0 < a < (2(p — 2)/(p + 2))S?if p > 4. When H
is the cdf defined in Theorem 2.1 and the loss is |6 — |, EyR™2 =
JoR?~*dR /[§RP"*dR = ((p — 1)/(p — 3))S?, and so §, (X) is better than X
for 0 <a < @p—2)/(p +2)S1 - 6/(p(p — D))

Similarly, for the general loss function L(8, 8) = ||6 — 8| for 0 < ¢ < 2, we
have §, ,(X) is better than X for 0 <a < 2(p — 2)/(p + 2)S1 — Q@4 — q)/

(p(p + g — 2))].

4. Multiple observations. When sampling n observations, X, X,,* * + , X, on
a spherically symmetric distribution about 8, the problem of estimating # reduces
to the problem of taking one observation. In [4], Brandwein shows that estimators
based on n observations, which are spherically symmetric and translation invariant
also have spherically symmetric distributions about #. Moreover, Pitman’s estima-
tor, a maximum likelihood estimator, and X are all such estimators. Thus, we have
classes of estimators which improve on the usual estimators based on n observa-
tions for the nonquadratic loss functions:

We remark that these results have potential applicability to improving on robust
invariant estimators of multivariate location parameters (see also remarks in
Brandwein [3]).
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