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ESTIMATION OF THE CORRELATION
COEFFICIENT FROM A
BROKEN RANDOM SAMPLE'

By Morris H. DEGroot AND PREM K. GOEL
Carnegie-Mellon University and Purdue University

Inference about the correlation coefficient p in a bivariate normal distribu-
tion is considered when observations from the distribution are available only in
the form of a broken random sample. In other words, a random sample of n
pairs is drawn from the distribution but the observed data are only the first
components of the n pairs and, separately, some unknown permutation of the
second components of the n pairs. Under these conditions, the estimation of p
is, as Samuel Johnson put it, “like a dog’s walking on his hinder legs. It is not
done well; but you are surprised to find it done at all.” We study the maximum
likelihood estimation of p and present some effective procedures for estimating
the sign of p.

1. Introduction. Suppose that a random sample of size n is drawn from a
bivariate normal distribution with pdf f(x, «). Suppose also, however, that before
the sample values can be recorded, each observation vector (x;, #;) gets broken into
the two separate components x; and u,, and these observations are available only in
the form x,,- -, x, and y,,* - - ,»,, where y,,- - -,y, is some unknown per-
mutation of u,, « - - , 4,. Since the pairings in the original sample are not known,
the observed values are called a broken random sample from the given bivariate
population [DeGroot, Feder, and Goel (1971)]. It is assumed for simplicity, and
without loss of generality, that all of the observed values are distinct. If the
correlation coefficient p is known, then the problem of optimally repairing the
observed values so as to reproduce as many of the vectors from the original sample
as possible was considered by DeGroot, Feder, and Goel (1971). Related matching
problems have been considered by Chew (1973), Goel (1975), and DeGroot and
Goel (1976). In this paper, we shall primarily consider the problem of making
inferences about p when it is unknown, and we shall only secondarily consider the
problem of making inferences about the unknown pairings in the original sample.
It is well known that p can be estimated reasonably well if the original paired
sample values are known. For example, the maximum likelihood estimator (MLE)
of p, based on the unbroken sample, is the sample correlation coefficient. Here, we
shall investigate the question of whether there is any information about p in the
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broken random sample. This question is answered, at least partly, in the affirmative
in the next four sections.
This problem is related to the problem of information in the marginal totals of a

contingency table, which has been studied by Good (1976), Plackett (1977),
Berkson (1978), and others. The basic difference between the two problems is that
they are dealing with categorical data and we are dealing with continuous data.

In Section 2, the MLE’s of the means, the variances, the correlation coefficient p,
and the unknown pairing are derived. In particular, it is shown that the MLE’s of
the means and the variances are the same as for an unbroken sample, and the MLE
of p is either the largest or the smallest possible sample correlation coefficient that
can be obtained among all possible pairings of the values in the broken sample. In
Section 3, we consider the problem of determining the MLE’s of the means, the
variances, and p from a likelihood function that has been summed over all possible
pairings of the values in the broken sample. Various properties of the likelihood
equation for p and its solutions are derived. Some typical plots of the likelihood
function are presented. In Section 4 we consider the problem of estimating the sign
of p and present three simple decision rules. The results of a Monte Carlo study
show the effectiveness of these rules. In Section 5, the Fisher information matrix
for a broken random sample is studied. It is shown that the information about p in
a broken random sample of size n is at least as large as the information in a
random sample of size 1 from a bivariate normal distribution with known means
and variances. However, at p = 0, these two numbers are equal.

2. Estimation of the unknown parameters. We shall assume that the random
variable (X, U) has a bivariate normal distribution with E(X) = y,, E(U) = p,,
Var(X) = o, Var(U) = 62, and Corr(X, U) = p, and that all the parameters p,, p,
02, 02, and p are unknown. Furthermore, we shall assume that the observed values

in a broken random sample from this distribution are x,,- - -, x, and y,, - - -, y,.
Let ® be the set of all permutations ¢ = (¢(1),: - -, #(n)) of the integers
1, 2,- - -, n. Pairing the observed values in the broken random sample according
to the permutation ¢ means pairing x; with y,, fori=1,- - -, n.

We begin by determining the MLE’s of the unknown parameters p,, ,, 02, 02,
and p and the unknown permutation ¢ which specifies the pairings in the original
sample. For given values x,,- - -, x, and y,, - - -, y,, the log-likelihood function
of &, p, uy 0%’ 0% is ‘

n n
@1 L(¢ o iy s 0}, 03l%, y) = — S log(1 — p?) — Flog o} — glog o3
1 x = m)’ = ) o -
_ . {2,1,( 2#1) +37 (r 2#2) — 203" (% = ) Doy — 1) )
2(1 - P) L4 0y g, 0,

A constant term not involving the parameters has been omitted from (2.1).
For any fixed ¢, it is known that based on the sample paired according to ¢, the

log-likelihood function (2.1) is maximized when i, = X, i, = 7, 61 = 52, 62 = §2,
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and p = r, where r, denotes the usual sample correlation coefficient,

1 - R
(22) ry = ;‘2'1'(": - x)yw)/ (6,6y).
Then the log-likelihood function (2.1) evaluated at these points is
* L . a2 A n
(2°3) L(‘p) = L(¢, Tys P15 Hos 0%, o%lx, y) == -2—103(1 - ’g) - n.

We must determine the maximum of this function over all permutations ¢.
We shall let

(24) Fmin = Milyeg 7y  a0nd  rp,, = MaX,cof,

and let x;, < - -+ < x(, and yq) < - - - <y, denote the order statistics of the x,’s
and the y,’s. It is well known [Hardy, Littlewood, and Poélya (1967)] that rm is

attained by the permutation ¢° such that X is paired with Yo fori=1---,n,
and that r_, is attained by the permutation ¢, such that x, is paired with y,,,_,
fori=1,- - -, n. It follows from Theorem C, page 61, of Hajek and Sidak (1967)

that 2¢e¢r, = (. Since the value of r, is not the same for every permutation
€D, r,;, <0and r,,, >0.
It now follows from (2.3) and this discussion that the MLE’s p and ¢ are given

by
25) P=rmu and ¢= ¢° 'if Tmax 2 |Fminls
P = rmn and b= if Fmax < |7minl-

It should be noted that p is not a reasonable estimator of p in the sense that p is
always equal to either the maximum or the minimum possible sample correlation
coefficient that can be calculated from the broken sample. In the next section, we
shall consider a useful modification of the likelihood function. We shall complete
this section by considering briefly problems in which the values of some of the
parameters are known.

" Suppose that the values of g, and u, are known and the values of o?, 03, and p
are unknown. Without loss of generality, we shall assume that g, = p, = 0. For
¢ ED,let

~
a

1
(2.6) reg = (2t )’¢(i))/ [(21"1 )(zlyi )]2
and let
2.7 ri, = min, g 73 and 7}, = Max,eq 73

Then it can be shown that the MLE’s 5 and ¢ are given by
p=rr, and =0 if i, > |kl

p=rto and S=¢, i < |rhal-

In this problem it is not necessarily true that r3,, > 0 and r¥.. < 0. However, it
can be seen from (2.8) that if r%, <O, then p = ry,, and if rg;, > 0, then
p=ra.

(2.8)
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When the values of u,, i,, 62, and o2 are known, there is no simple expression for
p. Suppose without loss of generality that u, = u, =0 and ¢} = 07 = 1. By
maximizing the function L given in (2.1) over ¢ € ® for any fixed value of p, and
then differentiating the result with respect to p, it can be shown that 5 must be a
solution of the following equation:

2.9 np(1 = p?) — pZ(x? + y7) + (1 + p°)21x, y4) = 0,
where ¢ = ¢° for p > 0 and ¢ = ¢, for p < 0. We shall not consider this problem
further.

3. The integrated likelihood function. For each ¢ € ®, let g(x, y| 1y, s af,
62, p, ¢) denote the joint pdf of the observations x,, - - - , x, and y,, - - - ,y, when
they are paired according to the permutation ¢. We shall now assume that the true
unknown permutation can be assigned a prior distribution. In particular, we
assume that the n! permutations in ® are equally likely a priori to have generated
the original sample. Therefore, the (marginal) joint pdf of the observations
Xp,+ ¢+ ,x,and y,, - - - ,y, in the broken sample, for given values of the parame-
ters w,, iy, 02, 03, and p, is the average

1
(3.1) ~72sc08(% Yl 1, 12y 0f, 93, p, 4).

When (3.1) is regarded as a function of the parameters y,, u,, 0%, o2, and p, for
given values of x and y, it is called the integrated likelihood function. (See, e.g.,
Kalbfleisch and Sprott (1970). In our paper, since ¢ is discrete, the integrated
likelihood function might better be called the summed likelihood function.) Since
the integrated likelihood function (3.1) no longer involves the nuisance parameter
¢, this function would seem to be appropriate for problems in which we are
interested solely in making inferences about the remaining parameters.

Some statisticians would regard ¢ as missing data rather than as a parameter. In
these circumstances, it is appropriate to use a method such as the EM algorithm of
Dempster, Laird and Rubin (1977) for obtaining MLE’s from incomplete data. The
estimates that we shall obtain by using (3.1) are the ones that would be obtained
from the EM algorithm.

Each term in the sum in (3.1) is the product of » bivariate normal pdf’s for x; and
Yeuy It can be shown, therefore, that the log-likelihood function has the following
form: '

B(p, B Moy 0%, a%lx’ Y) = - _;'103[(1 - pz)o%o%]

(3.2) - 2(1 _1_ ) 2'1'[( X; ;1 [ )2 + (z%‘i_yg_)z]

— y —
+log 24»&0 exp[ ] d 3 2’1‘( 5 B )( # — P )]
P

(41 0y
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A constant term has been omitted from (3.2).

It can be shown by direct differentiation that the MLE’s ji,, fi,, 62, and 63 are
simply the sample means ¥ and y and the sample variances s? and s, just as they
would be for an unbroken random sample. The concentrated log-likelihood func-
tion (i. e the log-likelihood function evaluated at p, = fi;, u, = fi,, 07 = 6%, and
0 =6)is

(33) £(p)

£(ps fys iy 61, 631, y)

_n — p2) — 1"
5 log(1 = o%) "

nor
5 t1log Zyeo exp( T :2 ),

where 7, is defined by (2.2). Terms not involving p have been dropped from (3.3).
The MLE of p will be a solution of the equation

(34) d_f;_(:_) =0

We shall rewrite this equation in a particularly useful form.
For ¢ € ® and any given value of p(|p| < 1), let

npr, )
ex
p( 1 - p?

npr, \’
o 22)

(3.5) &(9lo) =

Thus, for each given value of p, £(¢|p) represents a probability distribution over the
n! permutations in ®. It can now be found by differentiating (3.3) that equation
(3.4) can be written in the following form:

(36) 4,60 ¢€(¢Ip) =p

Furthermore, for any value of p which satisfies equation (3.6), it can be shown that
the relation d2£(p)/dp? < 0 will be satisfied if and only if

(1-0%
n(l + %)
Hence, the MLE p will be a value of p that satisfies (3.6) and (3.7). The value of
p can be determined by an iterative computation, but if n is moderately large, the

cost of this computation may be large. However, a few important properties of the
local maxima and minima of £(p) can be derived from (3.6) and (3.7).

(3.7 ¢e<1> ¢£(¢|P) < pt+———

THEOREM 1. (i) The function f‘l(p) is increasing for p < r;, and decreasing for
P 2 I'max

(ii) The value p = 0 is a local minimum of B(p)

(iii) There exists at least one local maximum of é(p) in each of the intervals
Toin <P <0and 0<p <rg,.
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PrROOF. It is easily verified that d f‘l(p)/ dp Z 0 according as 2, < o7,£(9|0) = p.
Since 2y o74€(9lp) is a weighted average of the n! values of r,, and these values
are not all equal, it follows that

Pinin < 2¢e¢r¢§(¢lp) < T'maxe
Hence, d f‘l(p)/ dp >0 for p <ry, and d fi(p)/ dp < 0 for p > rp,,, which proves
part (i) of the theorem.

To prove part (ii), note that £¢|0) = 1/(n!) for each ¢ € ® and 2,47, = 0.
Hence, the value p = 0 satisfies (3.6). Furthermore, it follows from (3.7) that the
value of p =0 will be a local minimum if (1/n!)Z,cr2 > 1/n. However, by
Theorem C, page 61 of Hajek and Sidak (1967), (1/ n!)2¢e¢ri =1/(n—1>
1/n. Thus, part (ii) is proved.

Together, parts (i) and (ii) of the theorem imply part (iii). [

The positive and negative values of p which are local maxima will typically not
be equal in absolute value, since the n! values of r, will not be symmetric with
respect to 0 unless either the x’s or the y’s are perfectly symmetric. Based on
extensive simulation, it is our belief that there is exactly one positive and one
negative local maximum. It should be noted that the use of f‘l(p) as a log-likelihood
function for p alone has some undesirable features. For example, values of p near 0
are more “likely” than p = 0 for every sample.

A Monte Carlo study of the likelihood functions for both an unbroken sample
and a broken sample for n = 5 was performed. Three functions of p were studied
under various conditions: (1) the likelihood function based on an unbroken sample
when the means and variances of the underlying distribution are assumed known;
(2) the integrated likelihood function (3.1) based on a broken sample when the
means and variances are known; and (3) the concentrated likelihood function,
given by (3.1) evaluated at g, = {i, and ¢? = 6? for i = 1, 2. These functions were
plotted for several different samples drawn from underlying distributions with
various true values of p.

For many samples, the likelihood function for the broken sample looked very
similar to the one for the unbroken sample, but the concentrated likelihood
function was very much different from these two. This situation is illustrated in
Figure 1, where these functions are sketched for particular samples of size n = 5
from distributions in which the true p is 0, .5, and .9.

For other samples, however, the likelihood function and the concentrated likeli-
hood function for the broken sample looked very similar and the likelihood
function for the unbroken sample was very much different from these two. This
situation is illustrated in Figure 2.

When the means and variances are known, the likelihood function for p based on
a broken sample will often be similar to what it would have been based on the
unbroken sample. For such data, the MLE of p based on the broken sample will be
reasonable. However, for many samples, these two likelihood functions will not be
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Likelihood function Likelihood function Concentrated
for unbroken for broken likelihood
sample sample function
=0
6.25 6.25 9.5
Unbroken
sample data ‘( \
( .o1, .67) 4.69 \ 4.69 713
(- .73, -.T1)
(- .27, -1.58
(-1.34, . 32 312 a.75
(- .38, .86)
1.56 1.56 2.37
L,
] ]
° -1 (o] 1 4 -1 o 1 4 -1 o 1 4
2 | 13.5 1.9
p=.5 , ,
Unbroken / ) i
sample data 10.5 / \\ 1013 . 1.43
i |
(.01, .59) i ‘
(- .73, -.98)
(- .27, -1.23) ™° 6.75 .95
(-1.34, - .27) |
(- .38, .55)
3.5 3.37 47
o ]
-1 ° 1 r -1 o PRE ° 1L
4520 [ ] 67.5 T 5.25
p=.9 :
Unbroken 339.0 50,63 3.94
sample data [
(.01, .30) Lo 33.75
(- .73, -.96) - 2.62
(- .27, =-.79)
(-1.34, -1.01)
(- .38, .03) mM3.0 1e.a7‘ 1.31
o L,
- ° e -1 [ P ° rakd
FIG. 1.

similar. The remark by Plackett (1977) in regard to the marginal totals of a 2 X 2
contingency table that “the standard procedures for making statements about an
unknown parameter are found to be inconclusive” also holds for this problem in
the sense that this procedure will be good for some broken samples and poor for
others. Unfortunately, we do not know of any methods by which one can
determine which type of sample has been obtained.

When the means and variances are unknown, the maxima of the concentrated
likelihood function for p based on a broken sample will typically occur in the
extremes of the interval —1 < p < 1, as illustrated in Figures 1 and 2. Thus, in this
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Likelihood function Likelihood function Concentrated
for unbroken for broken likelihood
sample sample function
=0
P 1.25 5.5 10.0
Unbroken
sample data \\
94 \ 443 745
(- .72, -215)
g— .36, ~.36)
- .k9, 1.86)
( .08, -1.53) .62 2.75 5.0
(1.68, -.13)
.31 1.37 2.5
(o] (o]
° -1 [ T r -1 o b -1 ° rad
2.5 4.25 1.8
p=.5 .
Unbroken ‘\
sample data  1.88 i 3.19 | 1.35 }
| |
E- 72, -.k9) | \ '
- .36, -.h49) \ |
(- b9, 1.36) 1.25|{ 243 '. .9
( .o8, -1.29) ! \ :
( 1.68, .72) :
.62 1.06 ‘ 45
| |
o 0 (o]
-1 o PR -1 [ 17 -1 o P
72, ([ 235.0 48,5
p=.9 : f’
Unbroken 54.385' ‘ 175.25 36,38
sample data | :
(- .72, -.71) !
- N i
(- 136, _.p) 38257 17.5 24.25
(- .k9, 36) ! |
( 08, -.60) :
(1.68, 1.h5) 1842 | 58475 12,12
J’ |
o L “ p O P O »
-1 (] 1 -1 o 1 -1 o 1
FIG. 2.

case, the MLE of p will not be a good estimator. Other estimators of p can be
constructed based on the fact that the joint distribution of the 2n standardized
residuals (x; — %)/s, and (y;, —y)/s, (i=1,2,- -, n) depends only on the
parameter p. Bayes estimators might also be constructed. Although all these
estimators will be rather weak estimators of the magnitude of p, we shall show in
the next section that a broken sample does contain useful information about the
sign of p.

4. Inference about the sign of p. In many practical problems, the experimenter
is interested in determining the sign of p. As pointed out in DeGroot, Feder and
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Goel (1971), the only information about p needed for obtaining the maximum
likelihood matching is its sign. An important question is whether or not there is any
information about the sign of p in the broken random sample. We will try to
answer this question in this section.

Since both x and y are marginally normally distributed, it follows that, for large
samples, the data for each of the two variables will be close to symmetric and
hence the likelihood function (3.3) will be approximately a symmetric function of p.
Therefore, one might intuitively conclude that the broken random sample has no
information about the sign of p. However, we will show that this is not the case. In
fact, we will present three simple decision rules that give the correct sign of p, with
high probability, when the true value of |p| is large.

The first decision rule is motivated by the MLE’s p and ¢ in (2.5) and the fact
that ¢ = ¢° if r_, > |Fmal and & = ¢y if 70 < |7minl- It Was shown in DeGroot,
Feder and Goel (1971) that if p > 0, the MLE of ¢ is ¢°, and if p < 0, the MLE of
¢ is ¢,. Hence our first decision rule for determining sgn(p) is:

Rule R,. If rp,, > |r,|, estimate sgn(p) to be +1, and if r, < |ry;,|, estimate
sgn(p) to be —1.

The other two decision rules are based on the reasoning that if p > 0, then we
expect the skewness characteristics of the two samples to be similar. Therefore, we
consider simple measures of skewness for the x and the y samples and declare
sgn(p) = + 1 if both of these measures have the same sign. These rules can be
described as follows.

Rule R,. Let N(x) = number of x;’s > %(x(l) + x(,) and N(y) = number of
y’s > %( Yay + Y- If both N(x) and N(y) are at least [(n + 1)/2] or both are less
than [(n + 1)/2], then estimate sgn(p) to be + 1. Otherwise, estimate sgn(p) to be
- 1.

The third decision rule is based on the behavior characteristic of the third central
moments of the x and the y samples. It is described as follows.

Rule R,. Estimate sgn(p) to be + 1 if 27(x; — ¥)*- Z}(y; — 7)° > 0. Otherwise,
estimate sgn(p) to be —1.

In order to find the probability of correct decision for each of these decision
rules, a Monte Carlo study was carried out, in which 15,000 samples of size 5, 11,
15, 19, and 25 were drawn from the bivariate normal populations with means zero,
variances one, and p = 0, .25, .5, .75, .9 using the acceptance-rejection algorithm
and the random number generation package RVP at Purdue University; see Rubin
(1976). In addition, to investigate the behavior of these decision rules for large n,
3,000 samples of size 100 and 500 were drawn using the IMSL subroutine GGNMP
which uses Marsaglia’s algorithm. For n = 100 and 500, the decision rule R, was
not investigated because its performance for smaller sample sizes was consistently
inferior to R, and R,. Table 1 provides estimated values of the probability, P*, of
correct decision regarding sgn(p). For each sample size, the first row corresponds to
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TasLE 1
Proportion of samples in which sgn(p) is estimated to be +1.
n\p 0 25 5 5 9

.4962 5015 5221 .5930 7244
5* .4958 5021 5259 .5880 6952
4960 5011 5233 5922 7021
.5041 .5035 5229 .6077 .7601
11* .5032 5031 5221 5982 .7093
.5003 5029 5238 6045 7253
.5028 5019 5314 .6193 7795
15* .5033 .5040 .5280 .6084 7182
.5003 5064 5339 6169 7386
5021 .5048 .5307 6237 7875
19* 4971 .5061 .5287 .6151 7232
.5035 5096 5332 6221 7495
5078 .5089 5347 .6279 7909
25* .5033 .5047 5291 .6106 7216
.5055 5072 5351 .6261 7477
.4960 5103 5377 6530 .8360

lmt‘ — —_ —_— — p—
4957 4983 .5293 .6277 7533
.4980 .5000 5573 6717 8517

Smt‘ — P — — J—
.5090 5127 .5553 .6483 .7610

*based on 15,000 runs
**based on 3,000 runs

the decision rule R,, the second row corresponds to the decision rule R, and the
third row corresponds to the decision rule R,. For p = 0, each of these rules has
probability .5 of estimating sgn(p) to be + 1, and it can be seen from Table 1 that
all of the corresponding empirical values are within 1.35 o of .5.

It is clear from Table 1 that for large |p|, the value of P* is generally largest for
the decision rule R, and smallest for the decision rule R,, and that the procedures
R, and R, perform reasonably well in estimating sgn(p). Furthermore, for any fixed
n > 2, it can be shown that P* — 1 as |p| — 1 for all three decision rules. In this
sense, these rules are consistent. However, we do not believe that there is any
decision rule for which P* — 1 as n — o for all values of p. For the rule R;, we can
obtain the asymptotic value of P*.

THEOREM 2. Let X,,- - ,X,and Y,,- - -, Y, be a broken random sample from
a bivariate normal distribution with correlation p. Then

@D lim, g PSI(X, - X) - 2(¥, - )’ > 0] =4+ Zsin~ .
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PrOOF. The joint limiting distribution of m; x = 1/n XX, — X)* and m, , =
1/n XY, — Y)* is bivariate normal with means 0. Furthermore, the correlation of
my x and my y is p3; see Kendall and Stuart (1963) page 323. Therefore, the
left-hand side of (4.1) is equal to the probability that a two-dimensional random
vector having a bivariate normal distribution with mean vector 0 and correlation p*
takes values in the first or third quadrant. This probability is 3 + (1/7) sin™! p;
see Kendall and Stuart (1963) page 351. [J

It follows from Theorem 2 that for the rule R;, the limiting value of P* as n — oo
is given by the right-hand side of (4.1). Some values of this function are given in
Table 2.

TABLE 2
Limiting values of P* for the decision rule R;.

le] 250 .500 .750 .800 .900 .950 .983 .996 1
P* 505 540 .639 .671 .760 .828 .900 .950 1

Thus, no matter how large the sample size, the broken random sample contains
some information about sgn(p). Furthermore, one observes that the empirical
values for n = 500 given in Table 1 and the limiting values of P* given in Table 2
are well within sampling errors, and even for n = 25, they are not too different.

At this time, we do not have any asymptotic result for the rule R,. However,
based on the above discussion and the empirical values of P* for R, and R, we
conjecture that the limiting value of P* for the rule R, is greater than that for the
rule R,.

5. Fisher information. We shall now obtain the Fisher information matrix for
the parameters p,, y,, 6;, 05, and p in a bivariate normal distribution based on a
broken random sample from that distribution. It is well known that the Fisher
information matrix based on an unbroken random sample of » pairs is as follows:

M 2 : o, 0, [Y
1/t —p/(a0)) O 0 0
1/02 |I 0 0
'2-0" = =p
5.1) I= 1 5 . a2 0,0, !
- P I
| 2= =p
: o; L)
: 1+ p2
1 - 2
[ ! o

It can be proved that for a broken random sample, the first two rows and first two
columns of the information matrix, pertaining to the parameters u, and p,, will
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remain the same as in (5.1). However, the 3 X 3 submatrix on the lower diagonal,
pertaining to the parameters p, 0,, and a,, will change. We shall derive only one of
these terms. The other terms can be obtained by a similar argument. In particular,
we shall determine the value of

_ aZL(Pa Py Moy of, Gglx, Y)
9p? ’

(52) i(e)=E

where X =(X,,:- - -, X,) and Y= (Y,,* - -, Y,) are the random variables in a
broken random sample, and the log-likelihood function L is defined by equation

(3.2).

For any variables X;,- - -, X, and Y}, - -, Y, let

1
(5°3) Bq; = olozzi(in - P‘l)( Y¢(i) - l"z)
and
CXP( PB¢
1-p?
(5.4) a, = .
2 exp PPy
yED 1— p2

Then it can be shown from equation (3.2) that
. n(1 + p? 2n(1 + 3p? 20(3 + p?
(5.5) l,,(P) —_ ( p 2) + ( S ) - ( ps)
(1-9? (1-p% (1-9%

_ (1 +pY
(1-p¥*

where the expectations in (5.5) are calculated under the assumption that the » pairs
of random variables (X;, Y}), - - -, (X,, Y,) form a random sample from a bi-
variate normal distribution with means u, and g, variances o7 and o2, and
correlation p. Furthermore, it can be seen that the values of the expectations in
(5.5) will remain unchanged if it is assumed that u, = p, =0and 0, = 6, =1 in
this bivariate normal distribution and in the definitions (5.3) and (5.4) of B, and
(X¢.
It now follows that

E(Eqseb ,34,0[4,)

E[2¢eo .33% - (2¢e¢ B¢a¢)2]’

(56) E(Z4c0 Byay) = E(Z; X;Y)) = np.
Let

1
(5.7) Y= ;E[E¢eo B§a¢ - (24:60 Bq;aqs)z]'
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Then from (5.5), (5.6) and (5.7), we find that

2 2
(58) (e = L2 [1 S
(1-0?) (1-0?)
For any given values of X,,---,X, and Y,,---,7%,, it can be seen from

equation (5.4) that a, > 0 for ¢ € ® and 2,4 a, = 1. Hence, it is clear from (5.7)
that y > 0. Also, by evaluating E(C, <o ,Bjaq,), we find that

1
(59) Y =1+ (n+ 1Dp* =~ E[(Syc0 Bpa,)"].
Now let
1 + p?
(5.10) y,=( ”)Z and 7y, = "2”2.
(1-07 1-»p

Then, by using arguments similar to those just given we can show that the 3 X 3
submatrix on the lower diagonal of the Fisher information matrix based on a
broken random sample is:

i % ) p T
1 1 P
—(2 — p2 — —(=-p — -ra-
o%( P> = 1) sa (P M) Ul )
(1) by =17 ~@-s-v) -La-w
I-»p o; 2 % '
1+ p?
1-—
l—pz( 1)

It should be emphasized that we do not have n independent and identically
distributed bivariate observations in this problem. Therefore, the conditions for the
validity of the standard asymptotic properties of MLE’s are not satisfied and I;! is
not necessarily the asymptotic covariance matrix of 6,, 6,, and p. Nevertheless, the
Fisher information matrix is useful as a measure of information in statistical
inference because of its relationship to Kullback-Leibler information (see, e.g.,
Barndorff-Nielsen (1978), page 189).

Furthermore, the matrix I;! for a broken sample and the corresponding matrix
for an unbroken sample have some interesting features in common. Since the
MLE’s 6, and 6, based on a broken sample are the same as they would be for an
unbroken sample, the asymptotic covariance matrix of , and 6, must be the same
in both cases. Although we cannot interpret I,,' as an asymptotic covariance
matrix, it can be shown that the 2 X 2 submatrix on the upper diagonal of L' is
this asymptotic covariance matrix. Also, the third diagonal element of L;! is larger
than the asymptotic variance of the MLE of p for an unbroken random sample.
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It can be shown that i,(p), as given by (5.8), is actually the Fisher information
about p in a broken random sample when p,, u,, 0, and o, are known. We shall
conclude the paper with two simple properties of i,(p).

THEOREM 3. i (0)=1forn=1,2,- - -

Proor. For p =0, a, = 1/n! for every ¢ € ®. Therefore,

1 1
(5.12) 2¢e0 B¢a¢ = n_!2¢e¢ B.p = ;(zi x)(Z; »)-
Also, for p =0,
1 2
(513) ([ 3@ 0E 0[] -t

The theorem now follows from (5.9) and (5.8). []

THEOREM 4. For —1<p<landn=12,- - -,
1+
1-p2)’

ProoF. Since i,(p) is the same as the Fisher information about p, when the
means and variances are known, we can assume in this context that p is the only
unknown parameter. Consider the statistic (2; X;, 2; Y;). The value of this statistic
can be calculated from the values in the broken random sample. However, the
Fisher information about p in this statistic is the same as i,(p), the Fisher
information about p in a single pair of observations from a bivariate normal
distribution. Since the Fisher information i,(p) in the entire broken random sample
must be at least as large as the Fisher information in any statistic calculated from
the broken sample, the inequality in (5.14) must be satisfied. The value of i,(p),
given in (5.14), can easily be obtained. []

Theorem 4 shows that the information in a broken sample of size n is at least as
great as that in a single bivariate observation. The exact behavior of i,(p) as n — o
for a fixed value of p # 0 is not known to us.

(5.19) i,(p) > iy(p) =
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