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RATIOS OF OFF-DIAGONAL C-WISHART!

By S. SAMN
USAF School of Aerospace Medicine

In this paper, the density function for the real and imaginary parts of the
quotient of some off-diagonal elements of the three-dimensional complex
Wishart matrix is derived. Connection to closed-loop transfer function de-
termination is shown.

1. Introduction. In this note, we will derive the density function for the real and
imaginary parts of the quotient of some off-diagonal elements of the three-dimen-
sional complex Wishart matrix. The motivation for this study arose from an
attempt to estimate the transfer function of a subsystem of a closed-loop system
contaminated by noise. The statistical properties of estimators of open-loop trans-
fer functions are fairly well known [1], [S]. However, much less is known about the
closed-loop counterpart. Several attempts in this direction have appeared in the
engineering literature, notably [6], [7] and [8], but these tend to be rough estimates.
In Section 2, we will formally derive the closed-loop transfer function estimator,
and in Sections 3 and 4 we will derive the density function for it.

2. A closed-loop transfer function estimator. Suppose an input-output system
with impulse response function 4(¢) is modelled as

(1 c(t) = [&h(u)e(t — u) du + n(1),
where the input e(?), the output c¢(?), and the error (noise) n(f) are zero mean
stationary time series. A fundamental problem in system identification is to

estimate A or its Fourier transform H (transfer function) given only finite samples
of ¢ and e. If we assume that » is uncorrelated with e, i.e., (in view of stationarity)

) E(n(t)e(0)) =0, —oo <t < o0,

then an estimate of A, or equivalently, an estimate of its Fourier transform H(jw)
(assume A(#) = 0 for ¢ < 0) is given by

3) H(jw) = C.(jw)/ C.eiw),

where C_'“[de] is a smoothed [cross] spectral estimate of the theoretical [cross]
spectrum T, [T'..]. The choice of the estimate (3) is motivated by the fact that
because of (2),

(4) Yce(T) = fgoh(u)Yee(T - u) du,

Received March 1978; revised August 1978.

The research reported in this paper was conducted by personnel of the Biometrics Division, USAF
School of Aerospace Medicine, Aerospace Medical Division, AFSC, United States Air Force, Brooks
AFB, Texas.

AMS 1970 subject classifications. Primary 62E10, 62E15, 62H10.

Key words and phrases. Complex Wishart, closed-loop transfer function.

199

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RINGJ2S

Q

®
www.jstor.org



200 S. SAMN

where y,, and v,, are the appropriate covariance functions, and hence that

(%) H(jw) = T (jw)/Tee(jw).

In the engineering literature, the system described by (1) and satisfying (2) is
sometimes called an open-loop system; this is because there is no “feedback”, i.e.,
the input e(?) is not influenced by the output ¢(7), 7 < .

Now consider a system (Figure 1) consisting of a subsystem described by (1) and
a second subsystem described by

6 e(t) = i(t) — [5g(w)c(t — u) du;

here i(¢) is the input to the system (whereas e is now an input to a subsystem) and
is also assumed to be a zero mean stationary time series; the function g is the
impulse response of the second subsystem and is not assumed to be known. The
system identification problem here is again to estimate H given, however, not only
finite samples of ¢ and e but also of i. This closed-loop (feedback) case differs from
the previous open-loop case in that the assumption (2) is no longer supportable in
general; otherwise, we would have

(M Yin(T) = /58(4)Yon(T — ) du,

and this would imply (except for some extreme cases) that the input i to the system
is correlated in a predetermined manner (through g) with the noise # in the system;
however, for most systems encountered in practice, this is not a valid assumption;

in fact, one often makes the assumption, as we will do here, that i and » are
uncorrelated;

(8) .Yin(’r) = 09 — 00 < T < 0.

Just as the estimate ﬁ( Jjw) in (3) was motivated by the theoretical calculation of
H(jw) based on the assumption (2), here we can also derive a similar estimate
ﬁ( Jjw) of H(jw) based on the assumption (8); in fact by using i as an instrumental
series, we can derive analogously:

® H(jw) = T;(jw)/Te(jw);

an estimate H of H is then obtained by replacing the theoretical cross spectra by
their corresponding smoothed cross spectral estimates. Hence if i(k), c(k) and e(k),

n
. h(t) l
it < & c(t)
® e(t) H(s) x(t) T

g(t) c(t)
Gi(s)

FiG. 1. Closed-loop System
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k=0,---,N— 1, are given, an estimate of H(jw) is given by

(10) HM(jw) = F(jw)/ FL(w),

where, for series x(k) and y(k), k = 1, - - , N — 1, F{(jw) is a smoothed cross
spectral estimate of the cross spectrum I', ,(jw), and is given by

(11) FM@Gw) = 2m + 1)7'272__ 1Y) (w + 27k /N);

here I{" is the cross-periodogram of the series x and y and is given by
I97(w) = 27N)~'dM(w) dM(w) ;
m is a nonnegative integer which is fixed throughout the following discussion.
Finally, the finite Fourier transform d‘ of the series x (and similarly for y) is
dM(w) = Z¥_Zix(k) exp{ —jwk }.

3. Relationship between closed-loop transfer function and the complex Wishart
distribution. Let X(k) = (i(k), c(k), e(k)), k=0,1,---, N —1 be given. The
finite Fourier transform of X is defined as

A (w) = X2 X(k) exp{ —jwk}, —o0 <w < oo,
and the (second-order) periodogram of X is defined as (“*” denotes conjugate
transpose)

15 (w) = d‘”’(W)d(”)(W)*

Suppose {j,}r., is a sequence of mtegers such that

2aj,/n— wy, Wy # 0(mod 7)
as n — oo; then, under some regularity assumptions (Assumption 2.5.1, Brillinger),
1
@2m+1)

is an asymptotically unbiased estimate of f,_ (w,), the spectral density matrix at
frequency w, of the series, i.e.,

fxx(wo) = (2 '”) 2 k=— aoexp { _jwok} cxx(k)’
where, under the assumption of statlonanty,

cxx(k) = E[X(J + k) - cx][X(j) - cx]T
¢, = E[X())] = E[X(j + k)]
are respectively the covariance matrix and mean vector of X. Here m is a
nonnegative integer. Under slightly stronger regularity conditions, the asymptotic
variability of the estimate f)(w,) can be shown to be inversely proportional to

2m + 1. [See Brillinger Theorem 7.3.3 and Corollary 7.3.1]. In this paper we will
assume that m is nonzero, and hence 2m + 1 > 3. Moreover, f)(w,) is asymptoti-

F(wg) = Tm e Q27(jy + k)/N)
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cally distributed as (2m + 1)~ 'W52m + 1, f_(w,)), where W¢(k, V), the complex
Wishart matrix of dimension r and degrees of freedom k, denotes the distribution
of the r X r matrix-valued random variable

W= Zj. XX}

where the r-dimension random variables X, - - - , X, are identically independently
complex-normally distributed with mean zero and covariance V. [See Brillinger,
Theorem 7.3.3]. For simplicity, we will only consider the case where w, # 0
(mod 7).

From the definitions of F,,(jw) and F,,(jw), we see that, for large N, H™(jw) is
approximately distributed as the quotient of two off-diagonal elements of a
complex Wishart matrix. We will derive this distribution exactly in the next section.

4. Derivation of density function. The question we want to answer is the
following: given that the 3 X 3 complex matrix-valued random variable
W=(w), wy=w, (1<i,j<3)
is distributed as a complex Wishart Wj3(n, =), how is w,,/w,, distributed? We have
the following

THEOREM. Let the 3 by 3 random (self-adjoint) matrix W = (w;) be distributed as
a complex Wishart W5(n, Z) with n degrees of freedom (n > 3). Assume X is positive
definite. Then the distribution of the real and imaginary parts (s, and s, respectively)
of Wy /w3, (= s, + jsy) has density f(s,, s,) given by

S(s15 85) = h(sy, Sz)/[ g(sy 52)]2

where
g(s;, 8) = 1723
t=(s,1)7, wheres = s, — jsy;
=it =g )
;

== (oy)l<i,j<3 = (
DL et

the latter is the partition of the inverse of 2 = (0;),; j<3 in which

Solis2by 2;
h(sy, 55) = Anz':n_-IOBm, n.32m+l(2m +3- Bz)(l - Bz)_m_z
+C, 280D ZEEGAP, (1 — B2/2)2"(1 = BA)™;

B2 =735/ [oVg(s1, ) ;
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A,, B, ., C,, Dy , and P, , are constants:
4, = 2n = DE3!|/[74°(n = 1)t (a"0,))"];

B,,=B(1,m+1)/[m(n-m-1))
where B is the Beta function;

C, = 325!/ [7(2n + 3)@n + 1)(s"0,,)"];
Dy, = (Mulk +1)/[(n+3),2¢]

n’

where
(Me=nln+1)...(n+ k—1), (n)o = 1;
Pem = (—1D"Q2k = 2m)!/[m! (k — m)! (k — 2m)!].
Finally,
E[k/2]=j ifk=2 orifk=2j+1
ProoF. (outline). The density f, of W is [Goodman, 3], for W > 0, propor-
tional to

(det W)" 2 exp{ — r="'W}.

By using the well-known trick of decomposing W as the unique product of a 3 X 3
complex lower triangular matrix 7* with its conjugate transpose 7, i.e.,

W=T*T
where
L L 4
T=1|0 ¢ ¢
0 0 ¢

with ¢, t4, t¢ > 0 and ¢,, t;, t5 are complex, it can be shown [Goodman, 2] that the
density f; of T is proportional to

13135 exp{ — o= TIT*T ).

It can easily be shown that w,,/w,; = t,/t,. Since w,,;/w,, is just the complex
conjugate of w,/w,, it suffices to calculate the distribution of ¢,/¢,. This is
accomplished through a series of integrations and transformations. In particular, ¢,
L5, ts, and ¢, are integrated out to obtain the density function of ¢, and #;; then by
using the transformation s, = Re(t,/1;), s, = — Im(2,/t;), s; = Re(t;) and s, =
Im(t;), and integrating out s, and s,, one obtains, after some long calculations and
relying heavily on [4], the density function of the real and imaginary parts of
W,/ W3, as given in the statement of the theorem. The details of the proof will not
be given here, but will appear elsewhere.

COROLLARY. The variances of the real and imaginary parts of w,,/w,, are
infinite.



204 S. SAMN

Proor. It can be shown that there exists a positive constant § such that

Sf(sy, 85) > 8/8(sy, s2)2.

If the variances of s,, s, were finite, then

But

f°_°°°f°_°°°s,.2/g(s,, .92)2 ds,, ds, < oo, i=1,2.

g(sy, 85) = (s, D=3' (s, DT
< 81(1 + |S|2) (s = Sy _jsz)

for some positive §,, since =5,' is Hermitian and positive definite. Hence

J2 S 2t/ 851 ;) dsy dsy > [0, 12052/ [8,(1 + 53+ 52) ] ds, ds,

= o0.

This is a contradiction.

5. Conclusion. In this short note, we have outlined the derivation of the

distribution of the real and imaginary parts of ratios of some off-diagonal elements
of the three dimensional complex Wishart matrix. We have indicated that ratios of
this type appear naturally in the determination of transfer functions of subsystems
in closed-loop (feedback) engineering control systems. We also observed that these
ratios have infinite variances.
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