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A NEW CHARACTERIZATION OF THE DIRICHLET
DISTRIBUTION THROUGH NEUTRALITY

By IaN R. JAMES AND JAMES E. MOSIMANN

C.S.LR.O. South Melbourne, Victoria, Australia and National Institutes of
Health, Bethesda, MD

A new characterization of the Dirichlet distribution using neutrality is
given. This settles conjectures of Doksum and Mosimann. The characterization
is contrasted with a parallel result for the lognormal distribution. Possible
applications to random probabilities and prior distributions in survival analysis
are noted.

1. Characterization of the Dirichlet distribution. Let X = (X,- - -, X,) be a
random vector with #n > 2 nonnegative coordinates satisfying 27_,X; < 1. Let
S, =32%_,X, k=1, ,n. We shall suppose that none of the X; nor 1 — S, is
degenerate at zero.

DErFINITION 1. (X, - - -, X}), k < n — 1 is neutral in X if there exist nonnega-
tive random variables V, - - -, V, with (V, - - -, V,) independent of
(Vs - > V,) such that X and

(Vv' s Vi Vk+1(1 - TK)’ R Vn(l - TK))

have the same distribution (where T, = =%_,¥)).
Note that the neutrality of (X, - - - , X,) implies that S, and 7, have the same
distribution. This neutrality states, in effect, that the vectors (X, - - - , X)) and

(Xk+l/ (1 - Sk)" o ’Xn/(l - Sk))

are independent, but is defined as above to avoid the possibility of division by zero
(cf. Doksum, 1974, page 186). The term neutrality was introduced by Connor and
Mosimann (1969).

Neutrality of any vector of coordinates of X, for example of any X, or (X;:
Jj # i), is defined by obvious modification of Definition 1, and Fabius (1973)
proved:

THEOREM 1. The following assertions are equivalent:
(i) X, is neutral in X for alli =1, - - ,n;
(i) (X;;j #1i)is neutral in X for all i =1, - -, n;
(iii) The distribution of X is Dirichlet or a limit of Dirichlet distributions.

Recall that X is Dirichlet with parameters (a,, - - - , a,,,) if it has a density
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function of the form
f(x) = K(IT}_ x>~ 1)(1 = =72 yx) %!

where x;, >0, i=1,---,n; 3x;<1 and K=TCe)/I(e); o >0, i=
1, - ,n+ 1. In the limiting cases in (iii) X is either degenerate at a point, or its
distribution is concentrated at the vertices of the simplex (Fabius, 1973).

The purpose of this note is to provide an alternative characterization of the
Dirichlet distribution and its limits, thereby confirming the conjectures of Doksum
(1974, page 193) and Mosimann (1975b, page 233).

DEFINITION 2. X is completely neutral if there exist mutually independent,
nonnegative variables W, - - - , W, such that X and

(Wl’ W2(1 - Wl)’ ) anlTit:ll(1 - I/V:))

have the same distribution. (Doksum, 1974, page 186).
If division by zero is avoided, complete neutrality states that the variables

Xy Xz/ (1 - Sl):‘ v ’Xn/(l - Sn—l)
are mutually independent, and can be shown to be equivalent to the property
“(Xy - -+, X)) is neutral in X for alli =1,- - - , n — 1” (Connor and Mosimann,

1969). Note that the order of the coordinates of X is important in the definition of
complete neutrality. We then have

THEOREM 2. The following assertions are equivalent:
(i) X is completely neutral, and X, is neutral in X;
(i) The distribution of X is Dirichlet or a limit of Dirichlet distributions.

ProoF oF THEOREM 2. We need only prove that (i) implies (ii) since (ii) implies
(i) is well known.
Consider the vectors

X/ = (X, S), j=1---,n—1
Note that X,, S; are nonnegative and X, + S; < 1. From the complete neutrality of
X there exist mutually independent nonnegative variables W, - - - , W, such that
S; and
J

1-T.,(1-W)=U, s,
have the same distribution. Also X, and'the variable
WS = w) = W[50 - W) (1 - U)
=R(-U), sy  (WithR,_, = W,)

have the same distribution. But for a given j, U; and R; are independent and
therefore S; is neutral in X, j = 1,- - -, n — 1. We now use the condition that X,
is neutral in X, so there exist nonnegative variables V|,- - -, ¥V, such that
(Vs + -+ 5 Vu-y) is independent of V,, where V, and X, have the same distribution.
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Further X; and (1 — V,)¥, have the same distribution, i =1,---,n — 1, and
therefore §; and (1 — V,)Z/_,¥; = (1 — V)T, have the same distribution,
j=1---,n—1 Since ¥, and T; are independent, then X, is neutral in X/,
Jj=1---,n—-1
By Theorem 1 then for eachj =1, - -, n — 1, (X,, S;) = X’ is Dirichlet or has
a distribution which is a limit of Dirichlet distributions. If X’ is degenerate or
discrete it is straightforward to show inductively that X is a limit of Dirichlet
distributions. Thus we need only consider the case where X/ is Dirichlet (o, B> 7))
say, forallj =1, - -, n — 1. It then follows that X, has a beta distribution with
parameters (o, §; + Y)»Jj=1-+-,n—1so that
a; = a (constant)
B; + v, = ¢ (constant), Jj=L--,n—1
Further 1 — §; is beta (a + v;, B) forallj = 1,- - - , n — 1, so that for any r > 0
R AL )
¥W(a+c+r)

But we can write

X
—_ - _—j —_ ] = .. —
1-8; (l e Sj—l)(l Si_1),  J=2 ,n—1

where the independence of the two right-hand terms follows from the complete
neutrality of X. It then follows that

(1_ X )’} Fla+y+r) T(a+y_,)
1T-s5_,) |~

-5 Tla+vy) T(a+y_,+7r)

E

forallr >0andj=2,-:-,n — 1. Since E(1 — S;—1) > E(l — S) theny,_; >,
andsoweletg =v,_;, —y,>0,j=2,---,n— 1. Consequently we can write

E(l— X, )’=l"(a+yj+r)l“(a+yj+sj)
1-8_, Fla+ y)T(a+ v+ g+7)
forallr >0,j=2,---,n— 1, and therefore X,/(1 - S;_1) is beta (g, a + )
for each j=2,---,n— 1 Further, X; =S, is beta (B;, a + vy and
X,/(1—8,_,) is beta (a, y,_,). Since N
aty=a+ g+ v j=L---,n=2
and since the mutual independence of the n variables,
XI’X//(I_S}—I)’ Jj=2--,n
follows from the complete neutrality, application of a result of Connor and
Mosimann (1969, page 200) shows that X is Dirichlet (Bieyt * €15 0 Yy )

This completes the proof.
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2. A parallel characterization of the lognormal distribution. The concept of
neutrality for positive random vectors was extended to neutrality with respect to a
regular sequence of size variables by Mosimann (1975a). Mosimann (1975b) also
conjectured the truth of Theorem 2 of the present paper, and proved Theorem 3
below which is a parallel characterization of the lognormal distribution. In order to
introduce general concepts of neutrality for positive random vectors and to
compare our Theorem 2 with Theorem 3, we briefly introduce the notion of regular
sequences of size variables.

Let P! be the set of positive real numbers and P” the vectors of n positive, real,
coordinates. A function G,: P" — P! is a “size variable” if it has the homogeneity
property G,(ax) = aG,(x), for all x € P", a € P'. Now consider x"*! € P"*],
n > 0, and, henceforth, let x; denote its first i coordinates. Thus, for example,
X,.+1 = (X,; X,, ) Define R and S, both P"*! - P! by

R(xn+l) = Gn+l(xn+l)/Gn(xn)’

S(Xy41) = Xpi1/ Go(X,),

for all x,,, € P"*'. It can be shown that S is onto P, but that R is not generally
onto P'; N =1Image (R) need not equal P!. The size variables G, G,,, are
“related” if there exists F: P' — N, with inverse F ~': N — P!, such that FS = R
(Mosimann, 1975a, page 203). If we now define size variables G;: P'— P!,
i=1---,n+1,then G, - -, G,,, is a “regular” sequence of size variables if
G, G, arerelatedi=1,-- - n.

Now call X, ,, a positive random vector if each of its coordinates is a positive
(scalar) random variable. Assume G, - - - , G, regular, and each G, measurable
so that G,(X,) is a random variable, i = 1,- - - , n + 1. We have

DeFiNITION 3. X, is completely neutral (to the left) with respect to
Gy, -, G,,, if the random ratios

_ GviXisy)
S = Tem)

are mutually independent. (Mosimann, 1975a, page 211).

We say that X, is completely neutral to the right if the permuted vector
(X415 * © +» X)) is completely neutral to the left. (Definition 2 of the previous
section gave neutrality to the right.) We shall also say that the last coordinate, X, . ,
is neutral with respect to G,,---,G,,, in X,,, if R,,, is independent of
(Ry, - -+ R,).

Unlike Definition 2, these definitions apply to arbitrary positive X, ,;, con-
strained or not. If we consider X, constrained so that G,,, = 1, then letting
G =3/_,X,=8,j=1,---,n+1 we obtain the neutrality of this paper. A
characterization of the lognormal distribution is obtained by considering the
regular sequence M, = M. X)), j=1,---,n+ 1 and using neutrality with
respectto M,,- - - , M, :

i=1---,n
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THEOREM 3. (Mosimann 1975b, Theorem 4). If X, ., is a positive nondegener-
ate random vector constrained by M, ., = 1, then the following two assertions are
equivalent.

() X, .. is completely neutral (to the right) and X, | is neutral in X, ,.

(i) X, ., is lognormal (p, H).

(Here H, n + 1 by n + 1 is defined by h; = — v, i #j; by =nv,i=1,-- -, n+
1; v > 0, and X is lognormal (p, X) if Y, with coordinates Y; = log X;, is normal
(p, ). This theorem is a direct parallel of our characterization of the Dirichlet
distribution in Theorem 2. In fact, for nondegenerate positive X, , ; constrained so
that S,,; = 1, Theorem 3 holds exactly for neutrality with respect to
S, -+ ,8,,, and substitution of “Dirichlet” for “lognormal (u, H)”.

To show that this is implied by Theorem 2 where X,, not X, ,, is neutra! in
X,+1» we note that (X,,- - -, X,, X,,,) is completely neutral with respect to
Sy, * 58,4, if and only if (X,,- - -, X,,, X,)is. Also 1 — R3, = X,,,, and
R, independent of R,, - - - , R, is equivalent to the neutrality of X, , in the
n-coordinate vector (X, - - - , X,,_;, X, 1) as defined in Section 1.

The lognormal (g, H) distribution can be generated by considering X,
lognormal (-, 62I). The distribution of X, /M, , is then lognormal (u, H) where
v = ¢2/(n + 1). This reinforces the parallel with the Dirichlet distribution which is
the distribution of X,,,,/S,,; when X;, - - -+, X, ,, are independent gamma vari-
ables each with the same scale parameter.

Other points of interest are that no nondegenerate member of the lognormal
family can exhibit neutrality with respect to Sy, - - -, S,,; (Mosimann, 1975b,
Theorem 1) and that for arbitrary positive X,,,, neutrality can occur with respect
to at most one regular sequence of size variables (1975a, Theorem 3). Given this
latter result, the characterization of distributions through neutrality is hardly
surprising.

3. Discussion. Concepts of neutrality with respect to S;,---,S,,, have
played an important role in recent years in the area of random probabilities. Thus
if F(¢) is a random distribution function, it is said to be neutral to the right if the
random proportions (F(t,), F(t,) — F(t), - - -, F(t,_)) — F(¢,_,), 1 — F(t,))) are
completely neutral for all 1, <¢, < - - - <¢,. (Doksum 1972, 1974). This notion
can be related to that of tailfree distributions (Freedman 1963), and may be defined
in terms of independent increments processes (Doksum 1974, Theorem 3.1).
Doksum shows that the posterior distribution of a random probability neutral to
the right is also neutral to the right, and conjectures (page 193) that apart from the
exceptional cases where the random probability measure P is

(1) degenerate at a given probability P,

(ii) concentrated on a random point,
or

(iii) concentrated on two nonrandom points,
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the only process which is both neutral to the right and neutral to the left is the
Dirichlet process of Ferguson (1973). Neutrality to the left is defined analogously
to neutrality to the right, except that the partitions are taken in the reverse order
(2, ), (B_ s L) - -+ 5 (2 1), (— o0, #,]. It is straightforward to show that this
implies (and is considerably stronger than) the property “1—F(z,) is neutral in

(F(1,), F(t;) = F(t,), - - -, F(t,-1) = F(t,_5), 1 = F(1,))".

Thus for each partition, Theorem 2 states that the proportions are Dirichlet or
limits of Dirichlets, and Doksum’s conjecture is proved as in Doksum (1972). Other
characterizations of the Dirichlet process from neutrality properties in Theorem 1
are given by Doksum (1974).

The concept of complete neutrality has also been utilized recently in the
assignment of prior distributions for the cell probabilities in Bayesian life-table
analyses with grouped data (Lochner and Basu 1972, Lochner 1975). Thus suppose
individuals are put on test at time 0 and followed for a maximum time ¢, during
which they either fail, are lost to follow-up or are known to survive. Let p, denote
the probability of failure in (4,_,, %), i=1,---,nwhere t{, =0<¢, < - - - <1,
= ¢, 37.,p; < 1. From the likelihood function a seemingly natural assumption for
a prior distribution for p = (p,, - - - , p,) is that the conditional failure probabili-
ties py, p; /(1 — 2};'1 p), i =2,---,n be independent; ie. that p be completely
neutral (Lochner and Basu 1972). According to Theorem 2, if we assume in
addition that X{p; is independent of { i/ 2ip;; i=1,---,n— 1}, ie. that the
prior conditional cell probabilities given failure before ¢ are distributed indepen-
dently of the probability of such failure, then the prior for p must be Dirichlet (or
degenerate).

General concepts of neutrality are related to concepts of isometry and relative
growth in biology by Mosimann (1975a).
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