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ON THE ASYMPTOTIC DISTRIBUTION OF
k-SPACINGS WITH APPLICATIONS
TO GOODNESS-OF-FIT TESTS!

By Guipo E. DEL PINO

Universidad de Chile
Let X}, - - -, X, be an ordered sample from a distribution 4, on [0, 1]. The
k-spacings D(N, k), - - - , Dy(N, k) are defined and the weak convergence of

their empirical distribution function under a sequence of alternatives A4, ap-
proaching the uniform distribution is estab!jshed. This is then applied to find
the limiting distribution of W,(g, k) = N ~23¥_,(g(NkD(N, k)) — a) where g
is a smooth function and k is fixed. The statistics W,(g, k) can be used to test
the hypothesis that the observations are uniformly distributed in [0, 1]. The
asymptotic relative efficiency of W, (g, k) with respect to W, (g, 1) is shown to
increase without limit for several functions g. The test with g(x) = x? is shown
to be asymptotically optimal within the class W,(g, k) for any fixed k. The
paper extends results of Rao and Sethuraman.

1. Introduction. Let X, X,, - - - , X, be an ordered sample from a distribution
A, on [0, 1]. For any fixed k, the k-spacings are defined by
D l(N ’ k) = Xk
(1.1) Dy(N, k) = Xy — Xii—1yx i=2-.---,N—1

Dy(N, k) =1— Xwv-1yk
where N is the smallest integer greater than or equal to (n + 1)/k. For notational
simplicity, the arguments N and k will not be indicated explicitly. Also, since we
will only be concerned with asymptotic properties it will be assumed, without loss
of generality, that n + 1 = Nk. When k = 1, the k-spacings reduce to the usual
spacings considered in the literature. They will be called simple spacings.

Rao and Sethuraman (1975) study the asymptotic behavior of the empirical
distribution function F), of the normalized simple spacings (n + 1)D,, under a
sequence of smooth alternatives 4, converging to the uniform distribution at the
rate n~ %, Statistics symmetric in the simple spacings can be viewed as functionals
of Fy, and be used to test the null hypothesis that the observations are uniformly
distributed in [0, 1]. Rao and Sethuraman show that tests based symmetrically on
the simple spacings are asymptotically unable to detect alternatives approaching
the uniform at a faster rate than n~ 5.

The main motivation behind this paper is to explain the reasons for the poor
performance of these tests and to suggest modifications to improve them. The basic
idea is that the problem arises because symmetric functions of the simple spacings
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do not take into account the smoothness of the probability density function. The
situation is somewhat analogous to that of using a histogram with as many cells as
observations. On the other hand, symmetric functions are useful in that they
typically provide consistent tests against wide classes of alternatives. A compromise
is achieved by using symmetric functions on the k-spacings (they will not be
symmetric in the simple spacings if £ > 1, unless they are constant). Although on
intuitive grounds one should let k increase with the sample size n, in the present
paper we restrict ourselves to the case k fixed. In the last section we discuss the
general case briefly.

In Section 2 we study the weak convergence in the Skorokhod topology of the
empirical process based on the k-spacings. This is done by an application of a
theorem in Rao and Sethuraman (1975). In Section 3 we obtain the asymptotic
normal distribution of

W,(g k) = N~23I,(g(NkD) ~ a)

under a sequence of alternatives approaching the uniform distribution at the rate
n~ . Statistics of this type have often been proposed in the literature for k = 1 (see
e.g., Greenwood (1946), Moran (1947), Sherman (1950), Kimball (1950), Darling
(1953), Pyke (1965). The asymptotic results in Sections 2 and 3 for the null case are
of independent interest since they can be applied to several problems arising in
connection with the Dirichlet distribution. In Section 4 we find the asymptotic
relative efficiency (ARE) between different tests of the type W,. It is shown for
several functions g that the ARE of W, (g, k) with respect to W,(g, 1) increases
without limit as k tends to infinity. In Section 5 we prove that g(x) = x? gives an
asymptotically optimal test among tests of the form W, (g, k). It is argued that this
optimality property is likely to hold among all tests depending symmetrically on
the k-spacings.

2. Weak convergence of the empirical process of the k-spacings. Let
Y, -+, Yy be independent and identically distributed random variables with
probability density function

k—=1,—y

h(y) = F(lz)‘ e

and corresponding distribution function H,. It is well known that under the

uniform distribution
(Nle’i= 19' o ,N) =d(),i/Tn9i= l,' ° ,N)

where
= 1 N
Tn - Nkzi-l},i
and =, stands for “has the same distribution as”. Consider the sequence of

distributions
2.1) A, () =t + L(t)m(n) 0<t<1
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where L is twice differentiable, L(0) = L(1) = 0, and m(n) = O(n‘El). The deriva-
tives of 4, and L are denoted by a, and / respectively. Let

1
(22) J(x) = NEIiLIHk(em‘x)
where
- z — (N N2 2
e; =1+ l( N)m(n) L( N)I ( N)m (n) + o(m*(n)).
Let F, be the empirical distribution function of the normalized spacings NkD,.
Define the empirical process 7, as
(2.3) F,(x) = N2(Fy(x) — J,(x)) and £ =N3i(T,-1) 0<x< oo

It can be easily checked that all the conditions for the ai)plication of Corollary 2.7
of Rao and Sethuraman (1975), page 309, are satisfied except for a trivial modifica-
tion to allow for the asymptotic variance of £, not being equal to one. Thus we get
the following.

THEOREM 1.  The processes (7j,(x), 0 < x < o) converge weakly in D[0, «] to a
Gaussian process (j(x); 0 < x < 0) with mean zero and covariance function

(24)  K(x,y) = min(H(x), H(y)) — H(x)H(») - -,l;xyhk(X)hk(y)-

Weak convergence in D[0, oo] is discussed in Rao and Sethuraman (1975). Let

@2.5) m,(x) = N*(F,(x) — Hy(x))
and let

(2.6) Val(%) = N2(J,(x) = Hy(x)).
Then

(%) = 7,(x) + V,(x).

The asymptotic distribution of 7, is the same under the null distribution and under
the sequence 4, its asymptotic distribution being given in Theorem 1. A Taylor
expansion of J, (x) gives

@7) V) = () xhe(3) + 5 0870 a

+o(N 7 m*(n))  uniformlyin x.
It is seen from (2.7) that if m(n) tends to zero faster than n~+ then V, converges to
zero uniformly. Hence the proper choice of m(n) is

m(n) = O(n_% .

Since any constant factor can be assimilated into L(x) we can take, without loss of
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generality, m(n) = n=% and
(2.8) a() =1+ )n~% 0<t< L
We then have

THEOREM 2. Under the sequence of alternatives (2.8), the processes (1,(x), 0 < x

< o) converge weakly in D0, o] to a Gaussian process (n(x), 0 < x < o0) with
mean function

(29) o(x) = 3((k + Dx — x)h(x)[41%(0) dt

and covariance function (2.4).

It can be checked (cf. del Pino (1976), pages 163-166) that the probability
measures induced by the process 1 and the process 7, corresponding to / = 0, are
mutually absolutely continuous and thus they cannot be discriminated with proba-
bility one. :

3. Asymptotic distribution of W,. Consider now the statistic

(3.1) W, = N-3SI(g(NkD)) — a)
where
a = Eg(Y)
with Y having distribution H,. The statistic W, can be rewritten as
(32 W, = [58(x) dn,(x).

By imposing smoothness conditions on the function g so that (3.2) can be
integrated by parts and by applying the law of the iterated logarithm it is possible
to obtain, in the same way as Rao and Sethuraman (1970), rather complicated
sufficient conditions for the continuity of W, as a functional of 7, in the Sko-
rokhod topology. For practical purposes it is better to have an easy-to-check set of
sufficient conditions implying these. A convenient set is

3.3) @) g is absolutely continuous in (0, o) and g’ is bounded on
any closed interval in (0, o0).
(ii) Either g is monotone in the neighborhood of 0 and oo, or g’ is
bounded on [0, oo].
(iid) lim, e~ **g*(x) = O for some a < 1.

(iv) lim,_,x#g%(x) = 0 for some B < k.

We assume in what follows that (3.3) holds. Under these conditions, W, converges
in distribution to

W= — g (x)n(x) dx.
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Let u and 62 be the mean and variance of W. Then

69 n=EEDE ) g () — () i

(3.5) = (4k)‘% fglz(t) dt f3°g(x)(x2 —2(k + )x + k(k + 1))hk(x) dx
(36) = (4k) 73 [3(1) dif " (x)hy(x) dx,

this last expression being true only when g” exists. Also

(3.7 o = [£158 (x)g' (¥)K(x, y) dx dy

(3.8) = [EF(X)h(x) dx — (SEe(x)h(x) dx)’

— 2 UEEex = R(x) dx)?.

Note that expressions (3.5) and (3.8) do not involve the derivative of g. The
differentiability conditions seem to be unnatural to the problem but are inherent in
the method of proof. Under the null hypothesis, the results can be obtained using
only the assumption that g(Y) has a finite variance when Y has distribution H,.
This can be done by extending a theorem of LeCam (1958) along the lines of Pyke
(1965) or del Pino (1976).

4. Asymptotic relative efficiency. We turn now to the question of computing
the asymptotic relative efficiency (ARE(l, 2)) of two tests W,(g, k;) and
W, (g, k,) corresponding to different g and k. Let (g, k), 0%(g;, k;) denote the
asymptotic mean and variance of W,(g;, k;) under the sequence of alternatives
(2.8). Then (see Fraser (1957), page 273)

n( 8y, ky) )4/ ( w( 85, ky) )4
o( 8 k) o( g2 ky) .

Rao and Sethuraman use the wrong exponent 2 instead of 4 in the above
expression. We will compute

1) e(g k) = pX(8, k)/ (o*(g K)(E1(2) dt)’)
for several g and k. Then ARE(], 2) is obtained by
ARE(l, 2) = ez(gl, kl)/ez(gZ’ ky).

ARE(1, 2) = (

EXAMPLES.

1) gx)=x% 2a>—k a(a — 1) # 0. From (3.6) and (3.8) we get

L o(a — 1)'T*(a + k)
& k) = 2% ( TQ2a + k)T(k) — Ta + k)(1 + a?/ k)> '
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In particular for a = 2

k+1
e( 8> k) - 2 .
In general it can be proved that
lim,_ 2"’]((") =1 for a(a—1)%0.

(2) g(x) = log x. From (3.6) and (3.8)

e(g, k) =

o
4k(2°°— - —)

k j2 k .
Again

2e(8, k) _

11mk—>oo k
(3) g(x) = |x — k|. From (3.4) and (3.8)

(k + 1)°h2, (k)

e(g k) = ” .
1 — 4kh, (k) —|2(1 = Ry 5(K)) — T 1 Penr(k) — 1

In particular
1
e(g, 1) = m =~ 0.5726.

In this case

2e(g, k) _ 1

k 7r-2<1'

hmk—»oo

5. Asymptotically most efficient test. Taking g(x) = ag,(x) + bg,(x) and com-
puting the asymptotic variance of W, (g, k), one obtains

COV( W(g k), W( 82 k)) = fsogl(x)gz(x)hk(x) dx
— (U&e1(x)A(x) dx)(f382(x) Py (x) dx)

— ISR = (x) e[ (x)(x — Khy(x) d.
Let g,(x) = x2 Then

Cov(W (g, k), W(gy, k) = [E2,(x)(x* — 2(k + 1)x + k(k + 1))h(x) dx
= (4k)2u(gy, K)/ (JHI2() ).
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Thus e(g, k) can be rewritten as
Cov¥(W(g, k), W(x% k
(5.1) o(g, k) = S (2 k), W(x, K)
Var(W(g, k))4k
_k+1
2
Expression (5.1) is maximized by choosing g(x) as a multiple of x2 The ARE of
W,(g,, k) with respect to W, ( g,, k) becomes

(52) ARE(1, 2) = p}/p3

where p, is the asymptotic correlation coefficient of W,(g;, k) and W,(g, k) where
g(x) = x% The optimality property of the statistic

(5.3) Ty = N 22 [(NkD)? — k(k + 1)]

was proved in the case k = 1 by Rao and Sethuraman (1975). Also in this case
Weiss (1957) considers the family of densities

H(x)=1+8(x-1) —0 <8<

P2( W( 8 k)’ W(xz’ k))

and proves that the test rejecting the hypothesis of uniformity for large values of
Ty is locally best unbiased within the class of all tests depending symmetrically on
the simple spacings. The author has shown (del Pino (1976)) that the likelihood
ratio statistic of the asymptotic Gaussian processes corresponding to the null and
the sequence of alternative distributions, is a linear transformation of the stochastic
integral
T = [§x* dn(x).
This suggests that

TNk = f(?xz dnn(x)
is asymptotically most efficient within the class of statistics based symmetrically on
the k-spacings, for any fixed k.

6. Discussion. The examples in Section 4 indicate that k& should be allowed to
increase with the sample size n. Some purely formal manipulations suggest that
choosing k proportional to n*~! will produce tests with nontrivial asymptotic
power under a sequence of alternatives approaching the uniform at the rate
n~% + <8 <3. A rigorous treatment of this case is given in the author’s Ph.D.
thesis and will be the subject of a separate paper. The rate n~7 can only be
achieved for a fixed number of spacings. For g(x) = x*> and g(x) = 1/x the
resulting tests are related to chi-square tests with cells determined by sample
quantiles. At first sight it seems as if one were throwing away too much informa-
tion by using k-spacings with large k. That this is not the case asymptotically,
follows from the results of Weiss (1974) on the asymptotic sufficiency of an
increasing number of sample quantiles.
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Simulation studies strongly confirm the increase in power obtained by taking k&
bigger than one. The behavior of the tests for g(x) = x? and g(x) = log x is very
similar to that of chi-square tests, and they are not uniformly dominated by those
based on the empirical distribution function. From a different point of view, the
results in this paper may be useful in predicting the behavior of other tests, such as
the chi-square and likelihood ratio tests for the multinomial distribution with
equally likely cells. In particular, the test suggested by Kempthorne (1967) is likely
to behave very poorly against smooth alternatives, at least for large sample sizes.

Acknowledgment. I would like to express my gratitude to Professor Grace
Wahba for suggesting the problem and her encouragement in the course of this
work. I would also like to thank Professors J. Sethuraman and J. S. Rao for making
available some of their unpublished material. .

REFERENCES

[1] DARLING, D. A. (1953). On a class of problems relating to the random division of an interval. Ann.
Math. Statist. 24 239-253.
[2] pEL PNo, G. E. (1976). Spacings. Unpublished Ph.D. thesis, Univ. Wisconsin-Madison.
[3] FRASER, D. A. S. (1957). Nonparametric Methods in Statistics. John Wiley, New York.
[4] GreeNwoOOD, M. (1946). The statistical study of infectious diseases. J. Roy. Statist. Soc. Ser. A 109
85-110.
[5] KeMPTHORNE, O. (1967). The classical problem of inference-goodness of fit. Proc. Fifth Berkeley
Symp. Math. Statist. Probability 1 235-249.
[6] KiMBALL, B. (1950). On the asymptotic distribution of the sum of powers of unit frequency
differences. Ann. Math. Statist. 21 263-271.
[7) LeCam, L. (1958). Un theoreme sur la division d’un intervalle par des points pris au hasard. Publ.
Inst. Statist. Univ. Paris 7 7-16.
[8] MoRAN, P. A. P. (1947). The random division of an interval. J. Roy. Statist. Soc. Ser. B 9 92-98.
[9]1 Pyke, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 27 395-449.
[10] Rao, J. S. and SETHURAMAN, J. (1970). Pitman effeciencies of tests based on spacings. In
Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.), 267-273. Cambridge
Univ. Press.
[11] Rao, J. S. and SETHURAMAN, J. (1975). Weak convergence of empirical distribution functions of
random variables subject to perturbations and scale factors. Ann. Statist. 3 299-313.
[12] SHERMAN, B. (1950). A random variable related to the spacing of sample values. Ann. Math. Statist.
21 339-361.
[13] Wess, L. (1957). The asymptotic power of certain tests of fit based on sample spacings. Ann. Math.
Statist. 28 783-786.
[14] WErss, L. (1974). The asymptotic sufficiency of a relatively small number of order statistics in
goodness of fit. Ann. Statist. 2 795-802.

DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD DE CHILE

CASILLA 2777

SANTIAGO, CHILE



