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ASYMPTOTIC DEFICIENCIES OF ONE-SAMPLE RANK TESTS
UNDER RESTRICTED ADAPTATION!

By W. ALBERS
Technological University Twente, Enschede

In this paper we consider adaptive one-sample rank tests of the following
type: the score function J of the test is estimated from the sample under the
restriction that J € §, for some given one-parameter family § = {J,,r €I C
R'). Using deficiencies, we compare the performance of such tests to that of
rank tests with fixed scores. Conditions on the estimator S of the parameter r
and on J, are given, under which the deficiency tends to a finite limit, which is
obtained. For a particular class of estimators which are related to the sample
kurtosis, explicit results are obtained. .

1. Introduction. Let X, - - - , X,y be independent identically distributed (i.i.d.)
random variables (rv’s) with common absolutely continuous distribution function
(df) F(x — @), where F is such that F(x) + F(—x) = 1 for all x, i.e., the distribu-
tion of X, is symmetric about §. Then we want to test H,: § = 0 against H;: § > 0.

Widely used tests for this one-sample problem are linear rank tests. These are
distribution-free, i.e., the distribution of their test statistic 7 does not depend on F
under H,. Let 0 < Z, < - - - < Z, be the order statistics of |X,|,- - -, |Xy|- If
| X R | = Z,, define
(1.1) V.=1 if Xgp >0,

J
=0 otherwise.

Let X, Z and V denote the corresponding vectors, and let a = (a;, - - - , ay) be a
vector of scores. Then the rank statistic 7 is defined as

(1.2) T =ZaV,;
(= always means E}V,, 1, unless stated otherwise). We shall restrict attention to rank
tests with smooth scores

(1'3) aj= E‘I(ljij),

j=1,---,N, where J is a continuous function on (0,1) and U,., < - - - <
Uy . 5 are order statistics of a sample of size N from the uniform distribution on

, 1).
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It is well known that for each df F, that satisfies certain mild regularity
conditions, there exists a score function J such that the corresponding rank test is
asymptotically optimal for testing H,, against contiguous alternatives (see Hajek
and Sidak (1967)). The usefulness of this result is severely limited by the fact that
the optimal J depends on the generally unknown F. In fact, it is just this lack of
knowledge which stimulates the use of rank tests.

One may try to overcome this difficulty by using the vector of order statistics Z
to obtain an estimator J for the optimal J. This means that the corresponding
statistic 7" = SEJ( % . n)V; adapts itself to each particular sample. For this reason
the test X based on T, is called an adaptive rank test. Note that this terminology is
somewhat misleading: ¥ still is distribution-free, but it no longer is a rank test as
the scores depend on Z, which means that X is merely 2 permutation test. Héjek
and Sidak (1967) have shown that there exist estimators J such that the correspond-
ing test ¥ is asymptotically optimal for all sufficiently regular df’s F. They also
mention, however, that the convergence of J towards the optimal J seems to be
very slow, which makes the practical usefulness of ¥ doubtful. This feeling is shared

by several other authors (see e.g., Stein (1956) and Huber (1964), page 80).
In view of this the following approach seems worthwhile: suppose that F belongs

to some known set of df’s such that for each F in this set there exists an optimal
score function J. Let ¢ be the set of these J. Then we use an estimator J based on
Z for the optimal J, under the restriction that Je ¢ . This method is motivated by
the feeling that, while unrestricted adaptation needs exorbitant sample sizes, a very
moderate type of adaptation might work (see Huber (1972), page 1058). A similar
approach in estimation has been used by Hogg (1967) and Jaeckel (1971). By
taking sufficiently restricted sets ¢, the degree of adaptation can be made arbi-
trarily small. In the present paper we shall consider parametric families of df’s { F,,
r € I c R'} (the case of a multi-dimensional parameter can be dealt with in
exactly the same way, but it will lead to even more complicated expressions than in
the one-dimensional case). Let J, be optimal for F,, let $ = {J,,r €I C R'} and
let S = S(Z) be an estimator of r, attaining values in I. Then we. consider the
adaptive rank test x g, which is performed as follows: given Z = z, we evaluate the
scores EJ (U, . y) for s = S(z) and reject H,, : § = O for large values of

(14) T, = SEI(U;. 5) V.

Hence x ¢ is a permutation test and therefore it is distribution-free.

We shall compare the performance of x s to that of the fixed-scores rank test x,,
based on 7, = ZEJ,(U;. 5)V), for r € I. Such a comparison is especially interest-
ing if the true df F is such that F = F: for some 7 € I, for then x ; is asymptotically
optimal among all rank tests with fixed scores. Obviously, there exist estimators S
of r such that x ¢ has efficiency 1 with respect to (w.r.t.) x; under F:. Hence, for an
effective comparison of x ¢ and x;, we need more information.

A possible way to obtain this is to study the asymptotic behaviour of the
deficiency dy, of x ¢ w..t. x; under F:. In the present situation dy is defined as the
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additional number of observations which is required for x ¢ to attain the same
power as x; when x; is based on N observations (see Hodges and Lehmann
(1970)). Note that the fact that x ¢ has asymptotically efficiency 1 w.r.t. x ; under F;
merely implies that dy = o(N) in that case. Hence a study of the asymptotic
behaviour of dy may supply valuable additional information on the rate of
convergence of the power of x ¢ towards that of x ; under F;.

For the determination of the asymptotic behaviour of dy, asymptotic expansions
to order N ~! for the power of x s and x; are needed. For x;, being a linear rank
test, such an expansion is given by Albers, Bickel and van Zwet (1976). (For further
reference we denote this paper as ABZ (1976)). For x ¢ this expansion can be
derived by analogous methods. This is done in Section 2. Using these results it is
shown in Section 3 that under suitable regularity conditions on S the deficiency d,
of x g w.r.t. x; under F;: has a finite limit d, which is obtained. For r # 7, the test x 5
typically has asymptotic relative efficiency (ARE) e > 1 w.r.t. x under F;. The
section is concluded with a few examples.

In order to obtain completely explicit results, it remains to investigate which
choices of S are suitable, to verify the conditions from Section 3 for these choices
and to determine their asymptotic behaviour. This is done in Section 4 for a
particular family of estimators S, ,. It is introduced as follows: let p and ¢ be
constants such that 0 < p < ¢ and let k(F) = [|x|%dF(x)/{f|x|’dF(x)}?/?. Then we
choose for S, , the value of r € I that minimizes

(1.5) IN-15Z2/ (N71522P )7 — K(F)|.

Using results of Shapiro, Wilk and Chen (1968), Hogg (1967) and Hogg (1972), it is
argued that these S, , are reasonable estimators. It is also indicated how p and ¢
should be chosen for a given ¢. Next the asymptotic behaviour of S, , is
determined. Together with the results of Section 3 this leads to an explicit
expression for the asymptotic deficiency d of xg w.r.t. x; under F;. As an
application the value of d is obtained for the examples from Section 3.

2. Asymptotic expansions for adaptive rank tests. In this section we shall give
an expansion to order N ~! for the power of the test x g (see (1.4)) under contiguous
location alternatives F(x — ). The derivation of such an expansion is a com-
plicated matter which requires a lot of space. Fortunately, it is closely related to the
derivation of a similar expansion for the power of rank tests with fixed scores (like
X ; ), as was obtained by ABZ (1976). Therefore we shall here only state the result
we need in the subsequent sections and indicate how the proof of ABZ (1976) can
be adapted to cover the present case (for more details see Albers (1976)).

First we introduce the following notation and conditions. We consider i.i.d. rv’s

X, -+, Xy with df F(x — 8). About (= 6,) we shall assume that for some
positive constant Cand N =1, 2, - - -
2.1) 0<@<CN2

As concerns F, we shall suppose that F € ¥, determined by
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DErFINITION 2.1. ¥ is the class of df’s F on R! with positive densities f that are
symmetric about zero, four times differentiable and such that for

@)
(22) v =L v = wE@ + 0/2),
m, =6,m2=3,m3=§,m4= 1,
(2.3) lim sup, _o/% |¢;(x + »)["f(x)dx < oo, i=1---,4,
¥y (f
(2.4) lim sup,_,q, ,#(1 — 1) \Pi ((t)) <3

Next we consider the family of score functions 5 In the first place we shall
assume that § = {J,} always has the form

(2.5) ¢ ={J|J, =Jy+rh, =D, <r < D,},

where J, and 4 are fixed continuous functions on (0, 1) and D, and D, are positive
constants. This restriction has two obvious advantages: the score function Jg = J,
+ Sh of x¢ has a very simple form and the expansion for the power of x g is
considerably less complicated than in the general case. On the other hand, the loss
of generality incurred by the restriction is not as serious as it may seem. To see this,
we note that (2.5) implies that Jg¢ = J; + (S — F)h. But under F;, typically S — 7
and hence for general families {J/,} we have a similar approximate result: Jg ~ J;
+ (S — ANQ/0X) ) emi

The following regularity conditions are imposed on ¢ : for a function w on (0, 1),
let I(w) denote [}w(f)dt. Then we suppose that Jo, h, D, and D, in (2.5) are such
that

(2.6) I(J§) < o0, I(h*) < oo,

2.7 J,, and h are twice continuously differentiable,

(2.8) |74(7)| > max(D,, D,)|'(r)| forsome 0<7<1,

(29) limsup,_ o {t(1 = O/ (D/J(D)]} <3/2 for —D; <r <D,
(2.10) Y (uydu>0 for 0<t<1 and —D,<r<D,

Just as in the introduction, let F, be the symmetric df for which J, is optimal, for
each J. € ¢. It is easy to show that under condition (2.10) this definition makes
sense, i.e., that there corresponds exactly one symmetric df to each J, (cf. Hijek
and Sidék (1967), page 21, Lemma I 2.4 f). This F, is determined through its inverse
G, as follows:

@11) G(%) = (5[ L,(v)do] ',
for 0 < ¢ < 1. In analogy to Definition 2.1, we introduce f. = F/, y,, = f?/f, and
¥.(0) = ¥,(G[1 + #]/2). Hence —¥,, = J, and x, is optimal for F,.

The final step before presenting the theorem is the introduction of the notation
for the results. Let a denote the level of the tests involved, let @ be the standard
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normal df, let ¢ = ® and let u, = ®~'(1 — &), where ®~' is the inverse of ®.
Define
(2.12)

N —1/2011/2(J’2)
77 ?

X {IIHI 2T - 6(u2 — 1) + 3N VIV )u, + 5NOA(J7)]
— 12NO(¥3) I~ (J?) — ONVHIH(I7)(u, — N'/BIV*(J7))
=361 (AN M0 (1 — )de},

7(0) = 1 — ®(u, — N'91'*(J?)) + (u, — N'VH1'*(J?))

(2.13)

NV
2

R(S, 0) = o(u, — N'/201‘/2(J,2)){ E/(S — [ 1(R)I~V/(J?)

— 13RI %(J3)] = NVHE,[ S{ET (U N1, ~/*(T7)

— ER(U)I " HID)(S © D (2) - Ean(@))]}
Then we have

THeoreM 2.1. Let C, ¢, D, and D, be any fixed positive constants and J, and h be
fixed continuous functions on (0, 1). Assume that 0 satisfies Q21),e<a<1-—eand
that § satisfies (2.5)—(2.10). Then for every fixed i € [— D,, D,] such that F;: € ¥,

there exist positive constants A, 8, 8,, - - - such that limy_, .8y = 0 and for every N
the power mg(0) of X s satisfies under FAx — )
(2.14)

|ms(8) — 7H0) + KAS, )| <8y {N ™"+ E)(S — 7}’

+|E,S — 7} + A{N-3/2117,5/”(J;'(t))2(t(1 — 1)t + Ey|S — #*}.

REMARK 2.1. Apart from (2.8) and (2.10) the conditions of the theorem corre-
spond in an obvious way to similar conditions in Theorems 4.1 and 4.2 of ABZ
(1976). To see which condition (2.8) corresponds to, it suffices to note that it
ensures that J, is nonconstant on (0, 1) for all —D, <r < D,. The purpose of
(2.10) has already been explained.

REMARK 2.2. According to the theorem, 7x(#) — KX(S, 9) is an expansion for
the power 7g(@) of the adaptive rank test x 5. To clarify this result we remark that
7«#) is an expansion for the power m{(8) of x;, the optimal rank test with fixed
scores under F:, while K(S, 0) is an expansion for the shortcoming 7{0) — mg(8).
This follows by considering the special case where S = 7 a.s. Then K4S, 8) =0
and the expansion for 7g(8) reduces to 7:(6). On the other hand, if § = 7 a.s., the
test x 5 is equivalent to x; and therefore 7¢(9) = w«(0). Hence, in this case, 2.14)
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reduces to |m(8) — T{(B)| < SyN ' + AN 7>/2[ 0/NIHOP{t(1 — 1)}'/%dr. Ex-
actly the same result is given in Theorem 4.2 of ABZ (1976) which thus can be
considered as a special case of the present theorem.

REMARK 2.3. In Theorem 2.1 we have considered the special case where the
underlying df equals F: for some — D, < 7 < D,. The case of an arbitrary F € &
can be dealt with in exactly the same way (see Albers (1976), Theorem 2.3; also cf.
Theorem 4.1 of ABZ (1976)).

About the proof we make the following remarks: conditional on Z = z, the
scores a; = EJ (U, y) are constant and the statistic 7 in (1.4) is indistinguishable
from an ordinary rank statistic. Hence a similar approach as used by ABZ (1976)
can be applied. First an expansion 75(#|Z) for the conditonal power 75(8|Z) of x 5
is obtained, from which an expansion for 7¢(8) follows by taking expectations. In
carrying out this program essentially the same steps are taken as in ABZ (1976). In
addition ag; has to be expanded everywhere anund a;;. This results in an expansion
that consists of the two parts 7(f) and Ki(S, #) (for more details see Albers
(1976)). Perhaps it is good to mention at this point that the following shorter
method is not correct: replace everywhere in the expansion 7:(8) for w{(f) the
variable 7 by the rv S and evaluate the expectation of the resulting expression to
obtain an expansion for mg(#). This is not allowed since S and V; from (1.1) are
only independent under H,, : § = 0. In fact, the complicated last term of K.(S, 9)
in (2.13) is precisely due to the dependence of S and ¥ for § > 0.

3. Comparison of xg and x,. In this section we shall use the results of Section
2 for a comparison of the performance of the adaptive rank test x  to that of the
fixed scores rank test x, under F;, for —D; < r < D,. Note that x; is the locally
most powerful rank test under F;. Let dy(7) be the deficiency of x ¢ w.r.t. x; under
E;, let d(F) be its limit if it exists and let e(7, r) be the ARE of xg w.r.t. x, under F;.
Define

(.1)  di(r) = NEW(S — r)’[I(W)I~\(J?) — I*(J,))I~J})]
~2E,[ S{ E7(U. NI, ~HJF) = ER(UN)T7'(J7))
x (S = N(¥1,(2) = E(2))].

Then we havé

THEOREM 3.1. Supposé that the conditions of Theorem 2.1 are satisfied. Moreover,
assume that § ' = O(N'/?),

(32) Ji(0) = o({t(1 = }7)
near 0 and 1 and that S satisfies under F: for some 8 > 1
(3.3) E,|S — 7% = O(N #),

(3.4 E,S —F=O(N™Y).



950 W. ALBERS

Then the following limits exist and are given by
(3:5) d(7) = limy_, ,d%(F),
(3.6) e(7, 1) = IR (I ~2JT,).

The proof of this theorem is contained in Albers (1976). We shall not give it
here; it is rather straightforward and, moreover, closely related to the proof of
Theorem 6.1 of ABZ (1976). The idea is, of course, that the additional conditions
(3.2)-(3.4) ensure that the right-hand side of (2.14) is o(NV ~!): (3.3) and (3.4) take
care of all terms involving (S — 7) and (3.2) disposes of the remaining term (cf. the
remarks to this effect following Theorem 4.2 of ABZ (1976)). The result (3.5) then
follows from the definition of deficiency and the fact that «:(0) — wg(9) =
K<(S, 0) + o(N ~"). Finally, (3.6) is standard. .

To interpret the result, note that (3.6) implies that e(7, r) > 1 for r #* 7 unless
J. = BJ: as. for some constant B # 0. Hence, xg typically has ARE larger than 1
w.r.t. x, for r # 7, while its deficiency w.r.t. the optimal test x; tends to a finite
limit.

It should be noted that the results of Section 2 allow a more general result for
dy(7) (see Albers (1976)). In Theorem 3.1' we have isolated the case where d(7)
exists, which is, of course, the most interesting situation.

We conclude the section with a few examples. Let

(37) 7o = o(152),

IO =1, JOU) =1

These are the score functions of the absolute normal scores test, Wilcoxon’s signed
rank test and the sign test, respectively, which are optimal against normal, logistic
and double-exponential alternatives, respectively.

First choose J, = J¥ and A = J@ in (2.5). Then (2.6)—(2.9) are satisfied for all
D,, D, > 0, while (2.10) holds for 0 < D, < (8/7)!/? and every D, > 0. Hence
Theorem 2.1 can be applied for each 7 > — (8/7)"/? for which F- € ¥. The most
interesting case is of course 7 = 0, i.e., F: = ®. Clearly, ® € . Moreover, (3.2)
also holds in this case and therefore (3.5) and (3.6) can be applied for all S that
satisfy (3.3) and (3.4). We find that for the present choice of # the asymptotic
deficiency d(0) of x ¢ w.r.t. the absolute normal scores test under normal alterna-
tives is the limit of
(3.8)

a—3 1+ l]j:N _]
37 2 )_N+1JS(ZI'_E”ZJ')}'
By using Schwarz’ inequality and (A2.16) of ABZ (1976), the mixed second term
can be bounded in absolute value by 2{NE,S?Q2w + 12(3)'/2—27)/67}/? (see
Albers (1976)).
. Next consider the choice J,=JD, h = J®, Just as in the first example, all
conditions are satisfied (only replace (8/7)'/? by (2/7)'/?). Now we find that d(0)

NE,S% + 2E,,{2[n—'/2E<I>—1(
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is the limit of
2 N2 1+ Uy
(3.9) (1 - ;)NE,,Sz + 2Eo{2[(;) E® 1(——2’—) - 1]5(2, - Eozj)],

where the absolute value of the second term is bounded by 2{NE,S?
(m = 3)/=}"/2

Finally, let Jo = J@® and h = J®. Again all conditions are satisfied (replace
8/m'? by 1/2). Now F,=1/(1 + e™*) and we find that in this case the
asymptotic deficiency d(0) of x ¢ w.r.t. Wilcoxon’s signed rank test under logistic
alternatives is the limit of

(3.10) INE,S* + 6E,{(2 Ni{ T 2)s[F0(zj) ~ E,,FO(Z,)]},

whete the absolute value of the second term is bounded by {3NE,S2/10}/2,

4. A family of estimators S, ,. The results of Sections 2 and 3 seem to be final
in the sense that these cannot be simplified any further for general S. Hence, it
remains to investigate which choices of S are suitable, to evaluate the required
moments of (S — 7) for these choices and to verify that (3.3) and (3.4) hold. As an
example we shall study in this section a particular family of estimators S, ,.

In Section 2 it was shown that for each J, that satisfies (2.10) there exists exactly
one df F, for which J, is optimal. Obviously, if J, corresponds to F(x), o~ ",
corresponds to F.(o~'x), for every ¢ > 0. As the rank tests based on J, and 6~ Y,
are equivalent, it follows that J, is in fact optimal for the whole scale-parameter
family {F,(o6 " 'x), 6 > 0}. Hence the problem of finding S = S(Z) such that Jg is
optimal in § as in (2.5), is equivalent to the problem of finding S such that
Fy (0™ 'x) agrees optimally with the underlying df F, for some ¢ > 0. To select this
Fg(o ™ 'x), we shall use a statistic of the form

N~'3Z7
(4.1) K, ,=——,
> -1 q/p
(v-'327)
where Z,, - - -, Z,, are again the order statistics of |X,|, - - - , |Xy| and p and q are

positive constants with p < gq.

To motivate this choice, we quote a result of Hogg (1972). He considers a family
of symmetric distributions, defined by densities of the form f(x, 1) =
c(r)exp(—|x|"), —o0 < x < 00,7 >0 and shows that the most powerful scale
invariant test of 7 = g against 7 = p rejects the hypothesis for large values of K, .
Hence, for example, K, , is optimal for testing normality against a distribution with
lighter tails than those of the normal, namely the one with 7 = 4. For testing
normality against distributions with heavier tails, a choice like K, , is probably
better. This result will be useful in the sequel to obtain an idea which choices of p
and g are suitable for a particular family §. Note that K, , is closely related to the
well-known sample kurtosis (sk.) NZ(X; — X)*/{S(X; — X)*}%. In K, , the sam-
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ple mean X has been replaced by the known distribution mean under the hypothe-
sis, which is zero. This ensures that K, ,, unlike the sk. itself, only depends on Z.
The s.k. has been used before to obtain information on the type of the underlying
distribution: see Hogg (1967) and Shapiro, Wilk and Chen (1968).

If F is nondegenerate and possesses moments of a sufficiently high order, K, ,
obviously converges in probability to

[ | FdF(x)
4.2 = -,
@2 o xrdF ()}

If F=F, in (42) for some —D,; <r < D,, we shall write «, , , instead of «, ,.
Now the idea is to choose S, , such that the difference between K, , and k, , 5 is
minimal. Clearly, the simplest and most interesting ¢ase occurs when «, ., is

continuous and monotone in r. Then S, , can be defined as the unique solution of
4.3) K, o= 45

fork, , —p, <K, 4 <K gp, (for K, , <k, , _pletS, = — D, andfor K, >
K, 4 p, 16t S, , = D;). About the evaluation of §, 6 we remark that K, =
N7IZ|X;|7/{N "'S|X,|P}4/ is readily found from the sample, whereas &, , , can
be evaluated using

(4.4) S 2 | xI%dF,(x) = [3{ f4[ 13 (0)do] " du ) at.

As concerns the regularity conditions under which the above holds, we have

THEOREM 4.1. Suppose that J, and h are continuous, positive on (0, 1) and such
that [{Jo(H)dt < oo, [(h(£)dt < oo. Moreover, assume that there exists a decreasing
function b on [0, 1), such that D,b(0) < 1 and

(4.5) Juh(v)do = b(u)[1J,(v)dv.
Finally, suppose that for positive constants p and q, with p < g,
(4.6) 0 < [ |x|PdFy(x), I2|x|%dFy(x) < oo.

Then «, , , is a continuous and increasing function of r on [— D,, D,] and for all Jo, h,
D,, D,, p and q there exist positive constants ¢ and C such that

4.7) ‘ c<k,,,<C.

Again we shall only give a brief outline of the proof; for details see Albers
(1976). In the first place we note that under the conditions above, (2.10) is satisfied.
Hence, F, indeed exists. The proof of (4.7) and of the continuity of x, , . in r is
straightforward. The monotonicity part is nontrivial, but here we can use a result of
van Zwet (1964). Let F and F be continuous symmetric df’s and let G and G be the
corresponding inverse functions. Then van Zwet introduces the order relation <;
defined by: F <, F if GF is concave-convex on the support of F. An application of
his Theorem 2.3.2 and of the consequences of this theorem now immediately shows
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that F, <,F; implies that «, , , <k, , ;. It is easily verified that under (4.5), with b
nonincreasing, the relation F, <,F; holds for r < 7. Hence, «, , , is nondecreasing
in r. By taking b decreasing this result can be strengthened to the desired one.
Next we shall investigate the asymptotic properties of S, , in order to verify (3.3)
and (3.4) and to obtain an explicit expression for the asymptotic deficiency d(7) in
(3.5). To simplify the notation we shall omit the indices p and ¢ if no confusion is
likely. Hence, in the sequel we shall write X, k, «, and S, rather than K, o K g
K, o -and S, .. The idea is now the following: in the first place we note that under
suitable moment conditions on the underlying df F:, the statistic K will satisfy
k_p, < K <«p, for each 7 € (— D,, D,) with such large probability that it suffices
to consider this case for the determination of the asymptotic behaviour of S to
o(N ~"). Then the equation K = kg has a unique solution. Obviously, the same
holds for
(4.8) K — k= K5 — K;.
Under suitable moment conditions, K —,k; and both sides of (4.8) are small with
high probability. As, moreover, k, is continuous, bounded and increasing, we can
expand kg — &; in powers of (S — 7). Moreover K — «; can be expanded in powers
of N™'S{|X/|° — E,|X)|°}, where v = p, q. Through (4.8) this then leads to an
expansion for (S — 7) from which the desired results in connection with (3.1)-(3.5)
can be obtained. The program above is carried out in detail in Section 5 of Albers

(1976). Here we shall only present the final result.
Let

(#.9) Hy, () = [o

k
b*(u) k....dGo(l + u),
{1 + rb(u)} 2
where k =0o0r 1, — D, <r <D, 0<t<1 and b as introduced in (4.5). Note
that H, () = G,(1 + £]/2) with G, as in (2.11). Moreover, let & be the class of
all twice continuously differentiable functions w on (0, 1) for which lim sup, , ,
{t(1 = O|w"(H)/&'(®)|} < 3/2. Then we have

THEOREM 4.2. Assume that the conditions of Theorems 2.1, 3.1 and 4.1 hold,
except, of course, (3.3) and (3.4). Moreover, suppose that F is such that

0 < flxPdFy(x),  [Ix|*dFy(x) < oo
and HY ; € Q, Hi ; € Qand J; € Q for F = F — I(J})I ~\(J;:h). Then (3.3) and (3.4)
hold and (3.1) and (3.5) can be replaced by
(4.10)  d(7) = (IP)I(T:m)I >(TA Q) {I(WF) — 13(W))
+ 1) 2(IP) 1 Q) {I(W:Mp) — I(W) (M)},

where Q; = — {H{7;' — I(H{)I "(H§QHEZ' YH, ;, W; = ¢ 'Hf; —
P~ I(HE )1 '(HE ) HE, ; and ML) = [4 J; (dI(2).

To see the relation between (4.10) and (3.1), note that I(A%)I~'(J?) —
120 ~2JP) = IJAI*(J:h)] ~>(J?), whereas EJ{U,.\)I(J;h)I ~*(J?) —
EW(U, )1 ~(JP) = IT:)I (TDET; (Uyy).
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As an application of the theorem we reconsider the examples from Section 3.
Again we begin by choosing J, = J® and h = J@ (cf. (3.7)) and again we let
7 = 0. First we take (p, q) = (2, 4), i.e., we essentially base S, , on the sample
kurtosis. After tedious computations which we shall omit here, we obtain that for
this ¢ and this S, , the asymptotic deficiency of the adaptive rank test w.r.t. the
absolute normal scores test equals d(0) = 18(7 — 3) + %= 40- .- .For (p,q =
(1, 2) instead of (2, 4) we obtain d(0) = (7 — 3)*/(61%) + {(w/2 + 2)(2)% -5/1
=47 - - ,where I = 7(2)"/2[C{D(x)(1 — ®(x))*}/d(x)dx — 1 has been obtained
numerically.

As a second and final example take J, = J® and h = J®. For # =0 and
(p, 9) = (2, 4) we find that d(0) = 27#/4 — 12 =92- - - . For (p, q¢) = (1, 2) we
have d(0) = (7 — 3){(w/4 —1/2)/1*> + 1/1} =6.7- -+, where I =[Pl —
®(x))?/d(x)dx — 1 has been obtained numerically.
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