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TWO CONDITIONAL LIMIT THEOREMS WITH APPLICATIONS!

By LARs HoLst
University of Wisconsin-Madison and Uppsala University

Let (X, Y}),- - -, (X, Yy) be iid. rv’s where the X’s are nonnegative
integer-valued. Conditional on X, the asymptotic distributions of 2 Y, and
Sa; X, are derived by general methods. Some applications are briefly discussed:
sampling without replacement, the classical occupancy problem, the Wilcoxon
statistic, the Poisson index of dispersion, testing geometric versus Poisson
distribution.

1. Imtroduction. It is quite common in probability theory and statistics to
come across a random variable whose distribution is the same as that of a sum of
independent random variables conditioned on another such sum. A tool for
obtaining asymptotic results in such a case is to study the joint asymptotic
behaviour of the two sums. An example is the proof of asymptotic normality of the
sample sum in sampling without replacement by Erdos and Rényi (1959). Another
example is Le Cam (1958) on sums of functions of uniform spacings. The general
question of when joint asymptotic normality implies asymptotic normality of a
conditioned distribution was investigated by Steck (1957). In the present paper the
asymptotic behaviour of such a sum is obtained by general methods when the
conditional random variables are integer-valued. Also some examples are briefly
discussed.

Let (X, Y), (X}, Y)), - - -, (Xy, Yy) beiid. rv’s (independent identically distrib-
uted random variables) with X nonnegative integer-valued. In Section 2 a partial
inversion formula by Bartlett (1938) for the joint characteristic function of (X, Y)
is given and some applications of the formula are discussed. In Section 3 the limit
behaviour of £, and the linear combination 3a,X,, conditional on XX,, is
investigated under general conditions. To study £(ZY,|=X,) a general method by
Le Cam (1958) is used. A technique similar to that of Erdos and Rényi (1959) is
used for £(Za X, |ZX,). The methods are general and can be applied in other
cases. Some applications of the limit theorems are considered in Section 4: the
classical occupancy problem, the Wilcoxon statistic, sampling without replacement,
the Poisson index of dispersion and testing a geometric versus a Poisson distribu-
tion.

2. A partial inversion formula. The following formula for a conditional distri-
bution was given by Bartlett (1938).
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THEOREM 1. Let (X, Y) be a two-dimensional random vector with X integer-val-
ued. Then, for n such that P(X = n) > 0,

(2.1) E(e™|X = n) = 2uP(X = n))~"- /" E(exp(is(X — n) + itY)) ds.
Proor. Using conditional expectation it follows that

(22) E(exp(isX + itY)) = 32 _ P(X = j)E(e"|X = j)- e".

By the well-known formula for Fourier-series the coefficient of e*" is obtained

from

(23) P(X =n)E(e™|X =n) = (27)" "' 7 E(exp(isX + itY))- e ™" ds,
which proves the assertion. The formula (2.1) is quite useful as the following
examples may indicate. )

ExampLE 1. (The classical occupancy problem.) Consider N different urns and
throw n balls randomly into the urns. If U, is the number of balls hitting the kth
urn then the vector U = (U, - - -, Uy) is distributed as multinomial
(n, 1/N, - - -, 1/N). The number of empty urns can be written V' = 3, I(U, = 0).
It is well known that if X, - - - , Xy are ii.d. rv’s with a Poisson distribution then
X =(X,, -, Xy) conditioned on ¥,X, = n has the same distribution as U.
Thus, with ¥ = 3, I(X, = 0) it follows that 2(V) = £(Y|Z,X, = n). From (2.1)
the characteristic function of V is obtained:

(24) E(e™) = 27P(EX, = n))”"
7o B(exp(ie10x, = 0) + is(x, - %))))N ds.

The mean EX, is arbitrary. An explicit expression is easily obtained for the
integrand in (2.4). With EX, = n/N the formula (2.4) was given by Rényi (1962)
with a quite different derivation. Rényi used it to prove limit theorems for ¥ when
n, N > co. Rényi’s results have been generalized to more general “multinomial
situations™ with different statistical applications. A recent paper on this is Medve-
dev (1977); see also Holst (1979).

ExampLE 2. (Bose-Einstein statistics and nonparametrics.) Consider again N
urns. Put n indistinguishable balls in the urns in such a way that each distinguish-
able outcome has the same probability, i.e.,

1/ ( n+ Ir\l/ 1 ),
cf. Feller (1968, page 40). Let U, be the number of balls in the kth urn and let
X, -+, Xy be iid. rv’s with a geometric distribution. It is easily verified that
WUy -, Uy) = L((Xy -+ - 5 Xn)IZ X, = n). Therefore, by (2.1) the character-

istic function of a random variable of the form V = XA, (U,), where the h’s are
given functions, can be expressed using the characteristic function of the sum of
the independent random vectors (X, #,(X}), * * + , (Xy, An(Xy))-
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The above urn model occurs e.g. in connection with the nonparametric two-sam-
ple problem. The numbers » and N — 1 correspond to the sizes of the two samples.
The ranks of the “second” sample can be written R, = j + 3} _, U, so Z}_ kU, is
a linear transformation of the Wilcoxon statistic.

ExampPLE 3. (Sampling without replacement.) In a finite population the real
numbers a,, - - -, ay are associated with the N elements. Consider a simple
random sample of size n drawn without replacement. Let ¥ be the sample sum of
the corresponding a’s. Set U, =1 (0) if (not) element k is drawn and let
X, -+, Xy be iid. Bernoulli rv’s. It is easily seen that E((U}, - - -, Uy)) =
PUX - - -5 X=X, = n) and therefore £(V) = LCa, Uy) = ECa X |ZX, =
n). Using (2.1) an expression for the characteristic function of ¥ can be obtained.
The same as that of Erdos and Rényi (1959), who used a direct derivation.

3. Two conditional limit theorems

THEOREM 2. Forj=1,2,- - let (X;, Y)), (Xy, Yyp), -+ -, (XMj’ YMj) be ii.d.
two-dimensional random vectors, where X; is nonnegative integer-valued with Ex; = 6,
and Var X, = ojz(Bj). '

Suppose that
(3.1) SV Xy s sufficient for 6,
3.2) N, > o0  when j— oo,
for every & > O there exists K, < 1 such that for ¢ < |t| <,
(3.3) |E(exp(it(X; — 6)))| <K, <1  forall j,
(34) 0(0)>0o(0) >0 when j>c0 and 6,—6 >0

and that there exists A(6;), B(8)) such that
335) (N7 (Xy ~ 6)/9(8). (Yy ~ 4(6))/B(8)) ~ (2., 2)),
inlaw when  j—> o and 6, —60 >0

where the (infinitely divisible) characteristic function of (Z,, Z,) can be written
(3.6)  E(exp(isZ, + itZ,)) = gy(1) - exp(— %(s2 +2C(0)st + D(0)t2))

for some C(0), D(8) and where the characteristic function g,(t) has no normal
component.
Then for n; — oo such that n,/N; — 8 >0

(3.7) B(E%=1(ij - Aj(”J/M))/BJ(”,/NJ)|21/¥’=1XIg = n,) - E&(Z), j- oo,

where Z has the characteristic function

(38) E(e") = 8(1)- exp( = 5(D(6) = C(O)22).
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REMARK. As pointed out by Le Cam (1958, page 8), (3.5) implies the repre-
sentation (3.6).

ProOF. As ZVX,; is sufficient for 6§, the conditional distribution in (3.7) is
independent of .. Therefore, without any lack of generality, it can be assumed that
6, = n;/N,. This choice is lused in the following. To facilitate notation set o; =
o(n;/ N)) = o(8), o; = N;? - 9, 4; = A(8) and B; = B(H).

Consider a sequence {M;} such that M;/N; — a, 0 < a < 1. From Theorem 1 it
follows that
(39) Pu(0) = E(exp(irZ}(Y,; — 4))/BIEYX,; = n)))

= [(2w)%aMP(2f9(ij - 01) = O)]_l

X (2m) 72 fm, E(exp(it2t(Yy — 4;)/ B, + SN (X,; — 6))/ oy;)) du.

Using the assumptions (3.3) and (3.4) the proof of the local limit theorem for lattice
distributions in, e.g. Gnedenko (1962, page 297) can be used for proving

(3.10) Q70 P(SV(X,, — 8) = 0) > 1, j— 0.

By the independence of the (X, ;, Y, ;) the integrand in (3.9) is a product of one
factor in “Z%” and one in “E’Xf,}_ +1+ The second factor is dominated by

(G.11)  fi(w) = IE(exp(qu’,}'f,jH(ij - 0j)/aNj))| —exp(— (1 — a)u?/2), j— .

Without loss of generality we can suppose that N; — M; is an even integer. Let X;;
denote X,; symmetrized. Again, as in the local limit theorem it follows that

(3.12) [, f(u) du = oy, - [™  E(exp(itS(N~4)/2X})) dt
1 1
= (N/ (8~ M))E- (N, = M)*- (8) - 2~ P(S(Y~4)/2x}, = 0)
- Q27/(1 - a))% = [*_ exp(— (1 — a)u?/2) du.
The factor in “S{” of the integrand in (3.9) is dominated by 1, and by (3.5) we
have

(3.13) E(exp(it=¥( Yy — 4,)/B; + iwSH(X,; — 8)/0n;))

| — (g(t) - exp(— (u? + 2C(0)ur + D(8)1)/2))".
By the extended form of Lebesgue’s dominated convergence theorem (see, e.g., Rao
(1973, page 136)) (3.10), (3.12) and (3.13) imply that

a 1 .
G190 80" exp( = 3(aD(O) — (@CO)?) = 0i(1). oo
The function ¢, satisfies
(3.15) @,(t)>1,a->0,

(3.16) o.(1) > g,,(t)exp( - %(D(o) — o )z)tz), a1,
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The assertion of the theorem follows from (3.15) and (3.16) by an argument in Le
Cam (1958, page 13).

THEOREM 3. Let {N,, ay,- - -, a,\gj} be real numbers satisfying
(3.17) N; — 00, j — o0,
(3.18) SVa,; =0,
(3.19) SVal /N, > 1, J— oo,
(3-20) max; << a5/ N; =0, J— oo.
Let X;, Xy, - - -, X, N be 1.i.d. nonnegative integer-valued rv’s with EX; = §,, Var X;

= ojz(0j), satisfying (3.1), (3.3) and (3.4). Then for n; — oo such that n;/N, — 6 >0
(3:21) B(Ivj—l/zzllvjaijkj/oj(nj/]Vj)‘Ell\Gij = j) - N(0, 1), J—> oo.

PROOF. Set g(f) = E(exp(it(X; — 9)))). From the assumptions (3.3) and (3.4)
the following estimates hold uniformly in j

(3.22) g(t) = exp( - %(a}(@) + o(1))t2), t—0,
(3.23) |g(1)| < exp(—K,), 7] <,
(3.24) lg(n)] < exp(—K;), e<|f<m,

for some ¢, K;, K, > 0.
As in the proof of Theorem 2 it can be assumed that 8, = n;/ N;. With the same
notation as before Theorem 1 gives

(3.25)  E(exp(itZYayXy/ oy)|Z¥Xy = n)
-1 -
= [(2"7)1/20ij (EII\Gij = j)] - (2m) 1/2f T%wﬂi\;gj((talq + “)/ aNj)du'
That the first factor on the right hand side of (3.25) converges to 1 is proved in
(3.10). The convergence of the integral can be studied in almost the same way as in
the proof of the local limit theorem.

Choose an 4 > 0. By (3.22)

(326) @02 fycallVg((tay + u)/ow)du > 7)™ [y cae ™3 D

where the right hand side converges to e ~*/2 when 4 — c0. From (3.23) it follows
that

(3.27) |/ 4 <tut<ean, 18H((ta; + 1)/ o) du| < [ 4 gge ™"+,
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which converges to 0 when 4 — co. By (3.24) the remaining part of the integral in
(3.25) is estimated as

(3:28) fww<|u|<,,,,wﬂ1,vfgj((takj + u)/on)du| <K, ]Vj'/z < e Kl

converging to 0 when j — co0. Combining the estimates proves that the characteris-
tic function in (3.25) converges to e~"/2, from which the assertion (3.21) follows.

4. Applications of the limit theorems.

ExampLE 1 (ctd). Consider a triangular array of urn schemes. Let N; be the
number of urns in the jth scheme and n; the number of balls, with N,, n; — o,
J— oo such that n,/N,— 8 > 0. Set Y; = I(X; = 0) where X, is distributed as
Poisson with mean »;/ N;. The assumptions of Theorem 2 are easily verified and the
limit distribution for (¥, — Ne™%/™)/N;"/?is N(0, e (1 — e~?) — e~?). Rényi
(1962) proved the same result with different methods.

ExampLE 2 (ctd). As in the example above a triangular array is considered here.
To study the Wilcoxon statistic set a,; =(k — b(n, N;))/c(n;, N;) for suitable
chosen b(:) and ¢(-). From Theorem 3 the well-known limit distribution for the
Wilcoxon test is found. '

ExaMpLE 3 (ctd). In a similar way as in the previous examples, asymptotic
normality is proved, cf. Erdos and Rényi (1959) and Rényi (1966, page 379). In this
case Hijek (1960) proved that the conditions on the a’s are also necessary for
convergence to the normal distribution.

The examples above are one-dimensional involving dependent random variables.
The dependence can be relaxed by using independent random vectors. This type of
dependence occurs in a natural way in connection with conditioning by-sufficient
statistics. For a discussion on the use of sufficient statistics see e.g. Cox and
Hinkley (1974, page 73).

ExaMPLE 4 (The Poisson index of dispersion). Suppose that under the hypothe-

sis H, the rv’s X, - - -, Xy are i.i.d. in a Poisson distribution of unknown mean 6.
The sample sum 22X, = N-X is sufficient for § under H, The conditional
distribution B((X b X N)]X-) is multinomial with equal probabilities. A possible

conditional test of Hj, is the usual chi-square suggested by Fisher (see Gart (1975)
for further discussion). The test statistic is the index of dispersion =(X, — X)*/X
= Ty. By Theorem 2 Ty, is As N(N, 2N) or As x*(N — 1). The usual “chi-square”
argument is not rigorous here because N is not fixed.

ExaMPLE 5 (Geometric versus Poisson distribution). Consider the same
hypothesis Hj, as in the previous example against the alternative H,, X,,---, Xy
and geometric with mean A. The sample sum is sufficient for 8 in H, and also for A
in H,. Simple calculations give that conditional on 2£X, = n the likelihood ratio
critical region is of the form X log X, !> C. Theorem 2 gives conditional large
sample distributions of the test statistic both under H, and H,. By different
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methods these limits are also derived in Cox and Hinkley (1974, pages 149, 336).

The methods used above can also be used for the case of nonhomogeneous rv’s
and for random vectors. For the continuous case a similar approach is also useful.
Such generalizations and further applications will be discussed elsewhere; e.g. in
Holst (1979) urn models are considered in more detail.
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