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REDUCED U-STATISTICS AND THE HODGES-LEHMANN
ESTIMATOR

By B. M. BRowN AND D. G. KILDEA
La Trobe University

A reduced U-statistic (of order 2) is defined as the sum of terms f(X;, X7),
where f is a symmetric function, (X1, - - -, Xn) are independent and iden-
tically distributed (i.i.d.) random variables (rv’s), and (7, j) are drawn from
a restricted, though balanced, set of pairs. (A U-statistic corresponds to
summation over all (i, j) pairs.) A limit normal distribution is found for
the reduced U-statistic, and it follows that estimates based on reduced U-
statistics can have asymptotic efficiencies comparable with those based on
U-statistics, even though the number of steps in computing a reduced U-
statistic becomes asymptotically negligible in comparison with the number
required for the corresponding U-statistic. As an illustration, a short-cut
version of the Hodges-Lehmann estimator is defined, and its asymptotic
properties derived, from a corresponding reduced U-statistic. A multivariate
limit theorem is proved for a vector of reduced U-statistics, plus another
result obtaining asymptotic normality even when (7, j) are drawn from an
unbalanced set of pairs. The present results are related to those of Blom.

1. Introduction. Let X, ..., X,, .- be i.i.d. rv’s, let f(+, +) be a symmetric
function, and C, be a set of pairs (i, j), with 1 < i < j < N, such that each
positive integer < N is present in exactly 2K pairs of C. Thus, C, contains
exactly NK pairs, every one of which shares a common index with 2(2K — 1)
other pairs. (Values of K = %, 3, - - - are possible when N is even, but we do
not consider this possibility. Strictly speaking, C, should be denoted by Cy ,
but for notational simplicity we suppress the dependence upon N.) Let

Sy = e J(Xis X))

If the summation were over all (i, j) pairs (1 < i < j < N) rather than just
Cy, Sy would be a U-statistic ([6]), say T,. As itis, S, could well be called
something like a balanced incomplete U-statistic, but we prefer the simpler term
reduced U-statistic. The computation of S, involves a number of steps which
as N — oo becomes negligible in comparison with the number required to com-
pute T,; while (NK)~'S, will be an unbiased estimator, as is {N(N — 1)}7'T,,
for 6 = E{f(X,, X,)}.

In Theorem 1, we find a limit normal distribution, as N — oo, for S,. This
limit distribution depends upon a constant p > O (to be defined in Section 2),
and for the nonsingular case p > 0, the limit distribution has a variance which
shows that (NK)~'S,, as an estimator of @, has efficiency comparable to that of
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the corresponding U-statistic estimator {{N(N — 1)}~'T,, while involving a far
smaller number of computations. This efficiency may be reasonable even for
the simple estimator when K = 1, while, in any case, choice of K suitably large
ensures efficiency arbitrarily close to one, as long as p > 0.

Also, for the case po® > 0, it may be of interest to note that the efficiency is
one if K is allowed to — oo as N — oo. This can be seen by applying Hajek’s
projection method, which is the customary method of proving asymptotic nor-
mality of U-statistics, to show that in this case the reduced U-statistic and the
(ordinary) U-statistic are asymptotically equivalent as N — oo.

Section 1 contains the statements of, and corollaries to, Theorems 1 and 2,
the latter being a multivariate version of the former. Proofs are given in Section
3, while Section 4 contains a result (Theorem 3) under which S, is still asymp-
totically normal even if the requirements of balance, on the sets Cy, are some-
what relaxed. Section 5 discusses, as an application of reduced U-statistics, a
short-cut version of the Hodges-Lehmann (H-L) estimator.

Since the original version of the present paper was prepared, the paper of
Blom [3] has appeared, and in it reduced U-statistics (termed incomplete U-
statistics there) of orders r > 2 are discussed. Variances are computed, several
examples discussed, and asymptotic normality stated to hold under conditions
similar to ours of Section 4 for r = 2. It seems worth pointing out that the
methods of proof used herein will work also for reduced U-statistics of orders
r > 2; in the graph-theoretic language we employ, the structure of 2 vertices
joined by an edge must be replaced by a structure of r vertices, every pair of
which is connected by an edge. The language of graph theory is only a con-
venient way of handling counting problems; it is well suited to the case r = 2
but becomes more unwieldy for r > 2.

2. Notation and results. In some applications it is desirable to replace the
fixed function f by a sequence of symmetric functions {fy, N = 1}, in the defini-
tion of S,. To include this case, let

Sy = ZoKfN(Xi’ Xy‘) ’
01\' = EfN(Xv Xz) ’
gy = VarfN(Xl, Xz) s
and
pnoyt = Cov {fi(Xy, X,), fu( Xy X)) -
It then follows easily that
(1) Var (S,) = NKo ,*(1 + 2(2K — 1)p,) .
Our main result is
THEOREM 1. If the finite limits ¢* = lim ., 0,* and po® = lim, ., oy0,* both
exist, if ¢* > 0, and if
(2) {fv(Xy, X;) — 0y, N = 1} is uniformly square integrable,
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then (NK)~¥(S, — NK®@,) converges in distribution as N — co to a normal law with
mean zero and variance o*(1 + 2(2K — 1)p).

{N(N — 1)}7'Ty is the U-statistic estimator of 6, corresponding to (NK)~'S,,
and has variance 20 ,{N(N — 1)}"{1 + 2p,(N — 2)}, so an immediate conse-
quence of Theorem 1 is

CoROLLARY 1. When po* > 0, the estimators {(NK)™'S,, N = 1} of {8, N = 1}
have asymptotic efficiency 2Kp{} + (2K — 1)p}', relative to the corresponding U-
statistic estimators [{$N(N — 1)}7*Ty, N = 1], as N — oo.

The above expression for U-statistic variance shows that p, = —(N — 2)~!
for all N, and hence that p = 0. On the other hand, by letting

Z= fN(Xl’ Xz) +fN(X1’ Xs) +fN(X2’ X4)
+ fu(Xe X)) — 2{f (X, X3) + fu(Xys X))

and simplifying the equation 0 < E(Z?), we find that p,, and hence p, is < §.
Thus 0 < p < 4, and the efficiency given in the corollary € [0, 1]. However,
for any fixed o > 0O, the efficiency can be made arbitrarily close to one by taking
K large enough, and it may even be possible that the extremely simple estimator
when K = 1 yields a reasonable efficiency. For example, in Section 5, reduced
U-statistics lead to a simple version of the H-L estimator. In this case, p = }
and we obtain efficiency 4K(4K + 1)7!, which is already £ for K = 1.

A multivariate version of Theorem 1 is

THEOREM 2. Under the conditions and notation of Theorem 1, let $,", ..., §,®
be reduced U-statistics corresponding to sets (of pairs) Cg, ..., C. Then
{SyY, -+, Sy'P}, when suitably normalized, converges in distribution as N — co to

a multivariate normal distribution.

The covariance structure of the limit multinormal distribution is determined
by the limiting form of the covariances between S, S,. These however
are not easy to specify unless the {C), | < a < p} are disjoint as in

CoROLLARY 2. Let {C), 1 < a < p} be disjoint. Then for a + 8,
3) Cov (S,, Sy#) = 4NK, K ,oy0,’
and the covariance structure of the limit distribution in Theorem 2 is determined.

Proor. Use (1), Theorem 1, and the fact that Clu C‘Kﬁ; is a set of type
Cy.+xp to evaluate the limit distribution and variance of Sy + §,?.

3. Proofs.

ProoF oF THEOREM 1. The proof is divided into a preliminary section (A),
and a main section (B) in which the moments of (NK)~}(S,, — NK@,) are shown
to converge as N — oo to those of the limit normal distribution. For notational
simplicity, the suffixes N belonging in fy, 6, oy, and o,* are suppressed.
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(A) We may assume without loss of generality that |f| < M, for otherwise
we could set g = fI} <,y and & = fI; ;. ,, With (X}, X,) having mean y,, vari-
ance ¢,% and with Cov {h(X,, X,), A(X;, X;)} = p,0,% then write
(4) N7XSy — NKO) = N7* 30 {9(Xe, X;) — 11}

+ N7t 3o (X XG) — )

By applying the formula (1), with & replacing f, we see that the second term
on the right-hand side of (2) has variance Ko,*(1 + 2(2K — 1)p,), which is made
arbitrarily small by taking M large, since lim,_, 0,> = 0, from (2). Thus the
right-hand term of (2) is made stochastically small by taking M large, and at-
tention may by confined to the term involving }; g(X,, X;), where |g| < M.
Equivalently, we may and do assume at the outset that |f| < M.

(B) Assume without loss of generality that ¢ = O (or else replace f by f — 6).
For r = 2,

(%) ESy = N EI = (Xi,,’ le,) s
where the summation is over all pairs (i, j,), - - -, (i,, j,) € Cx. To every term
in this sum there corresponds an undirected multigraph (henceforth called a
graph) with vertices i, j;, - - -, i,, j, and r edges, joining vertices i, and j, for
Y = 1,2, cee, T

Firstly,

(6) the number of terms of (5) having graphs with m

connected components is O(N™) as N— oo.

To see this, let the numbers of edges of the m connected components be
Ty + ooy Iy, With 317 r, = r. From the structure of C,, the number of ways of
achieving this is

< TI7 (NK)Q2K)''r,! = O(N™)

as N — oo, and summing over all (ry, - - -, r,) still leaves O(N™) possibilities.

Next, any term of (5), whose graph contains a connected component with
only one edge, equals zero, since Ef(X;, X;) = 0 fori = j. It follows immediately
from (6) and the boundedness of f that

ES," = O(N}r=b) = o(N*r)

as N — oo, when r is odd.
Similarly, when r is even

() ESy = X* ETL- /(X X)) + O(NF™Y),

where } * denotes summation over only those terms whose graphs have ex-
actly ir connected components, each with 2 edges.

Now the derivation of (7) also holds if the { f(X;, X,)} are replaced by jointly
normal rv’s {Y;;} with EY;; = 0, Var (Y;;) = o*, Cov (Y,;, Y;;,) = pa® for j + k
and Cov (Y,;, ;) = 0 for i, j, k,  all different. (The (Y, }are not bounded but
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the normal distribution implies all appropriate moments finite.) However, the
sum > * involves only expectations of products of two factors f, and so is un-
changed by substitution of {Y,,} for { f(X;, X;)}. But then S, has a zero-mean
normal distribution and ES," = r! 27#{E(S,*)}"/(3r)! for r even. These con-
siderations imply that for r even,

rt 24

ES,;" = ——__{E(S,)}}" + o(N?) as N— oo,
&)t

and the proof is complete.

ProoF oF THEOREM 2. To find the limit moments of }2_, 2,5, for arbi-
trary {4,}, reason as in the proof of Theorem 1 to show the odd moments to be
o(N*), and for even r

E{Za laSN(a)}r = Zo E H:=l T(iu’,iV)f(Xiy’ ij) + O(Nér_l)
as N — oo, where }°denotes summation over those (i, /), - - -, (i,, i,) € U2, C&)
whose graphs have ir connected components, each of 2 edges, and where
(i, )) = Z(a:(i,j)sC}g;) Aa -
The reasoning to complete the proof is as'in the proof of Theorem 1.

4. A modification. In this section it is shown that the asymptotic normality
of S, may hold even if the sets C, are replaced by more general sets.

THEOREM 3. Let C™) be a set of pairs (i, j), | < i < j< N, such that the index
i occurs exactly v, = v , times in C'™), and let
Qj = QN,j = ZzN:l "’;v,i .
Also let Sy = 3 pecun fu(Xir X;), and let 0, o,* and pyo,® be as defined in

Section 2.
If the conditions of Theorem 1 hold, and if either

(8) limy . 00,7 =0  for p>0,
or

(9) limy .. 0,0 =0 for p=0,
then

{G — 0)Q1 + 0Q:}HSy — 30,01} —., N(O, 0%)
as N — oo.

REMARK. Letm = my = max,_y v, ;. Byapplying the inequality m* < Q, <
mQ, to the numerator in (8), it is seen that (8) is equivalent to

(10) lim,_, mQ, t =
There seems not to be a similar equivalence for (9), although (9) does imply that

(11) lim,_., mQ,~ =
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ProoF oF THEOREM 3. Consider the terms of ES," (cf. (5)) whose graphs have
s 4 s’ connected components, of which s have 2 edges and s’ have at least 3
edges. A component with y > 3 edges must contain either a vertex where three
edges meet, or two vertices connected by an edge and at least one other edge
at both vertices, so the number of such components is

O{(Qs + Xujecvivy)m =%t = O(Qym™™%)
since 3o vv; < % 2o (v + v,7) = 30,

It follows that the number of terms of the above type in ES," is
0(Qy°Qy"m ===%") if p > 0 (cf. the proof of Theorem 1), while if p = 0, then
two edged components with three vertices are zero, and the above number of
terms in ES," is reduced to O(Q,*Q,"'m"=*~%"),

If s < 4r, whence s’ > 0, (8) and (10) for p > 0, and (9), (11) for p =0
imply that the above numbers of terms are 0(Q,}") and o(Q,*") respectively,
which is o (ES,?)?!" in both cases, since Var S, = 10°Q; + po*%(Q, — Q,).

From this point, the argument follows on as in the proof of Theorem 1.

5. A simple Hodges-Lehmann estimator. Suppose for j = 1,2, ..., N that
X; =0+ Y,, where the {Y } are i.i.d. rv’s, symmetric about zero, with df G
and continuous bounded density g. The H-L estimator of ¢ (see [5S]) is the
median of {}(X; + X;), 1 <i,j < N}, and an asymptotically equivalent esti-
mator is ¢, the median of {{(X, + X;), 1 <i < j< N}

Theorem 1 suggests that a reduced H-L estimator of # be defined as

£ = median(i,j)ecx {3(X; + X;i)} >
an estimator whose computation involves a number of steps which as N — oo
becomes negligible in comparison with the number required to compute the
H-L estimator § N

We now derive the asymptotic behavior of £, as N — oo. For fixed x let
Sy = Do X + X; < 20 + 2xN°#},

= Yo HY: + ¥; < 2xN-1}.

Then
ES, = NKG**(2xN-?%)
= NK{} + 2xN~tg,},

where lim,, .. gy = 9, = (.. 9%(y) dy .

By setting f(Y;, Y;) = I(Y, 4+ Y, < 2xN7%), it is not difficult to show that (2)
holds, and that ¢* = %, p = ] so that Theorem 1 can be applied, giving the limit
distribution of (NK)~#S, — ES,}, as N — o, to be

N(O, (4K + 1)/12).
But
PN}y — 0) < x] = P[Sy > iNK],
(12) = P[(NK)™¥Sy — ES,) > (NK)™}(—2xN!Kg,)],
— Of2xKig(12)}(4K + 1)7%}, N—> oo,
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identifying the limit distribution of {N#(§, — 6)} as

N (o, M) :

48Ky,

This should be compared (see [4]) with the asymptotic distribution
N0, {12¢,}7") for N¥(@, — 6), as N — oco. The efficiency of the reduced H-L
estimators {£,} relative to the H-L estimators {¢,} is therefore 4K(4K 4 1)7%,
which is £ for K = 1, and is made arbitrarily close to one by taking K suitably
large.

The efficiency of reduced H-L estimators should also be compared with that
of the short-cut H-L estimator of [2], where a simple procedure has high ef-
ficiency, but not an asymptotically normal distribution. Antille [1] has a one-
step method of evaluating an asymptotic equivalent of the H-L estimator, with
the number of steps of computation of the same order as for the reduced H-L
estimator described herein. His procedure is therefore certainly superior to
ours in an asymptotic sense, although whether it remains so for moderate sample
sizes is another question.

In the case K > 1, Theorem 2 suggests an estimator asymptotically equiva-
lent to {£,}, but involving still less computation because of a reduction in the
median-finding operation. In this case, choose a Cy consisting of the union of
K disjoint sets C,¥, - - -, C;, each obeying the requirements on C;, then form
the corresponding reduced H-L estimators §,%, ..., £, It follows easily
from Theorem 2 and its corollary that the estimator

£y = K™ Z?:l Ey'

is asymptotically as efficient as £,. Moreover, by using Theorem 2 and its
corollary in conjunction with a multivariate version of the inversion equation
(12), it is possible to verify that &, and &,’ are asymptotically equivalent, in
the sense that

N*(&N—EN’)—”O as N — oo.

Acknowledgment. The Associate Editor made a very great contribution to
the clarity and scope of this paper. In particular, the method of proof of
Theorem 1 (which enables the extensions of Theorems 2 and 3 to be made) is
due to him.

REFERENCES

[1] ANTILLE, A. (1974). A linearized version of the Hodges-Lehmann estimator. Ann. Statist.
2 1308-1313.

[2] BickkL, P. J. and Hobges, J. L. (1967). The asymptotic theory of Galton’s test and a re-
lated simple estimate of location. Ann. Math. Statist. 38 73-89.

[3] BLoM, GUNNAR (1976). Some properties of incomplete U-statistics. Biometrika 63 573-580.

[4] HopgGgs, J. L. (1965). Efficiency in normal samples and tolerance of extreme values for some
estimates of location. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1 163-186.



REDUCED U-STATISTICS 835

[5] Hobges, J. L. and LEHMANN, E. L. (1963). Estimates of location based on rank tests. Ann.
Math. Statist. 34 598-611.
[6] HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann.
Math. Statist. 19 293-325.
DEPARTMENT OF MATHEMATICS
LA TrROBE UNIVERSITY
BUNDOORA, VICTORIA
AUSTRALIA 3083



