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LARGE DEVIATIONS QOF LIKELIHOOD RATIO STATISTICS
WITH APPLICATIONS TO SEQUENTIAL TESTING!

By MICHAEL WOODROOFE
The University of Michigan

We study the tail of the null distribution of the log likelihood ratio
statistic for testing sharp hypotheses about the parameters of an exponential
family. We show that the classical chisquare approximation is of exactly
the right order of magnitude, although it may be off by a constant factor.
We then apply our results and techniques to find the error probabilities of
a sequential version of the likelihood ratio test. The sequential version
rejects if the likelihood ratio statistic crosses a given barrier by a given
time. Our approach uses a local limit theorem which takes account of
large deviations and integrates the local result by using the theory of
Hausdorff measures.

1. Introduction. Let &= {P,: w € Q} denote a p-dimensional exponential
family, say,

dP, = exp{w'x — ¢(w)},

dp xeR?, weQ,

with respect to a sigma finite measure ¢ on <Z(R?). Here’ denotes transpose,
and Q denotes the natural parameter space of the family. We suppose through-
out this paper that Q is an open subset of R” and that ¢ is strictly convex on Q. The
former condition is a minor restriction, but the latter is not since it may always
be achieved by an appropriate reparameterization.

Recall that if X ~ P,, then E (X) = V¢(w) and Cov, (X) = V¥¢(w), where V
and V2 denote gradient and Hessian, respectively. Let I' = V¢(Q) be the set of
possible expectations of the family and observe that

(1) é(x) = supg 0'x — ¢(w)
is finite for all xe I'. In fact, the supremum in (1) is attained uniquely at @ =
@(x), where Vg(@d) = x.

Next let Q, be a g-dimensional, C* submanifold of Q with 0 < ¢ < p and let

@ $o(x) = supy, @'x — P(w), xel .
If X,, X,, - -- are i.i.d. with common distribution P, for some unknown o e Q,
then the (logarithm of the inverse of the) likelihood ratio statistic for testing
H,: weQ,is

Ay = n[g(n71S,) — ¢o(n7'S,)]
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where S, = X, + .-+ 4 X,, n = 1. Of course, in order for A, to be meaning-
ful, we need an additional condition. We suppose throughout the paper that for
some integer ng, =S, e I' w.p. 1 for alln = n,. Then A, is well defined for all
n = n,.

It is well known that the null distribution of 2A, converges weakly to a chi-
square distribution on r = p — ¢ degrees of freedom. Here we will supplement
this information by finding the exact rate at which P,*{A, > ne¢} tends to zero
as n — oo for fixed ¢ > 0 and for ¢ = ¢, — 0 with ne, — co when w e Q,. In
fact, we shall prove the following (under conditions which are detailed in
Section 2): if w € Q,, then for sufficiently small ¢ > 0,

3) P,~{A, = ne} ~ c(ne)tr—le—ne

as n — oo, where r = p — g and ¢ = ¢(w, ¢) is a positive constant which is de-
fined in Section 3. The conditions require the existence and uniqueness of the
maximum likelihood estimator under the assumption that H, is true and the
applicability of the local limit theorem.

It is of interest to compare (3) with the estimate suggested by the asymptotic
distribution of A,, namely

P, = e} ~ T(3r) (ne)ir=ie=
as n — oo. It is especially interesting that this incorrect estimate tends to zero
at exactly the same rate as the correct one (3), although the constants ¢ and

I'(3r)~* may differ. We will also prove (under the same conditions): if¢ = ¢, —
0 with ne, — oo, then

4) P,=[A, = ne} ~ D(4r)(ne)tr—1e=

as n — co. That is, the chi-square approximation is accurate for deviations of
order o(n)!

We shall also consider a sequential version of the likelihood ratio test. Let
m = n, be an integer and let

®)] t=t,=inf{nzm: A, = a}

fora > 0. If N> mis an integer, we may then form a sequential test of H, by
taking = min {t, N} observations and deciding for H, if, and only if, r > N.
We prove (under slightly more restrictive conditions): if w € Q,, m ~ ad,™?, and
N ~ ad,™*, where 0 < 9, < J,, then

(6) P,>{t £ N} ~ Katre~*

as a — oo, where K = K(w, d,, 0,) is a positive constant which is defined in
Section 4.

We are aware of several related papers. Borovkov and Rogozin (1965) have
developed some general techniques for estimating probabilities of large devi-
ations, and we shall use their results. In the special case that H, is simple, (3)
is an easy consequence of their work. Efron and Truax (1968) have given an
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expression for the power of the likelihood ratio test against nonlocal alternatives,
again in the case of a simple hypothesis; and Brown (1971) has given an expres-
sion for log P,"{A, = ne} in a more general context than the one which we
consider.

The form of the stopping time ¢ = , was inspired by the papers of Armitage
(1957) and Schwarz (1962, 1968). We include an example which shows how
our results may be used to approximate the error probabilities of Schwarz’
approximation to optimal Bayesian sequential tests. Analogues of relation (6)
have been developed by Woodroofe (1976) and Berk (1976) in the context of a
normal distribution with unknown mean and known variance and by Lai and
Siegmund (1977) in the context of a one-parameter exponential family.

2. Preliminaries. Our main results (3), (4), and (6) require the computation
of probabilities for fixed, but arbitrary, w € Q,, say o = °. Some simplification
may be obtained by supposing

(7) 0 =0 N Vg[)(O) =0 , and g[)(O) =0.

Moreover, there is no loss of generality in making this assumption, since it may
be achieved by a simple reparameterization. Hence, we suppose throughout that
(7) holds.

Equation (7) and the italicized assumptions in the introduction are standing
assumptions. They will not be repeated in the statements of our lemmas and
theorems. In addition, it will be convenient to have names for two optional
assumptions.

M: for all xe ', the supremum in (2) is attained uniquely at a point @, =
@,(x) € Q, n Q. Here ~ denotes closure in R”.

L: for some integer n, S, has a bounded continuous density £, with respect
to Lebesgue measure on B(R?).

In condition M, it is easy to see that the uniqueness of @ and @&, imply their
continuity.

If condition L is satisfied and if n, denotes the minimum value of n for which
S, has a bounded continuous density, then S, has a bounded continuous density
f(:r alln = n;. The result of Borovkov and Rogozin (1965) may now be stated.

ProposITION 1. [f conditional L is satisfied, then as n — co
(8) fir(nx) ~ Qan)=#|Z(x)|"temm
where X(x) = V:¢[@(x)]. The limit in (8) is attained uniformly on compact subsets
of T.

We will need some properties of the Hausdorff measures H,”, 0 < r < p, in
R?. For G c R, let |G| denote the diameter of G and for B C R” let

H,7(B) = lim,_, 277A, inf {317, [G,]": B € Ui, G, |Gy <&, iz 1},

-0
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where A, = I'(3)'T'(r + 1)~ denotes the volume of the unit ball in R”. Then
H," is an outer measure and all Borel sets are H,-measurable. H) is counting
measure and H,? is Lebesgue measure L?.

The following result is specialized from Federer (1969, Theorems 3.2.5 and
3.2.22). Let p,q =1, let We SZ(R?), and let g: R? — R? be continuously dif-
ferentiable on a neighborhood of W. Further, let

Do() = | 2| (4% 7).
and ]

Jy(x) = |Dg(x)Dg(x)|: g = p
= [Dg(xDg(x)|: g = p-
Finally, let n(g, y) = cardinality {x e W: g(x) = y} for y e R7.

PROPOSITION 2. Let g be as above. If p < q and if f: g(W) — R* is a bounded
measurable function, then

©) Vwfog - Jydlr = §,a, f(Y)n(9, y) dHP(y) -
If p=r=qandif f: W— R is a nonnegative measurable function, then
(10) S f - Ty dH, = Sy [$o-10 f(X) dH 0 (x)] dLA(y) -

It follows from (9) that if § < R? is a nice p-dimensional surface in R?, then
H 7(S) is just the p-dimensional surface areas of S as defined, for example, by
Edwards (1973), pages 330-344.

We may now state the following corollary.

COROLLARY 1. Suppose that condition L is satisfied and let u be a positive bounded
measurable function on I'. If 0 <e, —e = 0 and ne, — oo, then for any > 0

(11) VA zne, #(n71S,) dP”
nir-1

= e {ggw 1<en, %) e dy[1 + o(1)] + O(e“”")}

as n — oo, where
(12) I(e, $) = §gmera s ¥(X)J(X) 7 dH PN (x)
(13) Jx) = [Z)He)]] -
This is effectively Theorem 2 of Borovkov and Rogozin (1965), except that
the Jacobian term J,(x) = ||@(x)|| was apparently omitted there. The corollary

may be formally verified by combining (8) and (10) and making an appropriate
change of variables.

3. Large deviations. In this section we give precise statements of (3) and (4).
The definition of ¢ and the quantification of “sufficiently small” in (3) require
some preliminary notation.
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We first suppose that Q, is a g-dimensional, C? submanifold of Q with 0 <
q < p- We may then choose local coordinates «: © — Q, with a(0) = 0. Here
© is an open subset of R? and « is a one-to-one, twice continuously differentiable
function on © for which Da(6) is of full rank for all 6 € ©, if ¢ > 1. If g =0,
then O is a singleton.

Suppose now that condition M is satisfied and let I', = {xeT': @y(x) € a(0)}.
Then T', is open in R? and 0 ¢ I',. Moreover, for xe T, coo(x) = a[f(x)], where
6(x) is the (unique) point in © at which g(x, ) = xX'a(0) — ¢ o a(6) attains its
maximum. If ¢ > 1, let Q(x, ) = —V,%(x, 6), so

O(x, 6) = Da(0)Vg{a(6)|Da(0) — 7., {x,. _ gﬁ [a(ﬂ)]} Vo, (6)

for xe T, and 6 € ©; and let T', be the set of x ¢ I', for which Q(x, 0) is positive
definite. If ¢ =0, let I', = T',. In either case, T, is open in R? and 0 ¢ T,.

To quantify “sufficiently small,” let B, = {x e I': ¢(x) < ¢} for ¢ > 0 and ob-
serve that each B, is a compact neighborhood of 0 ¢ R*. Next let

&, = sup {@(x): @y(x) = 0}, e, =sup{e: B, c Ty}, and

€ = min {e, ¢,} .
Then, 0 < ¢, < oo and for 0 < ¢ < ¢,
(14) M, = {xeT':d(x) =0, ¢(x) = ¢}
is an (r — 1)-dimensional submanifold of I, where r = p — q.

THEOREM 1. Suppose that Q, is a g-dimensional, C* submanifold of Q, where
0 < g < p, and that conditions M and L are satisfied. If u is a positive, bounded,
continuous function on I and 0 < ¢ < ¢,, then as n — oo,

(15) $rpzne 4(n71S,) APy ~ c(u, e)(ne)tr=le=

where
c(u, &) = (2m)~tremir1 § L u(x)k(x) j(x)"* dH,""(x)
with
k(x) = |Q(x, 0)|*| Da(0) Dax(0)|*

ifg=1and k(x) =1if g =0. Herejisasin (13). Moreover, the limit in (15)
is attained uniformly on compact subintervals of (0, ¢,).

REMARKS. 1. Of course, (15) contains (3) as a special case with ¢ = ¢(1, ¢).

2. If € > ¢, then the left side of (15) is of exponentially smaller order than
e ". For then ¢ — ¢, = ¢ implies ¢ = ¢’ for some ¢’ > ¢, so the result follows
by applying Theorem 1 to H,: @ = 0, or directly from Theorem 2 of [3].

3. The definition of ¢, depends on the local coordinates a through «(®). It
is desirable to choose a in such a manner that a(®) is as large as possible.

4. If Q, is a linear hypothesis, say Q, = {40: 6 ¢ ©}, where © is an open
subset of R and 4 is of full rank, then Q(x, ) = A'V3)[A0]A is positive definite
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forallxeI'and all # € ©. It follows that I', = T, = T" and that ¢, = sup {¢(x):
@(x) = 0}. Moreover, it is easily seen that @,(x) = 0 if, and only if, 4'x = 0,
so that ¢, = oo if I' N null space (A4’) is unbounded.

THEOREM 2. Suppose Q, is a q-dimensional, C* submanifold of Q with 0 < q <
p and that conditions M and L are satisfied. If ¢ = ¢, — O with ne, — oo, then as

n— oo,
(16) , P{A, = ne} ~ T(4r)~(ne)tr=te= .

The main steps in the proof of Theorem 1 are outlined in the appendix. The
proof of Theorem 2 is similar and will be omitted.

EXAMPLE 1. Suppose that Y = (Y%, Y?) where Y* and Y* are independent
exponentially distributed random variables with means 1/6, and 1/6, for some
unknown values of 6, > 0 and 6, > 0 and that we wish to test H,: §, = 0,. In
this case the null distribution of A, is independent of the common mean. We
study it when ¢° = (1, 1). The transformation x* = y* — 1 and w, = 1 — &,,
i = 1,2, then reduces the problem to one in which (7) is satisfied with " =
(=1, 00)* and Q = (—o0, 1)% It is easy to check that conditions M and L are
satisfied and that ¢, = co. Moreover, simple calculations yield

c(l,e) = {me™(1 — e*)(2 — e~9)} %

Fore < 2, ¢(1, ¢) is remarkably close to ¢(1, 0) = z~*. The ratio ¢(1, ¢)/c(1, 0)
decreases to a minimum of .9547+ near ¢ = .46 and then increases. At ¢ — 2,
its value is only 1.1138. Of course, ¢(1, ¢) — co as ¢ — oo.

4. A sequential likelihood ratio test. Letg = ¢ — ¢,, so that A, = ng(n71S,),
and let

(17) t =1, =inf{n = m: ng(n71S,) = a}

for a > 0, where m > n,. Further, let N > m be an integer. Then we may
form a sequential test of H, by taking = min {7, N} observations and deciding
in favor of H, if, and only if, 1 > N. We will study the probability of a type I

error, 8 = P*{t < N} as a — co under the assumption that m ~ aé,” and N ~

ad, ™', where 0 < 9, < 9, < ¢,. We suppose throughout this section that condition
L is satisfied. '

To motivate our approach, we observe that
(18) Pom{t = n} = SA%Za un,a(n_lsn) dl)()°°
where
U, () =Pt >n—1 [n71S, = y}.

The right side of equation (18) is of the same form as the left side of equation
(15) with u = u, , and ne = a. Thus we need an estimate for the conditional
probability u, ,.

Recall that S, has a bounded continuous density f,* for n > n,. Let & be any
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density with respect to x = P, and define #, , by

P e(X0s + 5 x| y) = "7y — Zia %]/ fo"(ny)
if fi*(ny) > 0 and &, ,(x,, - -+, x| y) = 1k, A(x,) if f"(ny) = 0. Here x, € R?,
i=1,.--,k,yel';) k<n—n and n > n. Thenh,, is a conditional density
for X, ---, X, given n='S, for 1 < k < n — n,and n > n,. The corresponding
distribution will be denoted by R, ,, so that R, ,(y, dx,, - -+, dx,) = h, \(x;, - - -,
X, |y) dp(x,) - - - dpp(x)-

LEMMA 1. Asn— oo, R, ,(y, +) converges strongly to Pk, where & = &(y), for
k =1,2,...; and the convergence is uniform on compact subsets of T".

Proor. By Proposition 1 and some simple algebra, h, ,(x;, -+, x,|y) —

b exp{d’'x; — ¢(®)}, uniformly (in y) on compact subsets of I' for fixed
X+, X,. The lemma follows easily.

For 1 <k<n—n and n>n, let R¥.(y,dx,, ---,dx,) = R, [y, (dx; +
y) - -+ (dx, 4+ y)], so that R*, is a version of the conditional distribution of
X, —n1S,,i=1,...,k, givenn'S,. Further,let T\(x,, ---,x,) = x, + -+ +
x, for x,eR?, i=1, ..., k. Then

Una(y) = REulys {(n — Noly —(n = )7T;] —a <0, 1 <j<n—m}
defines a convenient version of P{t > n — 1|n'S,} forn > m = n,.

In the remainder of this section we suppose that Q, is a C* manifold of
dimension ¢ < p and that condition M is satisfied. Then Vg = & — @, is con-
tinuous and Vg = 0 if, and only if, g = 0. Let I') = {xeI': g(x) = 0}.

LEMMA 2. If n = n, and y, vary in such a manner that y, —yel' — I'; and
ng(y,) = a + z + o(l) with z € R, then lim u, ,(y,) = w(y, z) as a — oo, where

(19) Wiy, 2) = (Vo) Tky — Sl < ka(y) — 2, forall k= 1}.

Lemma 2 follows from Lemma 1 and the expansion (n — j)g[y, — (n —
Tl —a= —Vg(y)T;, — jg(y) + z + o(l) as a — oo for each fixed j by an
argument similar to that given in Section 6 of [11]. We omit details.

Observe that y = V¢(@) in (19), so that w(y, z) > 0 for 0 < z < g(y). It is
also relevant that w is continuous on (I' — I')) x R?.

The main results of this section may.now be stated.

LEMMA 3. Ifn=n,—> oc0oasa— ocoande, = an™' — ¢, where 0 < ¢ < ¢, then
(20) Py>{t = n} ~ ¢(w, ¢)at™"le~*

where
c(W, ) = (2r) tre~tr+1 {, Wkj—'dH

is as in Theorem 1 and
(21) w(x) = {7 w(x, y)e v dLY(y) .
THEOREM 3. Suppose that Q, is a C* manifold of dimension q < p and that
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conditions M and L are satisfied. If m ~ ad,™* and N ~ ad,”%, where 0 < 9, <
0, < &y, then as a — oo

P={t < N} ~ K(9,, 0,)at"e™"
where

K(dy, 0;) = ng c(w, e)e~?de .

Lemma 3 is proved by showing that u, , may be replaced by w in equation
(18). This is discussed further in the appendix. Theorem 3 then follows by

substituting (20) into
P(t < N} = S, Po{t = k).
REMARK 5. If ¢, = oo and if P*{A, = a} < const. at"~'e~ for all n = m,and

a sufficiently large, then one may replace the condition m ~ ad,™ by m = m,.
Relation (21) is then true with §, = oo.

ExaMmpLE 2. If X has the p-variate normal distribution with unknown mean
o € R? and covariance matrix /,, and if Q, = {40 : 6 ¢ R} is linear, then
(22) (W, ¢) = T(3r)~ exp{—2 T, O[—(3ke)t]}
for ¢ > 0, where ® denotes the standard normal distribution function. It is
clearly sufficient to verify this assertion in the special case that Hy: @, = - -+ =
o, = 0; and a moment’s reflection shows that it suffices to consider the case
r = p. In this case g(x) = ¢(x) = ||x||% so

w(x, y) = P.2{x'Tkx — $,] < 3k[|x|* — y, k = 1}
=Pz 4 o+ 2= HIX] < x|y k= 1)

where Z,, Z,, ... are i.i.d. standard univariate normal random variables. The

integral defining W may now be evaluated as in Section 5 of [12]; and (22)
follows.

5. One-sided hypotheses. In this section we suppose that Q, is of the form

Q, = {weQ: A(w) < 0}, where A: Q — R' is a continuous function for which
Q, # Q and

(23) Q* = {weQ: Aw) = 0}
is a (p — 1)-dimensional, C? manifold; and we will use the notation
D*(x) = supg, [&/x — ¢(w)].
LEMMA 4. Let Q, be as above. If x e T and ¢(x) > py(x), then ¢o(x) = ¢o*(x).

The lemma follows easily from the convexity of ¢.
Let A,* = n(¢ — $,*)(n1S,) be the likelihood ratio statistic for testing Hy*:

®weQ* and let A = {xel:¢(w) > gy(w)}. If u is any bounded measurable
function on I" and if ¢ > 0, then

(24) Uayzne H(171S,) AP = § 4o, (n18,)dP,"

where u, = u - I,. While u, need not satisfy the hypotheses of Theorem 1,
squation (24) is suggestive.
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In the following theorems, a denotes local coordinates for Q,*; and M,, ¢, and
k are constructed as in Section 3, but with Q, replaced by Q.*.

THEOREM 1’. Let Q, be as above and suppose that 0 ¢ Q*. Suppose also that
Q,* satisfies condition M and that condition L is satisfied. If u is any positive,
bounded, continuous function on I' and 0 < ¢ < ¢, then

(25) §a,zne #(n71S,) dPy™ ~ c*(u, e)(ne)~te=m

as n— oo, where c*(u, ¢) = c(u, ¢) and c(+, +) is as described in Theorem 1, but
with Q, replaced by Q,*. Moreover, the limit in (25) is attained uniformly on com-
pact subintervals of (0, ).

THEOREM 2'. Suppose that the hypotheses of Theorem 1’ are satisfied. If 0 <

¢ = ¢, — 0 with ne — oo as n — oo, then
(26) Pr{A, = ne} ~ o (ne)-te= .
2rt

THEOREM 3'. Suppose that the hypotheses of Theorem 1’ are satisfied and define t
by (5). If m ~ ad,” and N ~ ad,™*, where 0 < 0, < 9, < ¢, then
P>t £ N} ~ K*(0,, 0,)ate™"
where
K*(0,, 0,) = (32 c*(W, e)e~?de
and w is as described in Lemma 3, but with Q, replaced by Q,*.

REMARKS. 6. Typically, AM, is a singleton.

7. If the hypotheses of Theorem 1’ are satisfied, then the asymptotic null
distribution of A, is that of { max {0, Z}?, where Z ~ N(0, 1). Thus, it is again
the case that P/™{A, = ne} and P{W = ne} tend to zero at the same rate for 0 <
¢ < ¢, and are asymptotic if ¢ = ¢, — 0 with n — oo as ne — oco.

8. The proofs of Theorems 1’, 2/, and 3’ are similar to those of Theorems 1,
2, and 3 and will be omitted. Theorem 1’ may be deduced from Theorem 1 by
approximating u, by continuous functions.

ExAMPLE 3. Let Y, Y,, ... be i.i.d. normal random vectors with unknown
mean 6 € R? and covariance matrix /, and consider H,: ||f|| = J, where 0 > 0
is specified. The distribution of A, then depends only on [|f||. We compute it
when § = 6° = (9,0, ---, 0). The transformationx =y — #°and w = 6 — 6°
reduces the problem to one to which Theorem 1’ applies; and straightforward
computations yield

c*(1, e) = E}r—i (1 — 5_1(26)5)5(’"”

for 0 < ¢ < £0°. In this case c*(1,¢) and c*(1, 0) = 1/2xt are quite different
even for moderate values of p and e.

We conclude with an example which shows how our results may be used to
compute power and efficiency as well as size.
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ExAMPLE 4. Let X, X,, ... be i.i.d. normally distributed random vectors
with unknown mean o € R? and covariance matrix /,. We consider the pro-
blem of testing H,: @ = 0 vs. H,: ||o|| = J, where 0 > 0 is specified and the
region 0 < ||w|| < ¢ is regarded as an indifference region. Let

I

denote the likelihood ratio statistics for testing H, and H,, respectively; and for
1> 0, let

2

S

-
n

Sa

n

[
A= in

n

and A‘:%nomax{O, [5—

t,=t*=inf{n>=1: A= a}.

3

We will study the test which takes r = min {z,, #,} observations and decides in
favor of H, if, and only if, A, < A!. Thus, the test continues sampling as
long as no — (2an)t < ||S,|| < (2an)t. Observe that + < N = 8ad~* and that
t, = 2a0*.

It follows from the work of Schwarz (1962, 1968) that this test approximates
an optimal Bayesian test with respect to a general prior and loss structure. In
Schwarz’ Bayesian formulation a = log ¢!, where c is the cost of a single obser-
vation relative to the cost of a wrong decision.

We will study the power function f(w) = P,*{A,* = A,'} asa — co. Itis easily
seen that f(w) = p*(||w||), where 8* is continuous and strictly increasing. Thus
the maximum error probabilities are (0) and 1 — 5*(9). A simple variation on
Theorem 3 shows that

(27) B(0) ~ P,>{t, < N} ~ K,atve ",
where K, = K(}0?% co) is as in Example 2. Similarly,

1 — Bg*(0) ~ K,at - e*,
where

K, = EL; §ia [1 — 07%(2e)]H—Vg(e)e~? de
T

with £ = exp{—2 Y 5, [ —(}ke)t]}, as in (22).

It is straightforward to compute K, and K, numerically.

It is also straightforward to approximate the expected sample size E,(1).
For example, if ||o|| > 10, then E (f) = a|w||™* + ||| »(®) 4 o(1) as a — o,
where v(w) is the expected excess over the boundary; and a similar expression
may be obtained when ||w|| < 1d. By combining the approximations to the
error probabilities with those for the expected sample size, one may compute
approximate efficiencies of a fixed sample size test or other sequential test with
respect to the test described in this example. For example, if f; denotes the
fixed sample size required to obtain the same error probabilities, then it is easy
to approximate E,(t)/f, with an error which is o(a~?) as a — co. I hope to
pursue this topic in greater generality in a subsequent manuscript.
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APPENDIX
We will outline the proofs of Theorem 1 and Lemma 3. For simplicity, we
suppose throughout that ¢ > 1.
To prove Theorem 1, it will suffice to show that

(28) I(e, s) ~ (25)A, §,, ukj=*dH, !

as s — 0 uniformly on compact subintervals of (0, ¢,), where I(e, s) is as in
Corollary 1. For 0 < e < g, let L, = {xe': ¢(x) = ¢ + 5, ¢y(x) < s} be the
domain of integration in (12). Then Q(x, 0) is positive definite on L, = M,, so
there is a 6 > 0 for which Q(x,0) = ¢/, for all xe M,. Let ©, be a convex

neighborhood. of 0e€0. Then, given 5 > 0, we may cover M, with a finite
number of open (in R?) sets G, - - -, G,, for which

(29) f(x)e®, and IQ[x, t(x)] — Q(z, 0)|| < oy

forall xeG, zeG, N M,,0<t<1,andi=1, ..., m. Here||4|]? = tr (4'A4).
Let y,, -« -, 7, be a partition of unity on G = U, G, for which y, = 0 on G —
G,i=1,...,m. Then, for s sufficiently small,

(30) Ie,5) = S, ujtdH P = X, §p rauj~ dH P

We estimate a typical term in (30). Pick z,e G, n M and let Q, = Q(z,, 0).
Then ¢,(x) = 4(1 — 7)f(x)'Q,0(x) for x e G, by (29). Let s, = 2s/(1 — 7) and
L* = {xeT:¢(x) = ¢ + s, 6(x)yQ,0(x) < s5,}, so that L, n G, < L* n G,. We
then have

So, 7o) dH P S §papuj dH P
(31) = Sz'Qizss,y [s¢=5+8,9=z Tz uj_1J9_1 deT_l] qu(Z)
= sﬂéquil_i Sz’zgl I*[S, Qi_éz] qu(Z)
where
P8, 2) = Spmerapmdde 17T AH T = G pouj T AH T

as s — 0. Here the second step follows directly from equation (10), and the final
one may be justified by using (9).

By combining (30) and (31) and letting » — 0, we find
(32) lim sup (2s)~#l(e, s) < A, §,, uj" ;7Y Q(x, 0)["* dH"~*(x)
as s — 0; and a similar argument will show that lim inf (25)~#/(¢, s) is at least as
big as the right side of (32). Finally, a simple application of the chain rule
yields |Q(x, 0)|"#J;(x)~* = k(x) for x € M, so the right sides of (28) and (32) are
the same. This shows that (28) holds for a fixed ¢, 0 < ¢ < &, and the uni-
formity may be established by repeating the above argument with ¢ replaced by
a convergent sequence ,.

We will now sketch the proof of Lemma 3. It is easy to see that if n = n, —
co as'a — oo with ¢, = an! — ¢, where 0 < ¢ < ¢, then

Pt = n) ~ (2m) 4 nh et G L, (e, nm))eY dL(y)
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as a — oo for any 6 > 0, where 7, (¢, s) is as in (12), but with u replaced by
Uy, (cf. (11) and (18)). The analysis of I, ,(c,, n~'y) begins as in (29)—(31).
Only the treatment of I}, requires substantial comment. Let 0 < y < o0, z ¢
R?, and s = n~'y. Further, let H, = H,(y, z) = {x: ¢(x) = ¢, + 5, O(x) = s,}z},
so that

L¥a(s, 2) = Sy, Up o1 J My dH 71

in equation (31). A simple application of Lemma 2 shows that

U, [(x) —w {x,y[i - i’%c___,(;)z]} —0

as @ — oo, uniformly with respect to x e H, = H,(y, z) and (y, z) in any compact
subset of [0, co) x R?; and it follows that

lim I} (s, Q,7%2) = SM;_ 7 J Yy w[x, €] d.
where

§=4&(x, 5, 2) = y[1 — (1 = 9)7'7Q,*Q(x, 0)Q,#z] .

The remainder of the proof proceeds as in Theorem 1. By letting a — oo and
n — 0 (in that order), we find

(33) lim sup n**l, ,(e,, n7'y)
< 20§ S, wix, y(1 — 2'2)]kj~' dH, "~ dL(z)

uniformly on compacta with respect to y; and a similar argument will show
that lim inf n#¢J, ,(c,, n7'y) is at least as big as the right side of (33). The limit
in (33) is then integrated to obtain Lemma 3.
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