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OPTIMUM FISHERIAN INFORMATION FOR
MULTIVARIATE DISTRIBUTIONS
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It is shown that within the class of all multivariate distributions
depending on a location parameter (and satisfying certain smoothness
conditions) and with a weighted norm constraint on the covariance matrix,
the one with minimum Fisherian information is the Gaussian distribution.
This result is then used in obtaining a tight upper bound on the error of
estimating an unknown random vector observed in additive Gaussian noise
under quadratic loss.

1. Introduction. It is known that within the class of distributions of a single
variable depending on a location parameter (and satisfying certain regularity
conditions) and with a fixed variance, the one with minimum Fisherian infor-
mation is the Gaussian distribution [2]. In this paper, we generalize this result
to n-dimensions, and prove that a similar result still holds. The quantity to be
minimized, in this case, is a weighted norm of the Fisher information matrix,
and the variance constraint is replaced by a weighted norm constraint on the
covariance matrix. We then consider the problem of estimating an unknown
random vector in additive Gaussian noise and under quadratic loss, and use the
above result to obtain a tight upper bound on the expected value of optimum
quadratic error.

2. Main result. Let %, denote a family of distributions {P,, # € R"} on R",
with densities dP,/dy = p(x — ¢) with respect to the Lebesgue measure, and
satisfying the following second-order constraint:

(i) Tr[D Cov (X)] = k* D > 0 (an n X n matrix),
together with the three regularity conditions:

(ii) p is continuously differentiable

(iii) § x'xp(x) dx < oo

@iv) |x;|pi(x;) — 0 as |x,| — oo,
where p, denotes the marginal density‘function of the ith component of the
random vector X.

Then the Fisher information matrix for the above family of distributions is
given by

(1) 1,(6) = $, [V In p(x — O)][V, In p(x — O)]'p(x — 0) dx
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where K, denotes a region in R" defined by {x € R", p(x — 0) > 0}. Since § isa
location parameter, the above integral is actually independent of #, and hence
the Fisher information matrix can be written as

2 I, = V& [V.1n p(0)][V. In p(x)]'p(x) dx

where K = {x e R", p(x) > 0}. We now seek to minimize Tr [CI,] over .5,
where C > 0 is an n X n matrix. The main result is the following:

THEOREM 1. The minimum of J = Tr[CI,] is attained on .87 uniquely by the
Gaussian distribution with covariance

3) Cov (X) = {k*/Tr [F]}D~*FD~*
where

(4a) F =, (DICD?%)},

(4b) Dt =, (D¥)™*,

and A} denotes the unique positive definite square-root of A > 0. The minimum
value of J is given by

(5) J* = {Tr [F1}/k*.
Proor. Without any loss of generality, we may take the mean of X to be

zero. Moreover, via the absolutely continuous transformation Y = DX, we
can rewrite constraint (i) as

(i") Tr[Cov (Y)] = k*
and 7, as
(2 I; = (2 Dt o (y)o,/ (y)DH(y) dy ,

where f(y) denotes the density function of ¥ (which exists because of absolute
continuity of the transformation), ¢ () is defined by

(6) 2Ay) =V, Inf(y) = V,f()Ify)
and K is defined similar to K. Furthermore,
) J = Tr[CL] = Tr [FL,] ,

and hence we can now seek to minimize (7) under the constraint (i’). To com-
plete the formulation of this new minimization problem, we replace .57, by
J%O, with the definition of the latter being obvious.

For each fe .57, we now introduce the inner product

(8) &y =k EAY) dy

on the space Ly(y,) of random vectors of dimension n, where z, denotes the
measure derived from the density f. The natural norm derived from this inner
product will be denoted by s- Let us now consider the scalar quantity

O) o =Sk YN0y = By ey LDy,
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where F,; denotes the ijth entry of F. Since f(y) is identically zero outside K
and since f(y) is continuous, K is an open subset of R™ and we can, without
any loss of generality, take df(y)/dy, to be finite on the boundary of this open
set (i =1, .-, n) and going to zero in a sufficiently small neigborhood of the
boundary. This allows us to replace K above by R" and apply integration by
parts on the right-hand side of (9):

dy, - dy, = Fyly.f, (y)IZ2 — (ra f(y) Y]
= —F,; \z f(y)dy = —F,

0
(10a) FiiSany; 3f

1

and for i =+ j,

b
Fij \pnys af dy, - - dy,
Vi
(10b) = Fii Sen1pi f) dyy - dyy - dy,itis ko
=0,

where in writing (10a) and (10b) we have made use of (iv) explicitly. (10a)
and (10b) together with (9) now imply that

(11) s For(y)yy = —Tr[F],

and hence this indicates that the inner product is independent of the choice of
fe .57, Cauchy-Schwarz inequality applied to (11) yields:

(12) {Te[FIY = [y Fo 004" = IDIAIFe D2 = KT,
and therefore J is bounded above by {Tr [F]}*/k? which is a tight bound since
it is attained when f is chosen as the zero-mean Gaussian density with covari-
ance (k*/Tr [F])F. Moreover, this is the unique minimizing solution, since the
inequality sign in the Cauchy-Schwarz inequality can nontrivially be replaced
by an equality sign if and only if Fp,(y) = Ay for some scalar 2, which in this
case is A = —{Tr [F]}/k* because of the constraint (i’) and the regularity con-
dition (iv). To complete the proof of Theorem 1 we simply note that under the
linear transformation X = D~* Y, X is still a Gaussian random vector with
Cov (X) = D-#Cov (Y)D-% []

REMARK 1. It should be clear from the above, and especially from the
relations (12), that if the constraint (i) is replaced by

(i”) Tr[D Cov (X)] < k2,
then the statement of Theorem 1 will still be valid.

3. An application. One application of the result presented here would be in
the derivation of upper bounds on the estimation error of a vector valued
random variable in additive Gaussian noise. To be more specific, let X denote

a single observation of an n-dimensional zero-mean random vector Y in inde-
pendent additive Gaussian noise W, i.e.,

(13) X=Y+W
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where W ~ N(0, R), R > 0, and Y is assumed to possess a density function p(y)
with respect to the Lebesgue measure and with the norm constraint

(14) SanYyp(y)dy < .

We further assume that p(y) satisfies the three regularity conditions (ii)—(iv),
and seek to obtain an upper bound on the error of estimating Y using obser-
vation (13) and under the quadratic loss function

sy L(3, p) = E,[(9(x) — ) (3(x) = »)]>
where d is an estimate for Y and the criterion is minimization of L(d, p) over
all Borel-measurable o and for each fixed p(+).

It is well known that (15) is uniquely minimized for each fixed p by the
conditional mean

(16a) 0,°(x) = B[y |x] = %l(x) Vyo(x — y)p(y) dy
where ¢(+) is the density function of W, and
(16b) $o(x) =4 § $(x — 2)p(y) dy

is the density function of X and satisfies the three regularity conditions (ii)—
(iv). We now note the relation
RV, In ¢ (x) + x = 0,%(x) ,
and make use of this differential equation in simplifying (15) after substitution
of (16a):
L3, p) = E,[yy] — E,[9,"8,"] = E[W'W] + E,[x'x] — E,[6,"5,’]
= Tr [R] — Tr [RRI,]

where I, is defined by (2) with p(x) replaced by ¢,(x). We thus see that L(3,’, p)
depends only on the density function of X, and hence we can now seek to
determine the tight upper bound on L(d°, p) when ¢ varies over the class of
permissible density functions for X, characterized by relation (16b) and the

constraint
(o X'xd(x)dx < ¢* + Tr[R].

Ignoring satisfaction of relation (16b) for a moment, we note that the unique
solution to the above is given by Theorem 1 to be the Gaussian distribution
with covariance

Cov (X) = {(¢* + Tr[R])/Tr [R]}R
yielding the tight upper bound

L(3,, p) = ¢ Tr [R]/{c* + Tr[R]}
The corresponding (least favorable) density function of Y can easily be seen to

be Gaussian with covariance

Cov (Y) = {¢/Tr [R]}R .
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We note that a similar result was obtained in [1] under a soft constraint on
Cov (Y), which was included in the generalized quadratic loss function. Using
an entirely different approach, it was shown in [1] that the tight upper bound
is again obtained by taking Y to be Gaussian.
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