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ON CONTRACTIONS OF BAYES ESTIMATORS FOR
EXPONENTIAL FAMILY DISTRIBUTIONS

By MicHAEL GOLDSTEIN
University of Hull

Sufficient conditions are provided to ensure that the Bayes estimator
with squared error loss for the natural parameter of an exponential family
distribution is a linear function of the sample value, given that various

- contractions of the Bayes estimator are also Bayes estimators, generalizing
a result of Meeden (1976).

Let X be a normal random variable with mean ¢ and variance one. Meeden
(1976) has shown that if a generalized Bayes estimator for #, with squared error
loss, has the property that any linear contraction of this estimator is also a
Bayes estimator for #, and the further property that there exists a constant M
such that the estimator is bounded above by (x + M) for positive x, and bounded
below by (x — M) for negative x, then the estimator must be a linear function
of x.

We shall begin by providing a simple, elementary proof of Meeden’s result
in the general case for any exponential family distribution on the real line with
a single natural parameter, requiring not that all linear contractions should be
Bayes estimators but only that any subset tending to zero should have this
property.

We then extend the result to the case of any contractions tending to zero
smoothly, in a specified sense, motivating the result by considering a mixture
of normal prior distributions. Finally, having noted a general result on the
posterior mean of an exponential parameter, the linear bounds on the estimator
are replaced by polynomials of any order.

THEOREM. Let X be a random variable with pdf p(x, &) of the form
(1) p(x, ) = exp(fx + 0(6) + R(x),
where 0, x € (— oo, o0).

Let g be a generalized Bayes estimator for 0 with squared error loss. Suppose that
there exist values a, b such that ‘
2) gx)y<ax+b for x=0, and

g(x) Zax —b for x<O0.

If there exists a sequénce of positive values A, converging to zero, for which 2,g is a

Bayes estimator for each i, then g(x) = cx + d, for all x, for some constants c and d.
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Proor. For any prior distribution for 6, repeated differentiation of the
expression for E(6 | x) gives the relation

3) m'"(x) + 4m(x)m" (x) + 6m’(x)m*(x) + 3(m'(x))* + m*(x) = E(6*|x),

where m(x) = E(0]x).

In the particular case when m(x) = 4, g(x), substituting into (3) gives ¢"’(x) =
0, for all x, as the values A, are converging to zero, and E(6*|x) is always
nonnegative.

If ¢”(x) does not vanish identically, there must be a value x, for which
g"(x,) = ¢ #+ 0. Suppose ¢ > 0. From the above g”(x) = ¢ for all x > x,, and
thus g(x) increases as x? for large x, contradicting (2). A similar contradiction
arises if the value ¢ defined above is negative, and thus g’’(x) vanishes identi-
cally, and the result follows.

The above theorem extends immediately to the multiparameter exponential
family, with pdf p(x, 8) of the form

p(x, 0) = exp(0'x + 35 (Ry(x;) + Qi(0))) -

If the prior distribution for # is such that the elements of & are a priori
independent, then the posterior expectation for 6, will be of the form g,(x;). If,
for each i, there exist values a,, b, such that g,(x,) satisfies (2), and there also
exists a sequence of positive vectors 4, converging to zero, for which 4,g isa
Bayes estimator for @ for each j, then g is of the form C’x + d, for some
constant vectors C and d.

As a simple counterexample, for nonexponential families, consider the family
of random variables, X, with probability distributions given by

PX=1)=60, PX=—-1)=k#, PX=0=1—(k+1)0,

where k is some positive constant. Now E(f|x) is not a linear function of x,
for any nontrivial prior distribution for §. But for any two prior distributions,
denoting by E,(0 | x), E,(6 | x) the posterior mean for § under the first and second
prior distributions, then the requirement that E,(¢ | x) = 2E,(f | x), for each value
of x, where 0 < 2 < 1, is equivalent to the two requirements

A1 — (k + 1)(E,0%E,0))E, 0

E 0 = ’
? 1 — Ak + 1)(E,0*/E,6) — (1 — A)(k + 1)E,0
E6" = 2 El? E,f.

1

(This follows by comparing the posterior mean under each prior distribution,
for each value of x.)

But, for values E, 0, E,6* derived from any prior distribution for 6, we may
find, for any 2 € (0, 1), a prior distribution for # for which the values E, ¥, E,§*
satisfy the above equations, as (E,0)* < E,0° < (1/(k + 1))E,0.

Thus, for any Bayes estimator g, with squared error loss, for 6, the rule g is
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a Bayes rule for ¢ for each 1€ (0, 1), although g is not a linear function of x
for any nontrivial prior distribution for 6. ]

The proof of the above theorem actually implies a stronger conclusion. In
fact the 2, may be replaced, in the statement of the result, by a series of positive
functions, f,(x), such that f,(x)g(x) is a Bayes estimator for #, where the
functions f;(x) have the properties

(i) for each x, lim, f(x) = 0;
(ii) for each x, lim, (1/f,(x)(d"f,(x)/dx") =0, r = 1,2, 3.

Properties (i) and (ii) (which are trivially satisfied for the functions f;(x) = 4,
for all x, 2, — 0) simply express the property that f;(x)g(x) is a contraction of
g(x), and that for large i the contraction is smooth.

Consider, for example, the generalization from estimating the mean of a
normal distribution when the prior distribution is normal, to that of estimating
the normal mean when the prior distribution is a mixture of normals. For ex-
ample, if X is a normal random variable, mean 6 and variance 1, and the prior
distribution for 6 is a mixture of two normal distributions both with mean zero
and one with precision r;, one with precision kr,, then the Bayes estimator for
f, with squared error loss, will be of the form [i{x)x, and if r, — oo, it may be
checked that the functions f,(x) have properties (i) and (ii) above.

Thus we have shown that no nonlinear estimates for § may possess this
property and we note this as:

COROLLARY. Suppose that all the conditions of the theorem above are satisfied,
with the exception that the values 2; are replaced by a sequence of positive functions
fi(x), satisfying properties (i) and (ii) above, for which f,(x)g(x) is a Bayes estimator
for each i. Then, as before, 9(x) = cx + d, for all x, for some constants ¢ and d.

It is natural to enquire whether the very strong constraint (2) in the statement
of the above theorem, namely that g(x) should be bounded by a linear function
of x, is necessary to derive the required conclusion. We will show that it is
sufficient to suppose that g(x) is bounded by polynomials of any order, and to do
this we shall require a preliminary lemma, which is a consequence of a theorem
of Sampson (1975).

LEMMA. Let X be a random variable with pdf p(x, 6) of form as given in (1).
The Bayes estimator for § given x, with squared error loss, cannot be a polynomial
of degree greater than one, for any prior distribution for §.

Proor. Sampson (1975) has shown that if a pdf p(x, §), with respect to a
general o-finite measure 4, has form as given in (1), then the function A(f) =
E(X|0) cannot be a polynomial of degree greater than one. But, if the likeli-
hood has form (1), then the posterior distribution for given x will be of the form

exp(0x + Q(6) + R(x))p(9)/p(x) = exp(0x + O(0) + R(x)),

if the prior distribution is absolutely continuous, or, more generally, will be a
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pdf from the exponential family with respect to the prior measure for . Thus
Sampson’s result implies that 4(x) = E(f|x) cannot be a polynomial of degree
greater than one.

This lemma has the consequence that any attempt to estimate the mean of
the posterior distribution for # by a polynomial in x (see, for example, Goldstein
(1975)), will never yield an exact solution unless the mean is linear in x. How-
ever, if the mean is linear in x, it is an immediate consequence of equation (5)
below that the kth moment of the posterior distribution for ¢ will be a poly-
nomial of order k, so that in this case polynomial approximation for each
moment will be exact.

The above lemma enables us to weaken the bounds imposed on g(x) as follows:

THEOREM. Suppose that all the conditions of the theorem above are satisfied, with
the exception that there exists a positive integer n, and polynomials A(x), B(x) of
order n, such that

“4) g(x) < A(x) for x=0 and 9(x) = B(x) for x<O0.

Then, as before, g(x) = cx + d, for all x, for some constants ¢ and d.

Proor. Differentiating the expression for E(67 | x) gives the following relation,
for a general prior distribution for 6, namely

) E@ ) = L EO7|x) + E@|)E@"|x).

Thus, when the prior distribution for ¢ is such that 4, g is the Bayes estimator
for 6, we have from (5), by induction, that for each integer r
© B0 x) = 2. 90) 4 22pa, )
x'l‘

where p,(2;, x) is a polynomial in 2, whose coefficients are derivatives of g(x).
As the values 2, are converging to zero, we have from (6) that for all x and for
all nonnegative integers r,

(7

Thus, for any even integer m, if d™g(x)/dx™ does not vanish identically, then,
from (7), g(x) behaves as x™ for large positive or negative x. Thus d*g(x)/dx™
must vanish identically, by (4), and so g(x) must be a polynomial. But, by the
above lemma, E(f | x) cannot be a polynomial of degree greater than one, and
the result follows.

The following corollary is proved as above.

COROLLARY. Let X be a random variable with pdf of form (1). Let g be a Bayes
estimator for 6 with squared error loss and suppose that there exists a positive integer
n, and polynomials A(x) and B(x) of order n, such that relation (4) is satisfied.
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Suppose also that there exists a sequence of positive functions f,(x), satisfying the
properties

(i) for each x, lim, f,(x) = O,
(il) for each x, lim, (1/f,(x))(d"f(x)/dx)y =0, r =1,2, .-, n 4+ 2,

for which fi(x)g(x) is a Bayes estimator for each i. Then g(x) = cx + d, for all x,
for some constants ¢ and d.

As an illustration, in the example on estimating the mean of a normal distri-
bution with the prior distribution for the mean being a mixture of two normal

distributions, the functions f;(x) satisfy the conditions of the above corollary
for any nonnegative integer n.
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