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AN INEQUALITY FOR MULTIVARIATE NORMAL PROBABILITIES
WITH APPLICATION TO A DESIGN PROBLEM

BY Yoser RINOTT! AND THOMAS J. SANTNER?

University of Chicago, The Hebrew University;
and Cornell University
Some results from the theory of total positivity and Schur convexity
are applied in deriving inequalities for multivariate normal probabilities
having a certain covariance matrix. The result is applied to determine an

optimal experimental design in an analysis of covariance model when selec-
tion of the best treatment is desired.

1. Introduction. Probabilistic inequalities for the multivariate normal distri-
bution as a function of the covariance matrix have frequently been studied in
the literature. Anderson (1955) considered probabilities of symmetric convex
sets and proved that they are a monotone decreasing function of the covariance
matrix with partial ordering of covariance matrices defined by £ > Wif X — ¥
is positive semidefinite. More precisely let X = (X, ---, X,)and Y = (Y}, - - -,
Y,) be p-variate normally distributed random vectors with common mean vector
zero and covariance matrices £ and W respectively and let E be a convex set
symmetric about the origin. Then X > ¥ implies

(1.1) P[XeE] < P[YeE].

Slepian (1962) studied the probabilities of events defined by one-sided inequali-
ties (quadrants) and showed they are monotone increasing in the covariances of
the random variables. Specifically let X and Y be p-variate normally distributed
with common mean vector and covariance matrices ), = (g;;) and ¥ = (¢;;)
respectively. If o,, = ¢, 1 i< pando;; < ¢ 1 <i+#j< pthen

7

(1.2) PIX,<¢, - X,<¢,]<P[Vi<c, Y, <c]

»
forany ¢, -+, ¢
(1972).

In this paper we combine aspects of (1.1) and (1.2) by considering quadrant
probabilities with special covariance matrices where the ordering involved is
similar to that considered by Anderson. Our results were motivated by a design
problem which will be discussed later.

Let X = (X,, ---, X,) have the p-variate normal distribution with mean zero
and covariance matrix . For d e R (the real line) set P[X,d] = P[X, < d, - - -,
X, < d]. Let Iand Jdenote the identity matrix of order p and a p X p matrix

,- For related inequalities and references see Das Gupta et al.
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with all elements equal to 1 respectively and define X,, = I 4+ a*/ (covariance
matrices of this form appear in multivariate analysis under the name of intra-
class or equicorrelation pattern). For any fixed @ € R we obtain that the
difference

(1.3) h(d) = P[Z., d] — P[I, d]

has one sign change from positive to negative over de R, i.e., there exists a
d, € R (depending on a and p) such that (d — d,)h(d) < O for all de R.

Our application requires the following generalization of this result. For
1 <n<pletd,beap x pmatrix defined by 4, = (a,;) wherea,; = 1for1 < i,
J = n,a;; = 0 otherwise, and define Zpp =1+ pY + a’4,. In particular
Zop =1+ B = Iy by our previous definition. For any fixed «, e R and
1 < n < p we obtain that the difference

(1.4) 9(d) = P[Z,2 5, d] — P[Zp, d]

has one sign change at d,, from positive to negative as a function of de R,
where d; € R depends on a?, %, n and p.

In the case n < (p + 1)/2, f* = 1 we have 4, < 0, and by expressing the pro-
babilities in (1.4) as integrals (denoting m = p — n) we obtain for all d > 0

(1.5)  §§@%d + x + ay)@™(d + x) dD(x) dD(y) < § D*(d + x) dD(x)
where @(x) = 1/(2z) {#_, e~**dt, m + 1 = n = 1, and all integrals are over R.
In fact we can show that in this case the left-hand side of (1.5) is decreasing in
||, for any d = 0.

We consider the application of (1.5) to a design problem for an analysis of
covariance model. Suppose / observations are to be taken on each of k treat-

ments and the responses {Y;;|1 <i < k, 1 < j < [} satisfy the analysis of co-
variance model

(1.6) Y = p + BXy; + €55 lsisk, 1)<

where {¢,} are k unknown treatment effects, the {X,;} are the values of k/ known
concomitant variables, 8 is the common unknown slope of the k regressions and
the ¢,; are independent normal variables with zero means and common known
variance, ¢%. In certain applications the experimenter may have some control
over the values of the concomitant variables {X;;}. In particular we have in
mind the situation in which the values of the X-variables for the k/ subjects
participating in the experiments are given, but their allocation to the k treatment
groups is under the experimenter’s control. If the purpose of the experiment
is to test equality of the {y;} then it can be shown that the power of the F test
is maximized when the {X;;} are allocated so that

(1.7) X.=X.=--- =X,

where X,, = >\, X,;/I. If a given set of {X, ] values is to be used in the experi-
ment then it may be impossible to achieve allocation (1.7) exactly, however a
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good approximation may be attainable if the experiment is sufficiently large.
By invoking (1.5) we show that if the purpose of the analysis is to select the best
treatment, i.e., the treatment with the largest p,, and if the “natural” selection
procedure based on the BLUE’s of the y,’s is employed then the minimum pro-
bability of a correct selection outside a suitably chosen indifference zone is
maximized by the same design (1.7). The main tool used to reduce this problem
to (1.5) is Schur convexity as described in Marshall and Olkin (1974).

2. Inequalities for the normal distribution. Set ¢(r) = 1/(2x)} e~*** and
DO(x) = {2, &(¢) dt.

THEOREM 2.1. For any integer n = 1 and a € R the function h defined by h(z) =
§ ©(z + ay) d®(y) — ®"(z) has exactly one sign change. More precisely, there
exists z,€ R such that (z — z))h(z) < 0 for all z € R.

REMARK 2.1. A direct calculation shows that function A(.) of Theorem 2.1
is identical with A(.) defined by (1.3).

Proor oF THEOREM 2.1. We first show that 4(z) must exhibit an odd number
of sign changes by proving: (a) A(z) > 0 for z < 0; and (b) A(z) < O for z suffi-
ciently large. Part (a) follows from the fact that for z < 0

O(2) = {P@(z/(1 + )} = {§ ©(z + ay) dO(y)}" < § O*(z + ay) dD(y) .

Part (b) can be proved as follows: A(z) < § @(z + ay) dD(y) — P*(2) =1 —
On(z) — [1 — O(z/(1 + a®))] < n[l — DO(2)] — [1 — D(z/(1 + a??)]. Substitu-
ting the asymptotic approximation 1 — ®(x) ~ ¢(x)/x into the last two terms
gives the result. The remainder of the proof consists of showing that A(z)
can have no more than two sign changes. Since ®"(z) = | ®*(z + ay) ddy(y)
where 9, is the probability measure degenerate at zero, it follows that A(z) can
be uniformly approximated (in z) by the sequence 4,(z) = § ®"(z + ay)[¢(y) —
u,(y)] dy as m — oo where u,(y) is the uniform density on [—1/m, 1/m]. Hence
it suffices to show that #,(z) has at most two sign changes for m sufficiently large.
The function f,(y) = #(y) — 4,(y) has two sign changes, being negative in
[—1/m, 1/m] and positive outside this interval. The theory of total positivity
(see Karlin (1968), Chapter 1, Section 3 and Chapter 5) implies that provided
we can demonstrate that the kernel K(z, y) = ®*(z + ay) is totally positive of
order 3 (TP;) or sign regular of order 3 (SR;), then by the “variation diminishing”
character of such kernels the number of sign changes the transform #,(z) =
§ K(2, y)fm(y) dy can have is bounded by the number of sign changes of f,(y).
Since f,(y) has exactly two sign changes as noted above, the transform #,(z)
has at most two sign changes and the proof is complete. (The sign regularity
of ®*(z + ay) which is required in the above proof is demonstrated in the Ap-
pendix.)

Theorem 2.2 below describes the behavior of the function g(d) of (1.4) ex-
pressed in integral form.
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THEOREM 2.2. For any n,m = 1, a, B € R the function g(d) defined by

9(d) = §§ @™(d + px 4 ay)®@™(d 4 px) dO(x) dD(y) — § @**"(d 4 px) dD(x)
has one sign change. More precisely there exists d, € R (depending on n, m, a, f3) such
that (d — d,)g9(d) < O for all d e R.

PROOF. Set f(z) = 1/BD™(z)h(z) where k is defined in Theorem 2.1. Then
9(d) = § f(2)¢((z — d)/B) dz. The function f has one sign change by Theorem 2.1
and the desired result follows from the total positivity of the kernel K(z, d) =
#((z — d)/B)-

REMARK 2.2. We can now derive inequality (1.5) provided that g(0) < 0 in
the case m + 1 = n = 1, 8 = 1 since it follows that g(d) < 0 by Theorem 2.2
in this case. In order to prove g(0) < 0 set

H(a,d) = {§ ®"(d + x + ay)®™(d + x) d®(x) d®(y) — | ®**™(d + x) dD(x) .
Note that H(a, d) is an even function in « for any fixed 4 and we can restrict
attention to a > 0.

Differentiation of H(a, 0) and a substitution yield

dH(a,0) _

n m—n+1 m—n+1f7,
(@0.0) - 1§ (u — n[@-r(w) — O-r)]

X @)D () b <” = ”) AD(u) dD(v) .

It follows that dH(a, 0)/da = 0 for m + 1 = n and dH(a, 0)/da < 0 for m +
1 > nsothatform+1>n=>1, H(a, 0) < H(0,0) = 0. For 8? = 1 and a given
a we have g(0) = H(a, 0) implying g(0) < Ointhecasem + 1 = n > land g =
1 and this completes the proof of (1.5).

A stronger result than (1.5), namely that the left-hand side of (1.5) is decreas-
ing in |a| is now indicated. Invoking total positivity arguments similar to those
employed above it can be shown that for any fixed a > 0 the function dH(a,d)/da
of d has at most one sign change which must be from positive to negative. It
follows that ford > 0, dH(&, d)/da < Oforalla > Owhenm + 1 = n > 1since
dH(a, 0)/da < 0 and hence H(a, d) is decreasing in |a| by the symmetry of
H(a, d).

3. An application to a design problem. Our results will now be applied to a
design problem in selecting the best treatment in an analysis of covariance
model. Suppose k treatments are studied by applying each to / subjects and ob-
serving the response Y,; for the jth subject under treatment i and that Y,; =
u; + BX;; + ¢;; where the p,’s are unknown treatment effects, the X,; are known
values of concomitant variables with common unknown slope 8 and the ¢,; are
independent N(0, ¢?) variables. Let p,, < --- < g, denote the ranked effects
and suppose the treatment with the largest effect, s, is considered the best treat-
ment. The BLUE of g, is g, = ¥,, — fX,, where ¥,, = Y!_, Y;/l, X, =
2%=1 X/l and Aé = Eyy|Exx Where Ey, = ¥, 34, (X;; — X,)Y,; and Eyy =

b3k (X,; — X,.)%. We consider the procedure which selects the treatment
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producing the largest g, as the best treatment. Let Q(0*) = {ge| ¢, — f4-1, = 0%}
for some 0* > 0 denote those g configurations where the best treatment is at
least 0* superior to the remaining ones. Let P[CS| g, X] denote the probability
of making a correct selection of the best treatment using the rule above given
¢ is the true configuration of the treatment effects and X = {X;} are the values
of the concomitant variables. It is easy to see that inf,.g,., P[CS]|g, X] is at-
tained at g, = (0, - --, 0, 6*) and from now on we restrict our attention to this
so-called least favorable configuration (see Bechhofer (1954)). Let 2, and X;);
be the BLUE and jth covariate associated with the ith best treatment (which is
unknown) i =1, ..., k. We have

PICS| e X] = Pl > fyy L Sj S K — 1]
=P[Z, = —0%|o, | <j < k — 1]

where Z = (Z,, - - -, Z,_,) is (k — 1) variate normal with zero mean vector and
covariance matrix X = (o,;) where
0y =2/l + (X/(k)- - (]}o)z/EXX > i=]j
= 1/1 + (X — m-)( (kye — m-)/EXX » L]

This covariance matrix and hence the probability of correct selection depends
on X 'me> the mean of the covariates in the best treatment. Obviously the assign-
ment of one of the values X,,, - - -, X,, to X, is unknown since we do not know
which of the k treatments is the best and hence the value of X,,,, is unknown.
We therefore consider the minimum of the probability of correct selection over
the k possible assignments of X, - -, X, to X;,,. This minimum can be ex-
pressed in integral form as follows:

(3.1) ming , _z; asisk P[CS] 26, X]

= minyg; g §§ [T¥ri0; P(@ + x + (b; — b,)y) dD(x) dD(y)
where d = [}0*/o and b, = Yi,l%/(EXX)% i=1, ..., k. Forany given kl values
for the X variables we seek the optimal allocation of the k treatment groups, i.e.,
the allocation which maximizes (3.1).

The following definitions and results will be required for the proof of Theorem
3.1 below.

DerINITION. If a and b are p dimensjonal vectors then a is said to majorize
b (written a > b)if upon reordering components to achieve q, 2 a,=> --- > a,
and b, = b, > ... = b, then Y% a; = Yk b, for 1 < k < p with equality
for k = p. Real valued functions ¥ for which a > b implies ¥W(a) < ¥(b) are
called Schur-concave.

It is well known (see for example Marshall and Olkin (1974)) that ¥(a) =
[I?-: f(a,) is Schur-concave if f is log-concave. From this it follows readily that

the function
Y(@) = (a, -+, a,) = {§ [172Q(d + x + a;y) dD(x) dD(y)

is Schur-concave.
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THEOREM 3.1. For any given X = {X,;} the expression (3.1) attains its maximum
when X,, = X,, = --- = X,.. The value of the maximum is independent of the
values of X,,, and thus any allocation of subjects to treatments which satisfies X,, =
X,. = ... = X, is optimal for the selection problem, and achieves the same proba-

bility of correct selection.
ProOOF. Assume without loss of generality b, < b, < --- < b, and choose

Jo=(k 4+ 1)/2 or (k + 2)/2 as k is odd or even. Setting (a,, - -+, a,_;) =
(b, — by - b, —b; b, —b -, b, — b,) it will suffice to prove
0 0 0 0 0

(3.2) W(ay, -+ a,y) = §§ [[42 ©d + x + a;y) dD(x) dO(y)
< § @F(d + x) dD(x) .

Jot10 T

Our choice of j, implies that we can write k — 1 = m + n where n = m or
n=m + 1 as k is odd or even and we haveq, = Ofori=1,...,nanda, <0
otherwise. Let v,(c) denote a vector of length n 4 m with the value c in the
first n position and zeros in the remaining positions and set a = 1/n Y ¥-l a,. We
have a > v,(a) and by the Schur-concavity of ¥(a,, - - -, a,_,) we obtain

U(@y oo @) S (04(0) = {1 Q@ + x + ay)®"(d + %) dD(x) d(y) .
Inequality (3.2) follows from inequality (1.5).

REMARK 3.1. Our result shows that the experimenter should design the ex-
periment so that X,, = X,, = -.. = X,,. If this cannot be attained the conti-
nuity of the probability of correct selection as a function of X = {X;;} suggests
that an approximation of this design may be satisfactory. In such a case the
probability of correct selection given in (3.1) depends not only on X, - .-, X,
but also on E,, and an inspection of (3.1) shows that the approximation is
improved by increasing the value of E,,. It is therefore worthwhile to note that
for any given k/ values for the X variables, fixing >, X?,, E,, is a concave
function of X,,, ..., X,., which is maximized when X,, = ... = X,..

4. Appendix. We prove here that the kernel K(x, y) = ®"(x — y) is strictly
totally positive of order 3. This implies that ®"(x + ay) is strictly sign regular
of order 3 as required for the proof of Theorem 2.1. (See Karlin (1968) Chapter
2 for definitions.)

For n =1 it is well known that ®(x — y) is STP of all orders. Since the
product of STP, kernels is STP, (Karlin (1968) page 157), ®*(x — y) is STP, for
all n > 1 and invoking Theorem 2 of Karlin (1957) it remains to prove that for
n > 2 we have

d d?
D"(w,) dw D*(wy) vt @*(w,)
(4.1) Q*(w;) —— D*(w,) ;@™ (wy)| <0
dw aw
d d?
D"(w,) o D™ (w,) e O™ (wy)
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for all w, < w, < w,. Some calculations show that the determinant in (4.1) can
be written as

/ d d2
D(wy) Z;q)(wl) Wz_q)(wl)
(4.2) X AP0 @w) L () L D(n)
o) Law) Lowm

n2d"=2(w ) D"~ %(w,) D"} (w,)

d d
D) D) || D(r) - Dwy)

+ (=1
Ed)(wz) gd;(l)(wz) D(w,) 71‘{; O(v,)

D) o D(w,)
X
w1 D(w,)

All the determinants in (4.2) are negative since ®@(x — y) is strictly totally posi-
tive and (4.1) follows.
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