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ON THE UNIFORMITY OF SEQUENTIAL PROCEDURES!

By RaymMonD J. CARROLL
University of North Carolina at Chapel Hill

An extension of a central limit theorem for a mean of a random num-
ber of observations is given. A natural application occurs in the area of
fixed-width confidence intérvals. We provide an example which shows that
the standard procedure does not preserve the intended coverage probability
uniformly over nontrivial sets of distribution functions. The major weak
convergence result is used to provide conditions for and a simple proof of
such uniformity. The results are also shown to hold for M-estimates of

location.

1. Introduction. This paper has evolved from a study of the uniformity of
central limit theorem approximations for sequential fixed-width confidence inter-
vals and related ranking and selection procedures. The main weak convergence
result concerns a process

Wals, 1) = n=t Zizd {ét(Xi) — EG(X)},

where {G,} is a family of functions. We prove W, converges to a process
in CJ0, co) and obtain the same result for a random sample size version
W, (sN(t)/n, t) taking special care to assure the process is an element of D,[0, co).
The topologies and conditions for convergence will be taken from Billingsley
(1968) and Bickel and Wichura (1971), hereafter denoted B-W. The methods
will extend to include dependence among X, X,, - - -, but we make no special
effort in this direction.

In Section 3, we first find an example of a compact space of distributions on
which a sequential central limit theorem is not uniform. This failure is due to
the lack of tightness in a process closely related to W,. The weak convergence
results are then used to provide conditions under which the approximation is
uniform. In Section 4 the results are extended beyond sample averages, the
example being M-estimates, a class of robust estimates.

Throughout, “—” denotes weak convergence.

2. Weak convergence. Suppose X, X, - - are i.i.d. uniform (0, 1) random
variables and & = {G,: {§ G,(x) dx = 0,0 < 7 < oo} a family of functions. We
consider the following assumptions, with integrals taken over O, 1).

(A1) G,(x) is continuous in ¢ for each x and on each interval [0, c] there exists
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1040 RAYMOND J. CARROLL

M, 6 > 0 for which § |G,(x)|**? dx is bounded and
§1G,(x) — G (x)|*dx < M|ty — 1,|'*?, 0, t,<c.

(A2) There exists an integer-valued stochastic process (in D[0, c0)) N =
N(#) = N,(?) and a stochastic process y = y(f) in C[0, co) with N/n — y in prob-
ability on D[O, c].

(A3) There exists a second integer-valued process M in D[0, co) with M(r) <
N(t) and M/n — y in probability on D[0, c].

We define three stochastic processes by

Wo(s, 1) = nt B2 G(X,)
W, x(s, t) = W, (sN(t)/n, t)
H, = sup {|W, *(s,t) — W,*(1, )] : 0 < t < ¢, M(t)|N(t) < s < 1}.

THEOREM 1. Under assumption (Al) there is a process W in Cj[0, co) with
W, = W in D,[0, o).

Proor. It suffices to show weak convergeﬁce on D,[0, c] for an arbitrary c.
Define V,(s, 1) = W,(s, t) + V,2(s, ), where

Va®(s, 1) = (ns — [m)G(Xinarsn)/nt -
V, is an element of C,[0, o), so that we need only show that (i) W, is tight and
(ii) ¥, = 0, for in this circumstance V, would then be tight. Let B = [s;, 5,) X
[t,» ;) be any block (B-W, page 1658), where ns, and ns, are integers. Define
W (B) = W,(sp ) — Wo(sp 1)) — Wo(se 1) + Wo(sy 85). By (Al),
E|W. (B)I* = Mt, — t,|'"**{|s, — s,|/n + (s, — )’}
< Myjt, — 1[0, — s,[*°
since |s, — 5,| = 1/n. Hence for any pair of blocks B, C,
E|W (B)W(C)F = Mylty — 1,]"0]s, — 5,"*?,

proving by the extension to Theorem 3 of B-W (their page 1665) that W, is tight.
To prove that V, = 0, it suffices to prove that a process v, — 0, where v, (t) =
sup {|G,(X;)|: 1 < i < n}/nt. Since { |G,(x)|**’ dx is bounded, the finite dimen-
sional distributions of v, converge in probability to zero, so it suffices to prove
the tightness of v,. Letting n¥c, = E|G, (X,) — G, (X)|,
[va(ts) — vau(t)] = Suplgiéfn{thz(Xi) - th(Xi)I — nic,}/nt + ¢,
(2.1) = n7t 2 {IG,(X) — G (X)) — nte,} + ¢,
= Bt 1) (say).
Thus for any ¢ > 0, for n sufficiently large and ¢ small,

Pr {min {|v,(t;) — v, (t)]s [va(ts) — v, (t)|]} > & some ¢, — 1, < 0,8 <1, < 5}
< Pr{min {8,(t;, 1,), B.(ts, 1)} > €/2, some 1, — 1, < 0,1, < 1, < 45}
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Now, E|B,(f: 1,)|* = My|t, — ,|'*? by (A1) so that v, is tight (Theorem 3 of B-W)
and the proof is complete. []

W,* is not always an element of D,[0, oo). Happily, this is not a real problem
as the following corollary shows that the process W, * is “between” two processes
both in D,[0, co) and both with the same weak limit. To this end, define

N*(t) = sup {N(v): j/n < v,t < (j + 1)/n for some j}
Ny(t) = inf {N(v): j/n < v,t < (j + 1)/n for some j}.

LemMA 1. Assume (Al) and (A2). Then both N*|n and N,[n converge to'y in
probability on D[O, c] for all c. Further, if we replace N in the definition of W ,* by
either N* or N,, the resultant W * € D,[0, co) and W, * = W*. Finally, H, — 0 in
probability, where in the definition of H,, N is replaced by N* and M is replaced by N, .

Proor. Both N* and N, are elements of D[0, co) and the fact that they are
constant on intervals guarantees the new processes W_* are elements of D,[0, o).
By Billingsley (Theorem 5.5), N*/n — y and (W, N*/n) = (W, y); similarly for
N,. Consider N* only; we first must show that W * — W* on D,[0, c] for arbi-
trary ¢. Now, the function &, on D,[0, co) X D[0, co) defined by

(x5 z) — x(sz*(2), 1)

is continuous at points (x, z) € C,[0, co) X C[0, o0). This follows because if
X, — X, Z, — Z, the convergence is uniform. Further, B (X 2,) — B(x, 2) =
x(sz(t), t). Thus by Billingsley (Theorem 5.5), W, * — W*. For the second part,
note that for any » > 0, with probability approaching one as n — oo,

H, < sup, [W,*(1, 1) — W,*(1 — 7, 1)|
(2.2) + sup,_, <,<, min {sup, |W *(s, ) — W, *(1, 1),
sup, |W,*(1 — 9, t) — W, *(s, 1)|} ,

the suprema on ¢ over [0, ¢]. The first term on the right side of (2.2) converges
in probability to zero as n — oo, » — 0 by Chebychev’s inequality and (A1),
while the second term is bounded by the D,[0, ¢] modulus of continuity of B-W
and hence also converges in probability to zero. [

A little thought shows that (A2) and (A3) could be weakened to N/n =y,
Mn =y, (W,, N/n) = (W, y) and (W,, M[n) = (W, y).

3. An application. The sequential fixed-width confidence interval rules in-
troduced by Chow and Robbins (1965) may be described as follows. The space
of possible distributions is &~ = {F,: 0 € I}, where 6 is an indexing parameter,
which we will take to be a scalar. We observe i.i.d. observations Y,, Y,, -
from F,. Assume n¥(Y, — p(0))/h(6) = N(O, 1), where % is continuous in . We
wish to construct a confidence interval for y(6) of length 2d which has coverage
probability at least 1 — 2« throughout 5. Let ®(b) = 1 — a and for a small
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constant a* > 0, define
0(0) = max {a*, h(0)} 3, = max{a*, n7' 32 (Y, — ¥,)*}
ny(0) = (ba(6)/d)? Ny0) = inf{n: n = (bs,,/d)’} .
The stopping rule N = N,(0) differs slightly from that of Chow and Robbins
(1965), who show
(3.1 inf,. - lim, ,Pr{|X, — p@)| <d}=1—2a.

This is rather unsatisfactory as it gives no guide to the user in deciding how
small d must be for any particular §. One of the appealing features of the #-test
is that it holds its level uniformly over wide classes of distributions; one naturally
asks whether these confidence interval procedures have the same property, i.e.,
one seeks conditions on & for which

(3.2) lim, ,inf,.  Pr{|X, — p(0)| <d}=1—2a.

The difference in the two is that if one believes the true distribution is a
member of a particular parametric family . = {F,, § ¢ I} and if [ is compact
(because of constraints on the process), there will be a real interest in assuring
that the accuracy of probabilistic approximations does not depend on the “true”
value of 6 in this particular experiment, for a slight change in conditions may
change this value of §. The following example shows that care must be taken,
that (3.2) may fail while (3.1) holds.

Let U,, U,, - - - be i.i.d. uniform (0, 1) random variables. Define for0 < ¢ < 1
a(0) = (3)*-2/, I, the indicator of the event 4, and

X(0) = (6/1 — 0)*(1 — a(0)) L y,>a0)) -
Thus for 0 < 1,
w(®) = EX(6) = (/1 — 6)t, o*(0) = Var X,(0) = (9/1 — 0)(22-9% — 1),
while for = 1, u(0) = ¢*(¢) = 0. Then
Ny(0)= 24P (Xy(0) — w(9))

is a stochastic process in D[0, 1], but choosing 6(d) = d=*/(1 4 d~*) we obtain

lim,_, SUPy<,<, Pr {|Ny(6) ™ 14 (Xy(0) — w(0))| = d}

> lim,_, Pr {X,(0(d)) = 0, k = 1, -+, (ba*[d)}

= limd_.o (2_‘“)(“'”)2 =1,

the inequality following because X,(f(d)) = 0 for k =1, - -, (ba*/d)* means
Ny(6(d)) = (ba*/d)* and p(6(d)) = d-* = d. However, from Chow and Robbins
(1965), it is clear that

SUPyzozs lim, o Pr {No(6)™ T (X,(0) — p(0)] = d) < 2(1 — D(B)) -

The example fails because the distribution functions are not sufficiently close,
and it appears that a weak convergence approach will most naturally describe
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the necessary tightness. We will suppose the distribution functions F, have
inverses G, and take p(6) = 0 for convenience of notation. The probability
integral transforms gives
nt Y, =pn7t 1T Gy(Xy) s

where X, X,, - - - are i.i.d. uniform (0, 1) random variables and the equality is
in distribution (s2, and N,(f) may also be described in terms of G,). The latter
sum is a stochastic process in ¢ and the weak convergence framework of Section
2 now applies. Lemma 1 becomes relevant because N,(-) is not necessarily a
stochastic process in D[0, co), nor is a process corresponding to W,*(1, «).

THEOREM 2. Let @ range over a compact indexing set 1. Suppose (Al) and the
following hold:

(A4) lim Pr{|s?,/a%@) — 1| > ¢ for some 0 < 0 <c,n=n}=0,

Ny n
where ¢ is arbitrary but finite.
Then (3.2) holds. |

We need the following proposition.

PROPOSITION 1. Suppose V, = V in D[0, co), where V(t) is normally distributed
with mean zero and variance at most M, a finite constant. Suppose Pr {V e C[O0,
o)} = 1. Then for any compact set &~

lim, ., sup,. - [Pr{|V,(9)] < b} — Pr{|V()| =< b}| = 0.

Proor. Let 4, = {x e D[0, o) : |x(f)] < b}and %7 = {4,: te & }. By Theo-
rem 3 of Topsge (1967), we have to show that if 4, — 0, ¢, € &,

Py(N5= (aAt”)%) =0.
Assume .97 is a V-continuity class. Then since {¢,} has a limit point, this is
shown to hold by following the method of proof of Topsge’s Theorem 8. To
verify that % is a V-continuity class, one must show P,(dA,) = 0 for each ¢.
But
Py(04,) = Pv(a(At n C))
=P{xeC: |x(t)) =b}=0. a
Proor or THEOREM 2. Fix ¢ > 0 and define on intervals [0, a,,), [@y, @5,)5 * * *>
[@., ] each of length at most exp(—n?)

52,0) = sup{si;:a;, <0 < a;,,,}

s2.(0) = inf {s%): a;, < 0 < a;,,,}
ifa;, £60 < a;,, Define

N,Y(O) = inf {n: n = (bs,(0)/d)"}

N,®(0) = sup{n: n = (bs,,(0)/d)’} .

Clearly, N,V(0) < N,(0) < N,*() and (A2) and (A3) both hold with the
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replacements n = n,(c), N = N,*(0), M = N,;*(f), and y = 1. Thus the con-
clusion to Lemma 1 holds with the process W * replaced by
W*(s, ) = b(dN;(0) ™ T ™1 Gy(Xy) -

Thus, for any ¢ > 0 and 4 sufficiently small, since

sup{|Wd**(s,0)—Wd**(1,0)|:0§0§c, <s< 1}_> 0,

b4

we obtain
(3.3)  Pr{|N;74(0) nI? G,(X;)| < d} = Pr{[b(dNy(0))~* Li? G,(X,)| < b}
=Pr{W>*1,0)| <b—¢} —e¢.

Now, the process W, **(1, +) converges weakly on D[0, co) to a process (easily
shown to be Gaussian with variances 1) W** on C[0, oo), so that Proposition 1
(with b replaced by b — ¢) says that as d — 0, the last term in (3.3) is bounded
uniformly in §el by 2(®(b — ¢)) — (1 + 2¢). Letting ¢ — 0 completes the
proof. []

As a special case, consider the location-scale family F((x — g)/o). Then,
Pr{|A7N —p £d|p 0} = Pr{|A7N| < d|p =0,0}). Thus, with § = o, the con-
ditions of Theorem 2 hold if §{ x* dF(x) < oo since G, ,(x) = p¢ 4 ¢G(x).

The same uniformity problem treated here arises in the context of ranking
and selection. Letting CS denote a correct selection (such as correctly selecting
the stochastically largest of k populations), most papers only show

inf  lim,_, Pr{CS} = P*.

Finally, results similar to that of Theorem 2 can be obtained by the simple
expedient of requiring all the steps in Chow and Robbins (1965) to hold uni-
formly in &, such as the convergence of N/n, the central limit theorem for
sample sums, and uniform continuity in probability. However, such an ap-
proach will not obtain Theorem 1 and will not suffice when (W,, N/n) converges
jointly to (W, y) and y is nonrandom. This problem has recently arisen in recent
unpublished work of Swanepoel and Carroll, the former obtaining a class of
sequential selection rules, the latter showing that the stopping times of these
rules converge weakly to a random variable.

4. Extensions. The results of the previous sections continue to hold if the
sample mean and variance are replaced by robust location estimators T,, and
their associated variance estimates g%,. The key idea here is that many robust
estimators T, look very much like sample averages of bounded random variables
(Carroll (1975)). In the next example, we show the results hold for a whole
class of smooth M-estimates.

DEFINITION. {T,,} converges to zero almost surely uniformly (denoted T,, — 0
(a.s.u.)) if for all c,
sup{|T,5: 0 <60 <c}—0 (as.).
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ExAMPLE. Here we define X, X,, - - - asi.i.d. uniform (0, 1) random variables
and T,, by 37 ¢(Gy(X;) — T,,) = 0. ¢ is bounded and nondecreasing with two
bounded continuous derivatives. Further, ¢’(x) > 0 in a neighborhood of zero
and ¢’(x) = O outside an interval [ —k, k]. These ¢ functions include smoothed
versions of the Huber M-estimate. g2, is defined by

Guo = 17" L1 PHG(Xy) — Tup){n™" 3 ¢"(Go(X)) — Tp)}* -
We again have the {T',,} with “mean” zero; more precisely, § ¢(x) dF,(x) = 0.

We assume that for every ¢ > 0, there exists C,, C,, such that

(Bl)  sup{|G,(x) — G,(I/1fs — 6,]: 0 < ||, 0, 6, < ¢} < C

(B2) inf{|§ ¢(x + €)dFy(x)|: 0 <0 Zc} >0 forall e+0

(B3) inf {F)(C,,) — Fi(—C,p): 0 0=} >0,

LeMMA 2. Under (B1)—(B3), the conclusion to Theorem 2 holds.

Proor. By detailed Taylor expansions one shows that

m{T,y — n7 5F Y(G(X))]§ (%) dFy(x)] - 0 (a.s.u).
Now define p,(x) = a,(0)¢*(x) + ay(0)¢’'(x) + ay(0)¢(x), where
a(0) = (E¢'(x)~*
(4.1) ay0) = —2EP(X)(E¢'(X))~
ay(0) = —a,E"(X) — a, EQ(X)¢'(X) ,

and the expectations are under F,. Using (4.1), and Taylor’s theorem, one shows
(4.2)  guo — h(O) — n7" Zioy(Gy(X)) + § ps(x) dFy(x)| > 0 (a.s.u.),

where h(0) = § ¢*(x) dF,(x){§ ¢'(x) dF,(x)}~* is clearly continuous in 4.
Now reconsider the proof of Theorem 1. One can, for example, redefine W, by

(43) Wn(s’ t) = n_iT[m](Gt(Xl)’ R} Gt(Xn)) (S ; %)
=W, 0 (otherwise).

(B1) shows that (A1) holds for the sample means generated by ¢(G,(X))(a,(6))?
while (4.2) shows that (A4) holds for 53, = max {a*, g%,}. Because of (4.1), the
weak convergence arguments in Theorems 1 and 2 apply to processes such as
(4.3), and the proof is complete. []
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