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Let X = (X1, Xz)’ be a bivariate random vector distributed according
to an absolutely continuous distribution function F(x) which has first partial
derivatives. Let F(x) = P(Xi > x1, X» > x2). The vector-valued bivariate
failure rate is defined as r(x) = (ri(x), r2(x))’, where ri(x) = —a In F(x)/6x:
(i = 1,2). Inthis paper, we propose a smooth nonparametric estimate £(x)
of r(x) using Cacoullos’ (Ann. Inst. Statist. Math. 18 (1966), 181-190) mul-
tivariate density estimate. Regularity conditions are obtained under which
f(x) is shown to be pointwise strongly consistent. A set of sufficient condi-
tions is given for the strong uniform consistency of #(x) over a subset S of
R? where F(x) is bounded below by ¢ > 0. The joint asymptotic normality
of the estimate evaluated at g distinct continuity points of the failure rate
is established. The methods and results presented in this paper can be gen-
eralized to any finite dimensional case in a straightforward manner.

1. Introduction. The univariate failure rate (also known as hazard rate,
mortality rate, etc.) and the role it plays in reliability theory are well known.
Probability models of monotone failure rate have been studied extensively (see,
for example, Chapter 3 of Barlow and Proschan (1975)). Nonparametric estima-
tion of the failure rate has been considered by Watson and Leadbetter (1964 a, b),
and Barlow and van Zwet (1971), among others. More recently, two different
multivariate analogs of failure rate have been proposed. Basu (1971), Cox (1972),
and Puri and Rubin (1974) consider a scalar-valued multivariate failure rate.
Block (1973), Johnson and Kotz (1975), and Marshall (1975) study a vector-
valued multivariate failure rate which is also called hazard gradient. The im-
portance of the hazard gradient concept is reflected in equation (2.2) of Marshall
(1975). It establishes an important relationship, which is well known in the
univariate case, between the survival probability and the hazard gradient. A
similar relationship seems lacking between the survival probability and the scalar-
valued failure rate. The usefulness of the vector-valued failure rate is further
demonstrated by Johnson and Kotz (1975) through the use of examples. The
above mentioned authors are mostly concerned with properties and characteriza-
tions of either multivariate failure rate.
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1028 IBRAHIM A. AHMAD AND PI-ERH LIN

It is the purpose of this study to propose a smooth nonparametric estimate
for the vector-valued bivariate failure rate. Important asymptotic properties
of the estimate are obtained and the limiting distribution of the estimate evaluated
at a finite set of continuity points is established. More specifically, let X =
(X}, X;)" be a bivariate random vector distributed according to an absolutely
continuous distribution function (df) F having the probability density function
(pdf) f. Let F; and f; be the marginal df and pdf of X, (i = 1, 2). The vector-
valued bivariate failure rate is given by

(1.1) r(x) = [ry(x), ry(x)]" »
where
(1.2) ri(x)zb_x_?lnf'(x) =% i=1,2,
with
F(x) = P(X >x) >0,
and
(1.3) G(x) = § o f(x1, v) dv and  Gy(x) = {o f(u, x;) du .

Based on a random sample {X;}," = {(X};, X;;)}," of size n from F, Cacoullos’
(1966) type estimates for F and G, (i = 1, 2) may be obtained via the use of kernel
functions. These estimates are then substituted into (1.2) and (1.1) to obtain
an estimate r(x) of r(x).

Some preliminary results on the estimates of F and G, (i = 1, 2) are given in
Section 2. Sufficient conditions for pointwise strong consistency and for strong
uniform consistency of f(x) are obtained in Section 3. Finally in Section 4, the
joint asymptotic normality of #(x,), - - -, I(x,) is established where x,, - - -, X,
are ¢ distinct continuity points of the vector-valued bivariate failure rate r. The
results and methods of proof employed here can be generalized to any finite
dimensional case in a straightforward manner. It is clear that similar estimates
and asymptotic results can be obtained for the scalar-valued bivariate failure
rate. However, for reasons mentioned in Paragraph 1, estimation of the scalar-
valued bivariate failure rate will not be studied here.

In the remairider of this section, a kernel function will be defined and the
proposed estimate f(x) given. A kernal function k() is a known pdf satisfying
the conditions

(1.4) sup, k(f) < oo,
and
(1.5) limy,_,, |t|k(f) = 0.

Let k,(f) and k,(t) be two (possibly different) kernel functions. Define
(1.6) Ky(2) = a, \¢ k(v)dv, i=1,2,

where {a,} is a nonincreasing sequence of positive real numbers converging to
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0 as n— co. Then, similar to Cacoullos’ (1966) estimate for a multivariate
density, the estimates for F and G, (i = 1, 2) are given, respectively, by

(17) ﬁ‘(x) = ni - Z;}=l 121 <X1 ; le) Kz <x2 ; Xzi) ,

and

(1.9) Gix) = oy Dok (M) R, (e X,
na,” a“ a"I

L =1,2;i+1.
Using (1.7) and (1.8) it is proposed to estimate r(x) by

(1.9) £(x) = (A(x), 74(X))"

where

(1.10) Fx) = S i=1,2.
F(x)

With appropriate choice of kernel functions, such as the standard normal pdf,
the denominator of 7,(x), i = 1, 2, will be strictly positive with probability one.
Moreover, the estimate 7,(x) may be expressed as —d In ﬁ(x)/axi i=12),a
form similar to (1.2) for r,(x).

2. Preliminary results. Asymptotic properties of the estimates of F, G,, and
G, will be obtained in this section. They will play an important role in the next
section where the consistency results of #(x) are established. Lemma 2.1 is con-

cerned with the asymptotic mean and variance of F, and Lemma 2.2 with those
of G, (i = 1, 2). Lemma 2.3 deals with the pointwise strong consistency of G,

(=1, 2) and of F, and Lemma 2.4 provides sufficient conditions for the strong
uniform consistency of G, (i = 1, 2) and of F in R

LeEmMMA 2.1. Let x be a continuity point of F. Then, as n — oo,

() EF(x) — F(x),
and

(ii) nVar F(x) — F(x)(1 — F(x)).

Proor. Upon an applicatioﬁ of Theorem 2.1 of Cacoullos (1966) the lemma
follows immediately. []

From Lemma 2.1 both FA'(x) and F (x), the proportion of X; > x, are consistent
estimates of F(x) with the same rate of convergence.
LEMMA 2.2. Assume that [ is continuous and bounded. Then, as n — oo,
(i) EGy(x) — Gy(x),
and
(ii) na, Var G;(x) — B,
where
(2.1) B = Gy(x) § k(u)du, i=1,2.



1030 IBRAHIM A. AHMAD AND PI-ERH LIN

Proor. Only the asymptotic results of G, are presented. Those of G, can be
obtained by symmetry.
(i) An application of Fubini’s theorem gives

EG(x) = 3«;[217 i k1<xla: ”)k.,,(s ;ﬁv>f(u, v)dudv}ds.

Since f is continuous and bounded, Theorem 2.1 of Cacoullos (1966) may be
applied to conclude that the expression in the bracket above converges to f(x,, ),
as n— oo. Hence (i) is established.
(ii) Since k,[(x; — X,;)/a,)K,[(x, — X;;)/a,),j =1, - -+, n, arei.i.d., it follows
that
na, Var Gy(x) = L E {kﬁ <£1.:~X£> [L g, (ﬁ:ﬁﬁ} — 4 [EGX)
a a a a

n n n n

— § k) § [L K2<x2 - ”)T A%, — a,u, v)dudv + O(,) .
an an
Since a,K,[(x, — v)/a,] — 0 or 1 depending on whether v < x, or v > x,, and
since both k, and f are continuous and bounded, the Lebesgue dominated con-

vergence theorem may be applied to establish (ii). []

LEMMA 2.3. Assume that f is continuous and bounded. If, for every ¢ > 0,
Diw_ exp(—cna,’) < oo, then

(i) Gy(x) — G,(x), with probability one, as n — oo (i = 1, 2),
and

(ii) F(x) — F(x), with probability one, as n — co.

ProOF. Only the proof of (i) with i = 1 will be given. The case i = 2 and
part (ii) can be proved along the same lines.

(i) Let W,;(x) = kj[(x, — Xi;)/a, 1K [(x; — Xy;)/a,), j=1, .-+, n. Note that
W,i(x), j=1, --., n, are i.i.d. uniformly bounded random variables. Set

(2.2) S,(x) = X, W,;(X) = na,*Gy(x)
and, for any x, let
(2.3) M = M(x) = sup; [W,;(x) — EW,;(x)| .

Then it follows from Bernstein’s inequality (see, e.g., Bennett (1962)) that, for
all n sufficiently large and for any ¢ > 0,

. 2

2.4 P[|S,(x) — ES,(xX)| > ta,] < 2 ex (___’__>
24 [15.() = ES,(9| > 10,] = 2exp( —r s
where
(2.5) o, = Var S, (x) = nVar W, (X) ~ na,®B, .
Thus, for any ¢ > 0 and all n sufficiently large, we have

P[|Gy(x) — EGy(x)| > ¢] < 2 ex <__€2”"L_>

1 1 = SO\ T 2@h, + a3

This, together with the Borel-Cantelli lemma and Lemma 2.2 (i) establishes (i). []
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LeMMA 2.4. Assume that f is uniformly continuous and that k, is a uniformly
continuous function of bounded variation with finite first absolute moment (i = 1, 2).
If, for every ¢ > 0, 3=, exp(—cna,’) < oo, then

(i) sup, .z |Gi(x) — Gy«(x)| — O, with probability one, as n — oo, (i = 1, 2),
and

(ii) sup,c g |F_A(X) — F(x)| — 0, with probability one, as n — co.

Proor. The proof is similar to that of Theorem 1 of Nadaraya (1965) where
the strong uniform consistency is established for the univariate density estimate.
However, nontrivial modifications are necessary in proving the strong uniform
consistency for G, and F. We will thus present a proof of part (i) with i = 1
here. Part (ii) can be established similarly. For notational convenience we will
write sup for the supremum over x € R*. Note that

(2:6)  sup|Gy(x) — Gy(x)| < sup |Gy(x) — EG,(x)| + sup |EG,(x) — G,(x)|
= Am -+ AM , say.
Upon integration by parts EG,(x) and G,(x) may be written as

2.7) EG(x) = L §§ F(u, v) dk1<xla_ ”)dKz<x2 - ”),

a a

2
» n n

and similarly

(2.8) G,(x) = al VS Fu(u, v) dk1<x1a— ”)d&("z - ”),

2
where F,(u, v) is the empirical df. Now it follows from (2.7) and (2.8) that
A, = sup |[EG (x) — Gy(x)|
= (v/a,) sup |F(x) — F,(x)|,
where v = { dk, is the variation of k;. Thus, Theorem 1 of Kiefer and Wolfowitz
(1958) implies that, for any ¢ > 0,

2.9) P(A,, > ¢) < P[sup |F,(X) — F(x)| > ea,/v] < Cexp(—e¢na,’),

where ¢, = (¢/v)* and 0 < C < co. Inequality (2.9), together with the Borel-
Cantelli lemma, implies that A, — 0, with probability one, as n — co. It remains
to show that

(2.10) A,, = sup |EG(x) — G,(x)] >0, as n—oo.
Let 0 > 0 be given. Then, it is clear that

1
4,, < sup § S g-v1/a, ka(y2) 4y, P § & <%‘> | f(xs — 1 v) — f(x;,v)| dy, dv
(2.11) + sup [§§% -0rsa, Ka(1) s - flxi ) dv — 32 f(x,, 0) dv]
1
=sup § {§iyss + Siyysa} . k, (%) | fxr — i v) — flxy, v)| dy, dv

+ sup § [§22-a,0, Ka(32)f(x1 0) d| dy, -
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The second inequality of (2.11) is obtained by noting that k, is a density in the
first term and by changing the order of integration in the second. Now let 7 be
an arbitrary small positive quantity. By choosing ¢ sufficiently small and then
with so chosen & choosing n sufficiently large, we can make the first term in
the last expression of (2.11) less than 7/2 upon an application of (7) and (8) of
Nadaraya (1965) with obvious modification where f is uniformly continuous.
By the mean-valued theorem, the second term is bounded above by a, - sup f(X) -
{ |u|ky(u) du which can be made smaller than 7/2 for sufficiently large n. This
establishes (2.10) and (i). []

3. Consistency of vector-valued bivariate failure rate estimate. Results of
Section 2 will be utilized here to study asymptotic properties of #(x) proposed
in (1.9). In particular, the pointwise strong consistency and strong uniform
consistency of f(x) will be established.

THEOREM 3.1. Assume that the conditions of Lemma 2.3 hold. Then
#(x) — r(x), with probability one, as n-— oo .
Proor. This follows immediately from Lemma 2.3. []

The following theorem provides a set of sufficient conditions for strong uniform
consistency of f(x) in a subset S of R*.

THEOREM 3.2. Assume that the following conditions hold:

(i) The pdf f(x) is uniformly continuous and F(x) is bounded below by e > 0 on
a subset S of R
(ii) The kernel function k,(u) is a uniformly continuous function of bounded varia-
tion with finite first absolute moment (i = 1, 2).
(iii) For every ¢ > 0, 3 i»_; exp(—cna,’) < oo.
Then, fori = 1,2,
SUP,es |Fi(X) — ri(x)| — O, with probability one, as n— oo .

Proor. The theorem follows directly from Lemma 2.4 because: Let {$,,(X)},
i = 1, 2, be sequences of real functions on R? and assume that

SUpP,c g2 | en(X) — Di(X)] — 0, as n— oo.

Assume further that ¢, is bounded below by ¢ > 0 on a subset S of R*. Then

Su—Pxes&L(X—)—?l(—x2 —0, as n-— oo . 0
Pan(X)  Fa(X)

4. Limiting distribution of the estimate. Let X,’ = (Xx;,, Xy,), a = 1, -+ -, g,
be ¢ distinct continuity points of r such that 33, 3¢, Gy(x,) > 0, and F(x,) >0,
a =1, ..., ¢q. In this section the limiting distribution of (¥(x,), - - -, F'(X,))" is
derived. The proof is based on a generalization of Theorem (iii) of Rao (1965),
page 322.
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THEOREM 4.1. Assume the following conditions:
(i) §uk(u)ydu =0 and \ W’k (u)du < oo, (i =1, 2);
(ii) na, — oo and na,* — 0, as n — co; and
(iii) G,(X) has bounded partial derivatives of first and second orders (i = 1, 2).
If 11221 1T 2 ps (Koo — Xi5) # O, then the limiting distribution of [(x,), -« > F(X,)]
is a 2q-variate normal distribution with mean vector W = {r'(x,), - - -, r'(x,)} and
covariance matrix (na,) 'L with Z = (g, ;,) where

aiajp = lil’l‘l,ﬂ'_,eo na, Cov [fi(xa), fj(xp)] 1,] = la 2 ; a, ,8 == la vy q
= Gi(xJ[F(x)]7* § k() du + rA(x)[1 — F(X)I[F(x)]™"
(4.1) for i=j and a =28

= r(xJr(xJ[1 — FEINF(x)]  for i+j and a=p
= r(XJr(X)FKJF () rap  for Bj=1,2; a#p
with
Tap = F(Xmaxtap) — F(Xo)F(X,)  and
(42) X::nax(a,p) = (xamax’ xpmax) = (max (xla’ xlp)’ max (x2a’ xzp)) ’
for ax=p=1,.---,9.
REMARK. For simplicity the theorem will be shown only for the case ¢ = 2.

The following lemma will be used in the proof; it also may have independent
interest.

LEMMA 4.2. Let X! = (X5 Xy,), @ = 1, 2, be two distinct continuity points of
G(x), i = 1,2, such that }}}_, 2_1G(x,) > 0. Define

ch = ani[GAI(xa) - Eél(xa)] ’

(4.3) Yersn = [64(x0) — EG(x)]

Y isn = F(X,) — EF(X,) , a=1,2.
If assumption (ii) of Theorem 4.1 holds, then
(4-4) n(Yy o5 You) ~ AN(O, T)
where -
4.5) I' = diag (I',, T, T'y)
with
(4.6) T, = § k(u) du X diag (G,(x,), Gy(X,)) » i=1,2

no (=P e,
T2 F(x)(1 — F(x,))

REMARK. The asymptotic covariance matrix I' given in (4.5) is obtained via
the asymptotic variances and covariances of Y,,, i = 1, - .-, 6. They are listed
in (4.13).



1034 IBRAHIM A. AHMAD AND PI-ERH LIN

Proor. Define, forj=1, ---,n,

V,,‘j(X) — ;l—g[kl <X1 ; le sz <X2 — ij)

a,

(55 (]
a a
k

(4.7) Wos(x) = —lg[K (%

— X,
a a,

and

Then it follows from (1.8) and (4.3) that, for a =1, 2,
(4'8) Ya'n = n_l ;'L=l an(xa) ’ Ya+2'n = n_l ?:1 an(xa) ’
Ya+4n = n_l ?:1 an(xa) *

The lemma will be proved if we can show that, for any real constants ¢;, i =
1, ..., 6, the linear combination

(49) S'rm = n% Zg=1 ¢ Yi'n.

has an asymptotic normal distribution with mean 0 and variance C'T'C where
C’ = (¢, -+ > ¢5). Making use of the representation (4.8) it is clear that the
linear combination (4.9) may be rewritten as

(4.10) Sun =074 25 Thj»
where
(411) T'M' = Z§=1 [ca V'M'(xa) + Cata an(xa) + ca+4ZM(xa)] ’

j=1,.--,n.
Since, for fixed x,, X,, and n, the random variables T,,, - -+, T,, are i.i.d., a
sufficient condition under which S,, converges to a normal variate, in distribu-
tion, is given by (see, e.g., Loéve (1963), page 277)
n*E|T,[° |
(Var S,,)

To evaluate the asymptotic variance of S,, using (4.9) it is necessary to obtain
the asymptotic variances and covariances of Y,,’s. They turn out to be as

0, as n-—oo.

(4.12)

follows:
(I) nVarY,, = G\(x,) § k*u)du 4 O(a,’), a=1,2;
nVarY,,, = Gyx,) § k(u)du + O(a,?), a=1,2;
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(M) nVarY,,,,=Fx)[1—F(x,)], a=1,2;
(4.13) (II) nCov (Y,,, Y,,) = 0(a,) » n Cov (Y,,, Y,,) = 0(a,) ;
(AV) 1 COV (Yo, ¥3) = F(Xuxr) — FR)F(X) 5
(V) nCov (Y Yapan) =0(a,), a=12;
nCov (Y,,, Y,) = 0(a,) ; nCov (Y,,, Y,,) = O(a,) ;
(VI) nCov (Y, Y,,) =0(a,}), a=1,2,3,48=3,6.
Results (I) and (II) may be obtained directly from Lemma 2.2 (ii) and Lemma

2.1 (ii) respectively. We will only sketch the proof of (III) here since the others
may be established similarly. For (III) note that

n COV (Yup Y2%)
= na, Cov [G,(x,), Gy(x,)]

() [ ()4 (22)

" n n

x [ =k (s = ”2) ds] f u2)} du, du, — a, EG,(x)EG,(x,)

%22

n

(4.14) =} {kl(yl)[sam—u2)/a” ky(ys) dy,lk, <x———-—12 a_ it + y1>

n

X [§%pmsgrey Kol2) 21 (8 — @,y )} s ity + O(a,)

=~ §§ o max (0K <)ima_—x£ + }’1>f(xu — a,y., Uy) dy, du, + O(a,)

n

= a,lim,_,, sup,, [ai k, (’27—_)‘_11 I ylﬂ

X § 85 max Fa(P)f( — @ Y1 W) dyy du, + O(a,) .
The third equality in (4.14) is obtained by the change of variables y, =
(xy — w)a,, yy = (t — w)la,, z= (s — w)a, and u, = u, with the Jacobian
of the transformation being —a,’. The fourth expression is obtained since
§ Crge—ugan ky(y)dy — 1 or 0 according to whether u, > x,, Or #;, < X5, Téspec-
tively, (« = 1, 2), as n — oo. The integral in the final expression is finite while
lim sup a,~%,[(X;; — Xy)/a, + yi] = 0 due to (1.5). This establishes the first part
of (III). The second part can be proved similarly.
Now, summarizing results (I) through (VI), it is clear that

(4.15) lim,_ Var §,, < o .
It remains to show that
(4.16) nET, | —0, as n-— oo .

Using (4.11) and the c,-inequality of Loéve (1963, page 155) repeatedly, it fol-
lows that
E|T)* < 16 35 {lca’ElVun(Xa)?
+ 4|caislPEIW a(Xa)l° + 4lCard*ElZ,u(X)I%} -
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Thus (4.16) will be satisfied if we can show that, for « = 1, 2,
(4.17) n2E|U,(x, )P — 0, as n— oo,

where U, is V,,;, W,,, and Z,,. Since |Z,,(x,)]* < 8, with probability one, (4.17)
for Z,, follows immediately. The proofs for ¥,, and W, are alike. We will
only show (4.17) for V,,. Using the c,-inequality of Loéve (1963) and with the
same arguments as those employed in deriving (4.14), it follows that
n 3BV, (X)) = O((na,) ™),
which converges to 0 as n — oo, by the first part of assumption (ii) in Theorem
4.1. This establishes (4.17). Hence (4.16) is satisfied which, together with
(4.15), implies (4.12). []
LemMA 4.3. Assume that the conditions of Theorem 4.1 hold and g = 2. Define
Loy = ani[GAl(xa) - Gl(xa)] ’

(4.18) Zosn = 4, Gy(X,) — Go(x)] 5

. Za+4n=F(xa)_F(xa)’ (1:1,2.
Then
(4.19) n(Zy,y + -y Zs,) ~ AN(O, T),

where T is given by (4.5).
Proor. In view of Lemma 4.2, it suffices to show that, fori =1, ..., 6, .
(4.20) nY,, — Z,|—0, in probability, as n— co.
Recalling (1.7), (1.8), and after changing the order of integration, it follows
that
(4.21) EF(x) — F(x) = {§ [F(x — a,y) — FE)Ik(n)ki(y) dy
a?

0°F (x)

~ 3 2ki(y.) dy, .

> i § y’k(y:) dy

The last expression of (4.21) is obtained by a Taylor expansion of F(x — a,y)
about x and by assumptions (i) and (iii) of Theorem 4.1. Similarly, it can be
shown that, for i = 1, 2,

A 2 0°G,(x
EG,(x) — G(x) = % 32, P9 ¢y () gy,
2 0x;
Thus
m|Y,, — Z,| = O((na,?)}) i=1,234,
— O((na, )} , i=5,6,

which converges to 0, as n — oo, by assumption (ii) of the theorem. This estab-
lishes (4.20). []

The following lemma is a trivial generalization of Theorem (iii) of Rao (1965),
page 322. The proof is omitted.
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LemmA 4.4. Let T, =(T,,, - -+, Ty,,) be a 3q-dimensional statistic such that
the asymptotic distribution of (na,)¥(T,, — 6,), - - -, (na,) Ty, , — 05,), 1} (Tyyy1, —
Osg41)s «++» 08Ty, ,, — 0y,) is 3g-variate normal with mean vector 0 and covariance
matrix H, where 0, + 0 for i =29 + 1, ..., 3q, and na, — oo as n— co. Let
Pyis(Ors + - <5 05) = 0,/0,,,;and hyy(6,, - -+, 05) = 0,,:/0504051 = 1, - -+, q. Thenthe
asymptotic distribution of (na,)}[h(T,) — h(0), - - -, hyo(T,) — hy(0)] is 2g-variate
normal with mean vector 0 and covariance matrix HI'H', where 6’ = (0,, - - -, 0,,)
and H = (3h,/30,). The rank of the distribution is that of HTH'.

Proor oF THEOREM 4.1. Using Lemmas 4.3 and 4.4 with ¢ = 2, we have
0" = (0., 0,, 05, 0., 05, 65), where 0, = G(X,), Onis = Gy(X,)s Ooss = F(X,) > 0,
a = 1, 2. Define, as in Lemma 4.4,

h(6) = 6,/0; , hy(6) = 0,/0, hy(@) = 0,/0, , hy(0) = 0./0, .
Then

_ ( Ok,
7= ()
Fo)l? 0 0 0 —rm)Fx)T 0
| o 0 [Fx)I™ 0 —ry(x)[F(x)]™ 0
=l o e o o 0 R F )]
0 0 0 [F(Xg)]_l 0 _rz(xz)[F(xz)]_l

Now the theorem follows directly from Lemma 4.4 with HT'H’ = Z, as given
by (4.1). [

It should be remarked that the assumption ]}, []%.p=1 (X;e — X;5) # O seems
strong and undesirable. However, the theorem still holds with X slightly modified
when the ith component of some x,’s is identical. For example, if x;, = x;, and
Xy # X, then the only changes needed to be made are entries in the submatrix
I; (i = 1, 2) given by (4.6). The modified matrix is then

Gi(xl) Gi(xll’ xzmax)) .
Gi(xll’ x2max) Gi(xz)

Now, define I'* as in (4.5) with I';* replacing I'; (i = 1, 2). Then Theorem 4.1
holds with covariance matrix (na,)'XZ*, where 2* = HI'*H'.

T = § kXu) a’u<
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