The Annals of Statistics
1977, Vol. 5, No. 5, 955-968

BAYESIAN SEQUENTIAL ESTIMATION!

BY MAYER ALVO

University of Ottawa

For fixed 6, let X3, Xz, --- be a sequence of independent identically
distributed random variables having density fs(x). Using a sequential
Bayes decision theoretic approach we consider*the problem of estimating
any strictly monotone function g(f) when the error incurred by a wrong
estimate is measured by squared error loss and the sampling cost is ¢ units
per observation. A heuristic stopping rule is suggested. It is shown that
the excess risk which results when using it is bounded above by terms of
.order c.

1. Introduction. What follows is an attempt to present a practical solution to
a dynamic programming problem. For fixed 4, let X, X,, - -, be a sequence of
independent identically distributed (i.i.d.) random variables defined on a prob-
ability space (Q, &, &). Let the probability function, or probability density
function be of the form

fo(x) = exp(6x — K(0))
with respect to some o-finite measure.

Suppose ¢ is itself a random variable having a distribution which admits density
¢(0) with respect to Lebesgue measure. Let g(6) be a strictly monotone real
function of ¢ for which the expectation Eg*(0) is finite. It is desired to estimate
g(6) when the error incurred by a wrong estimate is squared error loss and the
cost per observation is ¢ units.

The dynamic programming solution is presented in Chow, Robbins, Siegmund
(1972). Wald (1951), Anscombe (1953) and Bickel and Yahav (1965), (1969),
treated this problem. However, their results were principally asymptotic ones.
Our results, though in the same direction, are much stronger.

In Section 2, a lower bound on the Bayes risk using the optimal procedure is
derived. In Section 4 an ad hoc procedure is suggested for each of several
examples. Ineach case it is shown that the procedure wastes the cost of a bounded
and computable number of observations. In Section 5 we prove a more general
result.

2. A lower bound on the optimal risk. The main result of this section is
Theorem 2 in which it is shown that under certain conditions the Bayes risk of
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956 MAYER ALVO

the optimal procedure taking at least one observation is bounded below by
2ctE{|a(0)g’(0)]} — b*c where ¢-%(0) is the Fisher information number and 5% is a
computable constant.

The following notation is used throughout:

¢,(0): the posterior density for a sample of size n when the prior is ¢(6);
&, the g-algebra generated by X;, X, - -+, X,;

E(+|.%,): expectation with respect to ¢,(0);
Ey(+): expectation conditional on 6.
o(¢, 0): total risk using the prior ¢ and stopping rule 4.

Throughout we make the following assumptions: *

ASSUMPTION A. f,(x) = exp{fx — K(0)} with respect to a sigma finite measure.

AsSUMPTION B. g is a monotone increasing differentiable function for which
Eg*(0) < oo.

AssuMpTION C. The domain of ¢ is an.interval D = (a,, a,) where a,, a, could
be —oco and 4 oo respectively.

We require an adaptation of a result of Wolfowitz (1947). Let g, be the Bayes
estimate of g(f) based on n observations.

THEOREM 1. Let X, X,, - - - be a sequence of i.i.d. random variables with density
fa(x). Let 0, be an integer valued random variable for which

0, =j)eF; and 1<o,<n.
Then under Assumptions A, B, C
Ey[g;, — p(O)] = (¢ (0)a(0))’/(Ey,)

w(0) = Eeg,, -
Proor. We begin by noting that:

(i) 9f,(x)/00 exists for all # € D and almost all x,
(ii) p(0) can be differentiated under the integral sign with respect to 6 for

0 e D, and
(ili) 0 < ¢%(8) < oo for all § € D.

Setting Y, = Y,J», {0 10g fy(x;)/30}, it follows from Wald’s lemma that

where

.

E,Y, =0.
Moreover, from Wolfowitz (1947),
E, Y1, = (E,0,)07%(0).
Since ¢/(0) = Ey(3;,Y,,), the desired result follows from Schwarz’s inequality. []

Note that p(6) is an increasing function of #. In fact, the posterior density is
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a member of the family of densities defined for every ¢ and fixed s by

@*(t; 5) = exp(ts — K*(¥))
with respect to some o-finite measure v*(r) and function K(f). By Lemma 2,
page 74 of Lehmann (1959),

§9() - ¢*(55 5) dv*(1)
is an increasing function of s. Hence g, is an increasing function of S, for every

n where
S‘rb = :":1 X‘L .

A second application of this lemma allows us to deduce that p(f) is an in-
creasing function of 4.

THEOREM 2. Let N* be the optimal procedure which takes at least one observation.
If, in addition to Assumptions A, B, C the following conditions are satisfied,

(1) &= {§d’[o'fo + &' PP df < oo,
(2) lim,_,, [9(y)a(y) - $(»)] = O, lim,_, [o(y)¢(y)] = O for i = 1, 2,
) (@) \3r0¢ dO) - (V51 a*) dO)t = O(1) as y — a,,
4 (a(y) - 9()/\2, 0¢ db) - (§3, o) dO)t = O(1) as y — a,,
then
o(¢, N*) = 2ctE(og’) — bc.

Proor. Define 6, = min (N*, n).

We first show o(¢, 9,) — p(¢, N*) as n — oco.
Let Z, = E[(g, — 9(0))*| & ,] so that

p(¢’ 6%) = EZdn + CEB%
= E(Zy; N* < n) 4+ E(Z,; N* > n) + cEj, .

By the monotone convergence theorem,
E(Zy; N* < n) + cEd, — EZ,. + cEN* = p(¢, N¥) as n—oo.

Hence, it suffices to show liminf, , E(Z,; N* > n) = 0. If & = B(X,, X, -+ ),
then by the martingale convergence theorem g, = E(g|.%,) — E(9| & .,) a.s.
(see Chow et al., page 7 or page 18). Inorder that E(g|.% ) = g a.s., it suffices
that g be & -measurable. However, by the strong law of large numbers,
n~t 3t X; » EyE, a.s. P, for every 6 and hence a.s. P. It follows that E,(X,) is
& _-measurable; and since g(0) is a measurable function of E, X,, it is also & -
measurable..

In order to show liminf,_, E(Z,; N* > n) = 0 note that Z, — 0 a.s. and hence
it suffices to show that the sequence Z,, n = 1,2, ... is uniformly integrable.
But the elementary inequality (a + b)* < 2(a* 4- %) and the Schwarz inequality
give Z, < 2(9, + ¢°) < 2(E(9*| ¥ ,) + 9°). Since Eg* < o, the uniform in-
tegrability of {Z,} follows from Chow et al., page 18.
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Then by Theorem 1,
/ 2
Ey[g;, — t(O)F + cE,0, = [i(g)‘;i’l + CcE,d,

> 2681/(0)0(0).

The last inequality follows on minimizing with respect to E,d,. Hence,

(¢, 0,) = E[9(0) — p(O)F + 2¢*Er(0)a(6)

@1) = 2Ea(0)¢'(0) + E[9(6) — p(O)F — 264§ (1 — 9) (o9’ + 0'$) db
(2.2) = 2ctEog’ + E[9(0) — p(0)] — 2¢H{E[9(0) — m(O)}b
(2.3) = 2ctEgg’ — bc.

The inequality in (2.2) follows by Schwarz’s inequality whereas (2.3) follows
on minimizing the right side of (2.2) with respect to {E[g(f) — u(6)]}*. The
integration by parts in (2.1) will now be justified.

Specifically, we need only show that

lim, . [#(D)e()$(»]=0  for i=1,2.
Treating the upper end point first, we suppose that there exists a point y for

which
0=< u(y)-
Since y is an increasing function,
0=py = %
2.4) _ i3 ¢ dOVIS51 o* O]}
“ g di

Since Ep* < EE,7; < Eg*(f) < oo, the first numerator factor in (2.4) approaches
0 as y — a,. By assumptions (2) and (3), our result follows.
Suppose now p(6) < 0 for all @ € D. Then there exists a point z and a constant

C for which
leMle(y) - ¢(y) £ C - o(p)gp(y)  for y>z.

Letting y — a,, our result follows once again by (2). An analogous argument
shows

lim, ., (y)o(y) - $(») = 0. 0

3. Preliminaries. In this section we develop two tools and then use them in
some examples to obtain upper bounds on the excess risk.

First note that the Bayes estimate J, is a martingale with respect to & .
Moreover, for all stopping rules N for which P(N < o0) = 1, Eg, exists and
Eg, = Eg(f). (See Breiman (1968), page 98.)

Our next result is derivable from Frame (1949).
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LEMMA 1. Let

_ P'(p

h = _L£-\r7 0.
(p) T ) for p>
Then,

L<hp) <1+
4p
Proor. From Frame (1949), we quote the result that for n > 0
1+u
r( )
nt
1—u
r( )
n 4+ 5

where |u| < 1, and

1 — u2\»2
= <n2 =+ -—————>‘ e~ Eal®)
12

U - (1 — w)d — )
6! n*

0<E®m<
Now substituting first # = 4 and then n = p + 1 we get

1 1 \*
) —(1 - L —E (%)
(P) < +2p+ 81)2) e "

(44 - 5 o s ]

= ap) " 2p T6p*  16p°  64pt
1

<l+_-.

=l+g

Moreover, k(p) is a decreasing function of p converging to 1. []

4. Examples. Four examples are presented illustrating the use of the main
result of Section 2. First, a lower bound on the optimal risk is computed using
Theorem 2. Then using a heuristic argument formulated below, an ad hoc stop-
ping rule is suggested and an upper bound on its risk is computed. In all cases,
one can take advantage of the particular form of the distribution and the upper
bound is easily obtained.

The choice of stopping rule used is based on the following argument. For a
fixed sample of size n and for known 6, the risk is usually of the form (k*(9)/(! +
n)) + cn, where k() is some function of ¢ and [ is a positive constant. Treating
n as a continuous variable, the value of n which minimizes the risk satisfies the
equation

I+ n = |k(@)|/ct.
In the same way, the rule proposed when the Bayes posterior risk is of the form
(k2 + m) + e

is to stop sampling at the Nth observation where N = least integer n > 1 such
that I + n = |k,|/ct.
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ExaMpLE 1. Let X, X,, - .- be a sequence of i.i.d. random variables from a
negative exponential distribution with mean #-*. Let g(¢) = 6~ and assume the
prior density ¢(f) on ¢ has the form

90) = p/T(a) - 9%, >0, a>2, >0
=0 otherwise.

Theorem 2 holds with 5* = a. The posterior distribution of @ given x;, x,, - - -, X,
have been observed is again of the same form as ¢(¢) but with parameters a,, 3,
where @, = @ +nand 8, = 8 + (x; + --- + x,). The posterior risk denoted

by p,(¢,) is given by i
oo(¢,) = @ /(a, — 2)) + cn,

where g, = B,/(a, — 1) is the mean of the posterior distribution. In view of
the heurist'{i argument presented above, it follows that the ad hoc procedure is
to estimate 0 by Iw, where the stopping rule N, is given by

N, = least integer n =1 suchthat a, —2>=g,/ct.
In order to derive an upper bound on the total risk using N;, write
o(Pa) = 264G, + (2 — )¢ + (9, — cta,_y)/(a, — 2).

For n > 1, it is clear that g,_, < 9,(1 + (a, — 2)™"). Since at time N, — 1,
Ay, 1 — 1< gNl_l/c*, it follows that,

Ov, — c*azvl—z) = act.
Moreover, by Jensen’s inequality,
(ay, — 2)7 < ¢igy) < E{(9(0))7' | F v } -
Hence, p(¢, Ny) < 2¢tEg(6) + (2 — a)c + (a®/B)ct. Consequently, the excess
risk is bounded above by '
2¢ + (a¥/B)ct .
The remaining examples are done in much less detail.
EXAMPLE 2. Let ,
fx) = e xt,  6>0 x=0,1,2 ...
=0 - otherwise.
Set g(0) = 6 and assume ¢(0) is a gamma density given by
¢(0) = (/T ()0 e, >0, a>1, >0
=0 otherwise.

Theorem 2 holds with 8* = /(4(a — 1)) + B. The posterior distribution of 6
given x,, x,, « -+, X, is given by a gamma density ¢,(f) with parameters a, =
a+ (x,+ -+ + x,) and B, = B+ n. Since the posterior mean and posterior
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risk are given respectively by g, = «,/8, and

Po(¢n) = (17”/,8,,) + cn,

it follows that the ad hoc procedure is to estimate 6 by gy, Where N,

integer n > 1 such that 8, > g,}/ct. Write

p0(¢n) = zc%g‘n% - ‘BC + (g'né - ;Bncg)z/ﬂn .
First note for n > 1,
Ba >
1 =0, ( .
' ‘Bn 1
Next recalling Lemma 1, and the definition of the function %, we get

E{gh, — ¢/(0)) = E {s?z*vz (1 - 7,@:7)»

< 45 )
a’Nz'
gciE{@}
Ay,
< & EEo| 2=ﬁ< )
4 4 \a — 1

It is then easy to see that for N, > 1,

0 < cif,, — g, < (@4, — ) + ¢
§1< ‘BNz )ci—l-ci
By, — 1

<0+ )

whereas for N, = 1, ‘
0 < cify, — b, < (8 + 1)ct.

Therefdre (¢, Ny) < Zc%E{g%((?)} + < 2 ‘B_ i ﬂ) c

+ (a - 1>% h(al— 0 <%'+ P+ 2%)2 o

961

= least

If we neglect the term of order ¢!, the excess risk is then no more than

{38/(4(a — 1))}e.

ExaMpLE 3. Consider a Bernoulli distribution with mean 6. Let g(f) = 6

and assume

$(0) = {I'(a + HIT (I (B)}0=*(1 — 6),  0<O0<1l, a>1,
=0 otherwise.

g>1



962 MAYER ALVO

Here Theorem 2 holds with .
b= (Bl(a — 1))@ — 3)* + (a/(B — 1)(B — §)* — 2 — $)(8 — 3) -
Define
r=a+ g,
Tn=7-+n;
a =a+ (X + - 4+ x,),
Bu=Btn—(at e+ x,),
7, = E{(0(1 — 0))}| 7},
9u = /B, .
The posterior risk p,(¢,) is given by

(D) = (a7[(ra + 1), )H*(B,) + cn .

The stopping rule suggested by the heuristic argument enunciated above is tech-
nically difficult to work with. Instead consider N; = least integer n > 1 such
that y, + 1 = G,/ct. Write

oo($a) = 2¢tG, + 2¢iG,(h(a,)h(B,) — 1)
+ (6”]1(0’”)]1(‘3”) - cirn+l)2/7’n+l - (T + I)C .
Since forn > 1, ¢,_, < 4, + G,/(r, — 1) a.s. and
E(Gy lav) < H(r + Df(a — 1)),
E(Gxy/Buy) < H(r + D/(B = 1)),

it can be shown, neglecting terms of order c?, that the excess cost incurred is
no more than

(5B + 8)/4(a — 1) + (e + 8)/4(B — 1) + e .

EXAMPLE 4. Suppose the X’s have a normal density with mean M and preci-
sion R, both unknown. It is desired to estimate M. Let the prior ¢ be such
that the conditional distribution of M given R = r is normal with mean g and
precision zr, > 0 and the marginal distribution of R is given by

(B/2)** —R(8/2)) . Rerz-1 R>0 2 0
exp(—R(5/2)) ) >0, a>2, >0.
I'(«/2)
It follows from Theorem 2 that with this prior the optimal risk is bounded below
by 2¢tER"t — ¢ . c.
Define P = (Tﬂ + (xl + o+ X”))/(T + l’l),

a,=a+n,

Bu =B+ X1 (x; — X,)* + (%, — w/(z + n),
6, = E[R|.F}.



BAYESIAN SEQUENTIAL ESTIMATION 963

It follows that the posterior mean and posterior risk are respectively given by
¢, and

@)z + n) + en.
It can be shown that with the stopping rule N, defined by
N, = least integer n>=1 such nx=g,/c},
the excess cost neglecting terms of order c¢? is no more than ¢/2.

5. Asymptotic upper bound. In thissection, a general stopping rule is proposed
for the estimation of the parameter ¢ in the family of densities defined by

f(x]0) = exp(0x — K(0))

with respect to some o-finite measure. Under the assumption that the prior
density on 6 has compact support and possesses 5 continuous derivatives we will
obtain an asymptotic expansion on the total Bayes risk using a proposed stopping
variable. The expansion consists of a term of order ¢t comparable to the one
obtained in Section 2 and an error term of order ¢. The remainder term will
be of order ci.

Let x = (x,, - -+, x,) be a set of n independent observations on X. Let the
posterior expectation of ¢ for given x be denoted E, 6. For any function w(6)
of 6, let w, w denote respectively the maximum likelihood estimator and the
Bayes estimator of w(f) based on x. Sometimes the index n will appear on the
estimators in order to emphasize the dependence on the sample size. Let a7%0)
denote the Fisher information number which is known to be nonzero and finite
for the exponential family of densities. It can be shown that K’(d) = X,, where
X, = (X7, X,/n). The following result is due to Johnson (1970).

THEOREM 3. Define ¢ = (0 — 8)6-*. Let M be a fixed positive integer. Suppose
that the prior density of 0, ¢(0), has M + 1 continuous derivatives in a neighborhood
of 0, with ¢(6,) > 0. If, for k < M, E|0]* < oo, then there exist continuous
functions {2, ;} defined on D, a constant C depending on 6,, and for all x outside a
P,o-null set, an N, depending on X, such that for alln > N,

E($%) = T4k A9 4 1y nm 00,
where sup,, |r; .| < C and A,.; = 0 for odd j.

Information about the 4, ; may be obtained from Johnson (1970). In fact if
we omit the argume%t_ﬂ and use primes to denote derivatives, we have,

Ay =0(d'[o + ¢'[P)
=1
R34 = 204" [P) 4+ 2(a')* + o0” 4 dad’(P'[P) .

A readaptation of the proof in Johnson (1970) yields the following.
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COROLLARY 1. If the support of ¢ is a compact interval D, of D, then the constant
C is a universal constant independent of 0.

It follows that any continuous real-valued function defined on D is uniformly
continuous and bounded on D,. Some information about N, may be obtained
when ¢ has compact support.

COROLLARY 2. If the support of ¢ is a compact interval D, of D, then the random
variable N, has moments of all orders.

Proor. From Johnson (1970), there exists a § > O such that
6, — 6 <o
whenever n > N,. Since K’ is strictly increasing, the inequality
6 —6<b, <0+
K'(0 —d) < K'@,) <K'(6+09).

By the mean value theorem, it follows that there exist 4,, 6, with § — d < 8, <
6 < 6, < 6 + 6 for which

K'(0 + 8) — K'(8) = K"(8,)0

implies

and
K'(0 — 9) — K'(0) = —K"(6,)0 .

Hence, since K"'(+) < C, it follows from Chernoff (1952),
P,[N, > n] < P,[|f, — 6| > 6 for some k > n]
= P,[|K"(d,) — K'(6)] > 6C for some k > n]
= P,[|S, — ky| > kic for some k > n]
< Diensr P|Sy — kp| > koc]
< Le ™™ for some >0 andconstant L > 0. 0

THEOREM 4. Let the support of ¢ be a compact interval D, of D and assume that
¢ possesses 5 continuous derivatives. Define the stopping variable N by:

" N = least integer n =1 suchthat n=g,/ct.
Then o(¢, N) = 2ctEa(9) + cEIl(0) + O(ct) where
I(0) = (Ays — Ay — 20", 5, — 0”0) .

Proor. From Theorem 3, it follows that for n > N,,
(5.1) G =38+ (6'62,, + 6"8*2)n~* + V, ,n°t,
and the posterior variance of § given x is given by

Var, 0 = E, (0 — 0)* — (8 — )
(5.2) = &' 4 (A — Ag)0n 2 + Vyun~t
= @n + lon? + Vi nt
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where sup, |V, | < oo, i = 1, 2, 3. Equation (5.1) follows upon expanding ¢ in
a third order Taylor series about ¢ and then taking posterior expectation. In
view of Corollary 1, |V, | for i = 1, 2, 3 have moments of all orders.

Similarly, by expanding / in a one-order Taylor series about d it follows that
for n > N,

(5.3) Var, § = @n~* + I6*n=* 4 V, ,nt
where sup,, |V, ,| < oo and |V, | has moments of all orders.
Set V,=V,,+ n¥G — nct)* + ntl(é>n* —c)  for n> N,
= n¥{py(¢,) — 2¢td — Ic} . for n<N,.
Consequently, the posterior risk given x can be expressed as
po($a) = Var, 0 + nc
= 2¢t¢ 4 lc 4+ V,n7t.
Due to the martingale nature of G, and 7“, it follows that
EG, = Eo() and  El, = EI(0).
In order to prove the theorem we need only show that
EV, = 0().
It will then follow that
EVy Nt < (EV,)¥EN-%)t

< (EVy)(EGy ")t

< (EV,)H(Eo~")ict

= O(c).
Now note that on N < N,

Vi S SNYEGO* 4 ¢ca* + L) .
By Schwarz’s inequality and Corollary 2 it follows that
) EVi'livsng = 0(1) -

We will show:

(5.4 EN%Gy — Net)lysy = O(1),
and
(5.5 ENSLA(3,*N-* — ¢l ysn = O(1) .

Both (5.4) and (5.5) will imply EV,’I;y., ;= O(1). To prove (5.4) note that
from (5.1)
O0<cIN—Gy=c}{(N—1)—a, + ct
(5‘6) = Oy — Gy) + ct
= (Oy_y = Gy) + Wiy - N+ W, Nt 4 ¢t
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where |W, ,| and |W, ,| have moments of all orders. Since ¢ is a differentiable
function of X,

(5.7) Oy — 6y =W,y (Xy— Xy )N,
where |W; | has moments of all orders. It now follows from (5.6), (5.7) and

the fact that sup, (X,*n~%) < oo that N¥(G, — Nct) has moments of all orders on
[N > N,]. Hence (5.4) holds. In order to prove (5.5) note from (5.1), we get

(5.8) 0L cNZ Gy + W,y N?
where |W, | has moments of all orders. Hence
¢N? — 3, = W, y N7
where |W, ,| has moments of all orders. Now (5.5) follows. []

COROLLARY. Let g(8) be a monotone function of 6 having 4 continuous derivatives.
Then, for the rule N* = least integer n = 1 such that n = E,|og’|/ct,

E(9 — Gy)* + EN*c = 2c}Elog’| + EI*(0) - ¢ + O(c?)
where
I* = (v, — v, — 20,k)k2
and
vz — (k222,4 + glglla.323’4) + 3{i(g1l)2 + %g,g”,}OA
v, = ('21,20'9' + ;z_guoz)
vy = (K'dd,, + k''d*[2)
k= log| and R34 = 50" + 30’ .
We omit the details of the proof since they are quite similar to those of the

theorem.
In order to compare with the examples of Section 2 we now compute the

coefficient of the term of order ¢ for some of the examples of Section 4.

ExaMpLE 1. (Exponential). The rule N* = least integer n = 1 such that
n = g,/ct and the rule N, = least integer n = 1 such that @, — 2 = g,/c* where
g, = E,0-'are asymptotically the same except for the constant « — 2. We have

El*(0) = 4.
The excess cost is 2 using N, and one stops sooner with N, than with N *.

ExaMpLE 2. (Poisson). Here,

1*(0):0(“;1 ) 1)0-1+i:_1_g.p

and

El*(6) = ﬁ[_%l__l) — 1]
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Hence as ¢ — 0, the excess risk has an order ¢ term equal to
1 B8 ] 3
- —1|=] =8 = .
P [8(01 —1) ] [ p 4(a — 1) 8(a — 1)

1 -
N,* = least integer n > 1 suchthat n= T, +3) . 0,}ct .
a,(a,)

Note

The ad hoc rule N, = least integer n > 1 such thatn + g = G kct yields an excess
risk with an order ¢ term equal to 38/(4(a — 1)).
Asymptotically the two rules are almost the same except for the constant 3.

ExaMpLE 3. (Normal). Here N,* = leastinteger n°'> 1, such thatn > E,R~}/ct
where
- I'((a, — 1)/2)
E R = (8,/2)t =\ % = 2)[2) |
SR = (2
whereas
N, = least integer n =1 such that n > E}R™)/ct

where

e s

In view of the definition of the % function the two rules are asymptotically the
same. Keeping the precision fixed,

I(0) = 40— A1,
and
El(6) =0.

Hence the excess risk has a term of order ¢ whose coefficient is 7. Compared
to the rule of the example we do not necessarily do better.

Acknowledgment. I would like to express my sincerest thanks to Professor
Michael Woodroofe for his help and encouragement throughout.
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