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ESTIMATION FOR AUTOREGRESSIVE MOVING
AVERAGE MODELS IN THE TIME AND
FREQUENCY DOMAINS!

By T. W. ANDERSON
Stanford University and London School of Economics

The autoregressive moving average model is a stationary stochastic
process {y.} satisfying 31§_, Beyt-—k = 3¢ ag¥s—g, where the (unobserv-
able) process {v:} consists of independently identically distributed random
variables. The coefficients in this equation and the variance of v; are to
be estimated from an observed sequence y;, - - -, yr. To apply the method
of maximum likelihood under normality the model is modified (i) by
settingyo =y_1=.-- =y1.p, =0and vo = v_; = - - - = 14 = O and alterna-
tively (ii) by setting yo = yr, «++, y1-p = yr41-p and vy =vr, «++, 034 =
¥T+1-¢; the former lead to procedures in the time domain and the latter to
procedures in the frequency domain. Matrix methods are used for a unified
development of the Newton-Raphson and scoring iterative procedures;
most of the procedures have been obtained previously by different methods.
Estimation of the covariances of the moving average part is also treated.

L. Introduction. Several methods have been proposed for estimating the
parameters of an autoregressive moving average model based on approxi-
mating or modifying the normal likelihood function. The main purpose of
this paper is to develop these methods and some new procedures by a unified
approach.

- The autoregressive moving average process {y,} satisfies

(1.1) b0 BiYik = Dl0 @V, s

t=-.--,—-1,0,1, ..., where the sequence {v,} consists of (unobservable)
independently identically distributed random variables. (See Section 5.8 of
Anderson (1971a) and Box and Jenkins (1970).) To avoid indeterminancy we
require §, = a, = 1. Because attention will be concentrated on the coefficients
in (1.1) we shall assume the means of {y,} are known and 0; the specification,
then, is &v, = 0, &v,> = ¢> > 0.
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Let
(1'2) A(Z) = Zg=0 a, 2, a, + 0,
(1.3) B(z) = X2_, B2, B8, #0.

We shall asuume the roots of A(z) = 0 and of B(z) = 0 are greater than 1 in
absolute value and that the two sets have no roots in common. The process
{y:} is stationary.

When the v,’s are normally distributed, that is, the procéss is Gaussian, the
model is completely specified by 8, - -, 8,, @, - - -, a,, and ¢>. We study the
estimation of these parameters on the basis of a set of observations at T suc-
cessive time points, y,, -+, y, (T' > p + ¢). An alternative set of parameters
consists of B, ---, 8, and the variance and first ¢ covariances of u, =
2l a,v,_,, namely

(1'4) ahzazzg;gafaf+h’ h=0: 1,"',92

the estimation of this set of parameters is also treated. For the observed
stationary process the spectral density is

o JAEeH]P _ 3i-_, 0, c08 Ak

1.5 ) = = ,
(1-3) us 21 |B(e™)|? 2x|B(e')|?
whereo_, =0, h =1, .--.,¢.
Since the set of observable variables y,, - - -, y, has a multivariate normal

distribution (Anderson (1958), for example), the method of maximum likeli-
hood is appealing. However, even in the simplest cases—the purely autoregres-
sive model—the equations obtained by setting the derivatives of the likelihood
function equal to 0 are nonlinear. Mann and Wald (1943) modified the auto-
regressive model by considering the first p observations as fixed; then maximum
likelihood was least squares, resulting in linear equations. These equations may
be further adjusted by adding some end terms to sums of squares and cross-
products. The asymptotic properties (as T — oo) are not affected by the
alterations.

The moving average part of the model introduces considerably greater com-
plications, even in the absence of the autoregressive part. The inverse of the
covariance matrix (which is proportional to the matrix of the quadratic form
in the exponent of the likelihood function) consists of 7' polynomials in the
coefficients, and the number of sufficient statistics is the number of observations.
The derivative equations are highly nonlinear.

To obtain feasible methods in the time domain we modify the model by
setting all variables with nonpositive indices equal to zero. When the parameters
include a,, - - -, a,, wesetv,=v_, = --- =v,_,=0aswellasy,=y_, = --- =
Y1-, = 0; when the parameters include o, gy, - - -, 0,, the variables v, v_j, - - -,
v,_, do not appear.

To obtain corresponding methods in the frequency domain we replace the
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stationary model by the corresponding circular model; that is, let (1.1) for

t=1,...,T define y,, ---, y, on the basis of v,, - --, v, using the notational
convention y_, = y,_4, k=0,1,---,p—1, and v_, =v,_,, g = o1,...
g — 1. Then the Fourier unitary transformation of y = (y;, - -+, yz)’ diago-

nalizes the covariance matrix, and the likelihood depends on y through the
sample spectral density (periodogram). On a large sample basis (that is, large
T) the modification has a negligible effect. (See, for example, Wahba (1968)
and Hannan (1960), Chapter 1.)

These models are then special cases of

(1.6) S B Ky = Dl a,d,v,

where K, K,, - -+, K, are p 4+ 1 known linearly independent 7' X T matrices,
Jos Jyy -+, J, are ¢ -+ 1 known linearly independent T X T matrices, and v =
(v, - -+, v;)" has a multivariate normal distribution with mean vector v = 0
and covariance matrix &(v) = ¢’I. The parametrization with oy, ,, - - -, 0, is
a special case of the model

(1.7) i BK,y=u,

where u has a multivariate normal distribution with mean vector &u = 0 and
covariance matrix

(1.8) Zu) =& = )7 ,0,G,,

and G,, G, ---, G, are ¢ + 1 known symmetric, linearly independent T x T
matrices such that the linear combination is positive definite. Anderson (1975a)
developed the maximum likelihood equations for these general models. Because
they are nonlinear in most cases, iterative procedures based on the method of
scoring were proposed. In the present paper the Newton-Raphson procedures
are also given.

The main purpose of this paper is to give a unified development of the scoring
and the Newton-Raphson methods for the maximum likelihood estimation of
the alternative sets of parameters using the observations in the time sequence
and using the sample spectral density. The Newton-Raphson method for the
B.’s, a,’s and ¢® based on setting some unobserved variables 0 corresponds to
the method of Astrom and Bohlin (1966); the scoring method was given by
Anderson (1975a). The Newton-Raphson method for these parameters based
on the circular model is approximatey that proposed by Hannan (1969) and
(1970). (The latter fact has been shown by Akaike (1973) in a different manner.)
The scoring procedure has been proposed by Dzhaparidze and Yaglom (1974).
The Newton-Raphson method for the ,’s and ¢,’s based on setting some unob-
served variables O is given here for the first time; the scoring method was
presented by Anderson (1975a). The Newton-Raphson method for these pa-
rameters based on the circular model seems to be new; the scoring method is
that proposed by Clevenson (1970) and Parzen (1971).
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The modifications of the model are discussed in Section 2. The equations
for eight cases are given and discussed in the next two sections. Some mathe-
matical details are considered later. (A fuller mathematical treatment is availa-
ble in Anderson (1975 b), from which this present paper was condensed.)

2. Two modifications of the autoregressive moving average process.

2.1. Use of a matrix lag operator. Let the T X T matrix L be

0 0
(2.1) I o
where Lis of order T — 1. Then L! is of the same farm, but I is of order T — ¢,
t=0,1,...,T—1l,andL* =0fort =T,T + 1, .... For any T-component

vector x the vector Lx has 0 as its first component and the (+ — 1)st component
of x as its rth component, t = 2, ..., T; the vector L*x has 0 as its 7th com-
ponent, t = 1, ..., s, and the ( — s)th component of x as its fth component,
t=s+1,...,T. The modified model for y

(2.2) 2o Bty = Y9y, Lov
where v has the distribution N(0, ¢°I), corresponds to (1.1) with y,=y_,= .. =
Vi, =0and v, =v_, = ... =v,_, = 0. This is a special case of (1.6).

To estimate the process with ¢,’s as parameters we define u = (u,, - - -, #;)’,
where u, = }19_,a,v,_,. Then &u = 0 and the covariance matrix of uis (1.8),
where G, = I and

(2.3) G, =L+ L7, g=1,---,9.
We modify the model (1.1) by defining y by
(2.4) ? o B Ly =u,
which is equivalent to setting y, = y_, = --- = y,_, = 0. This is a special case
of (1.7).

2.2. The circular model. Let
SH!

where I in the lower left-hand corner is of order T — 1 and I in the upper
right-hand corner is 1. Then M is of the same form, but I in the lower left-
hand corner is of order T — ¢ and I in the upper right-hand corner is of order
t,t=0,1,...,T — 1. Note M?” =1, and M’ = M”-!; thus M’* = M7-* —
M-*, The circular model for y is
(2.6) Db BMPYy = 37, Moy,
corresponding to (1.1) with y_, =y, ,, k=0,1,..-,p — 1, and v_, = v,_,,
g=1,...,9. The covariance of y is
@7 FY) = BV = (Do M) D8 sy @, a, MEM( S, B M)

= 0 (Nh-o BMH)? Dlnmo g, MM (302 B 1\ G
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Define the T x T Fourier unitary matrix as

— 1 i27rts/T)
@9 U= (o)
Then
1 .
(2’9) ZLI m iy, = U, 5, = 7%_ etn(r=1)s/T
:e—ihs/Tu”, r, s = 1, ...,T,

Let D be a diagonal matrix with e=*#*/7 as the sth diagonal element. Then (2.9)
can be written MU = UD, from which we obtain M = UDU’, where

(2.10) U= < Tli e‘“""”)

and U'U = UU’ = 1. Then

2.11) Mt — UDU

(2.12) A= AM) = Zg=o a,M? = UAD)T'
(2.13) B = BM) = X2, ,M* = UBD)U' .

Since M is real, M’ = M’ = U_DU', A’ = UAD)U’, B’ = UBD)U', A' =
UAD)T, and B! = UB-Y(D)U’. Then

(2.14) Z(y) = ¢*UB-Y(D)A(D)4(D)B-YD)U" .
The matrix B-(D)A(D)A(D)B-'(D) is diagonal, and the sth diagonal element is

(2.15) :ggjglc = i—ff(lt) ,

where 4, = 2xt/T. The quadratic form in the density of y is —§ times

(2.16) ;12_ y'UB(D) A-Y(D)A-X(D)B(D)U’y

If we define z = U’y, that is,

2.17) 2= S ey = Lo ey =1, T

T?

is a component of a Fourier transform of y, the sample spectral density (often
called the “periodogram”) at 2 = 2, is

1 1
2.18 IA) = —|z|? = —— 12¢(8—1)
(2-18) (4) 27rit| 22T nro1€ YsYr -
Then the exponent in the density (or likelihood function) is —4 times
(2.19) LZ 2’ B(D) A (D) A-*(D)B(D)z
o

1o e 1B s 1)
7 Z P emyp = B gy
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Whittle (1953) proposed an integral analogous to this sum as an approximation
to —2 times the exponent in the likelihood function of a stationary process;
Walker (1964) made further study.

Fort =T and ¢t = LT if T is even, z, is real:

1 - 1
(2.20) Zy = Tr Yy = Ty, Zyr = Ty 2 (=14, .
In general
2.21) z = % Ty, cos A, + i—% ST ysinds, t=1,...,T.

The real part of z, is equal to the real part of z,_,, the imaginary part of z, is
the negative of the imaginary part of z,_,, and hence |z,|* = |z,_,|* and I(2,) =
I(2;_;). The sum (2.19) can be written

2.22 o yir-1 I(4) | 10) | K=)
— R R UM
if T is even [/(2r) = I(0) and f(2r) = f(b)]; the first sum goes to (7' — 1) and
the last term is dropped if T is odd. In the circular model 2(4,)/f(4,), t =
1, .., 4T — 1 or (T — 1), are independently distributed, each with a y,>-dis-
tribution, and independently of /(0) and I(r), if T is even.

When we define y by

(2.23) T AMY =u,
and u by
(2.24) u= 39 ,a,Mv,
then the covariance matrix of u is (1.8) where G, = I = UU’ and
G, =M + M
(2.25) = UY(D? 4+ D-9)U" = U(D? 4 DU’
=Ur,u, g=1---,9,

where I'; is diagonal and the rth diagonal element is y,, = ¥ - e=ths —
2 cos 4,g. Then

(2.26) Fu)=2=Uyxs,qT,0,

where Ty = I. The quadratic form in the density of y is —4 times

— _ B(ettt)|? I(A
(227)  YUB(D)(54-09,T)BD)Uy = 57, |z BN — 5r 1)
Zg=0 TgTtg f(zt)
since
(2.28) im0 0,7y = 24, 0,C0824,9 = 0 314,y a,a,eh=D

= o A(e)! .

2.3. Iterative procedures. Except in the case of the purely autoregressive
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process, the derivatives of the likelihood function (as modified in Sections 2.1
or 2.2) lead to nonlinear equations, which cannot be solved algebraically.
Several methods of solving the likelihood equations numerically are based on
a Taylor’s expansion, say

0 0
2.2 — log L(y|0) = —log L(y| @
(2.29) Y og L(y|0) 50 og L(y| )] o

+ aaaao' log L(yiﬂ)l —6,) + R(y|6,0,) .
The Newton-Raphson method is based on setting the right-hand side equal to
0 with R(y |8, 8,) replaced by 0. At the ith step of the iteration 8, is the result
of the previous iteration, and the equations are solved for §*; for i = 1, 6, is an
initial estimate of 4.

In the method of scoring the matrix of second derivatives is replaced by

0’
2.30 &, Io 0} :
(2.30) &0 spag o8 L010)|
where here y is considered as a random vector with distribution having the
parameter §. The negative of (2.30) is the information matrix (evaluated at
6,). The iteration is based on solving for §* the equations

0’ 0

@3 —[#, 5 e le10)] | 00— 0) = ilgLulo)|

In either case the iterative procedure will converge to the maximum likeli-
hood estimate if the initial values are close enough. If the initial estimates are
consistent, usually the estimates obtained at the first stage are consistent, asymp-
totically normal, and asymptotically efficient. The matrix of second derivatives
in (2.29) or (2.30), properly normalized, is a consistent estimate of the negative of
the average information matrix; the inverse of such a matrix is proportional to a
consistent estimate of the covariance matrix of the limiting normal distribution.

3. Estimation of the coefficients of an autoregressive moving average process.

3.1. The iterative procedures in general. The logarithm of the (modified) likeli-
hood function is

3.1 log L = —3T log 2 — }T log ¢® 4 log |B|

— log Al — 1

IBIA’ lA—lBy s

where A = Y7 a,J, and B = }2_, 8,K, have positive determinants and
J, =K, is L or M. If we use (Dwyer (1967) or Appendix A of Anderson
(1958), for example) 3 log|A|/da;, = tr A~* 0A/da,, A~ [da;, = —A~(0A[0a;)A,
d Ao a, = J,, etc., weobtain the derivatives ((5.4), (5.5), and (5.6) of Anderson
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(1975 2))
32  DlogL=—trAJ, + _01_2 YBA-A“J A-By, g=1,---,q,
g
3 1
(3.3) 51081 = WBTK, — S yBATATKY, k=1op,
3 T
(3.4) ilog L= = oL+ %4. y'B/A’-1A-By .

Setting these derivatives equal to 0 gives nonlinear equations which cannot be
solved explicitly except in very special cases. Hence, an iterative procedure
will be needed.

Define @ = (a,, - -+, a,) and 8 = (Byy -+ B,). Let @ be the vector of pa-
rameters (@', B, ¢*) and let b, = = (a&/, ﬁ ’, 8, be the vector of estimates to be
determined at the ith iteration, i = 1,2, ..., with 0 = (&, ,80 , 65%) as the
vector of initial estimates. Then the equations for a,, ‘Bz at the ith stage are

¢, Q.7é - é i,
(3.5) [A,t 1 i— 11[ 1, IJ _[ - IJ
. Qi—l ﬂz ﬂz 1 pz 1
where the matrix on the left-hand side is an estimate of the information matrix
for @ and B based on the (i — 1)st estimates and the vector on the right-hand
side is composed of estimates of dlog L/da,, g =1, ---, ¢, and 3 log L[dp,,
k =1, ..., p. In each case the estimate d,” is a function of yand §,_,. Through-

out the presentation we shall add a subscript i — 1 and a carat " to any function
of 8 to denote the same function of 8,_,.

3.2. Iterative procedures in the time domain. In the time domain we approxi-
mate the likelihood function of (1.1) by 2. 2) usmg the matrix lag operator L.
It will be convenient to define v,_, = A1 1Bz ¥y = Bi 1A1, .Y, which can be in-
terpreted as an “estimate” of v. In both the Newton-Raphson and scoring
methods the components of the right-hand side of (3.5) are the quadratic forms

" [ Le Az V,
(3.6) [9::], = —}_62—1—1
i-1
o VLB, 9 LFAS
(3.7) [Dis]e = — 1 - 1Vi1 i 1&2 i 1y
-1 i—1

for g=1,---,9and k=1, ...,p. In the Newton-Raphson method the
components of ®,_,, Q,_;, and ¥,_, are the quadratic forms

2 _ c”_ A;:lLIgLfAZ—_l e’,;_l
(3.8) (@], = i =
ASLLB e, WAL ‘L’gL’A‘lly

(3.9) [9,_,], = — =iz

~2
Gi—l 05— -1
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B L LB B, _ YAy

=2 PO,
051 (i

G vi_
(3-10) [wi—l]kl = - s
forg,f=1,...,9and k,l =1, ..., p. In these forms of equations (3.5) the
factor 62_, can be deleted, and the iteration for &,, 8, can be carried out with-
out computation of 47_,.
The Newton-Raphson equation for ¢ is

A, A
3.11) [2 VeV _ T] 82 = 3% %, — 2Ta_, .
0,
However, instead of calculating this sequence fori = 1, 2, - . -, an alternative is

to use the last estimate ¥, in §,/9,/T; this estimate of ¢*'is obtained by replacing
@ and B by &, and B, in the equation obtained by setting the derivative (3.4)
equal to 0.

The equations (3.5) are formally equivalen} to least squares iquations with v,_,
as the vector of dependent variables and LAY, ¥, , and —L*B;,¥,_, as the vec-
tors of independent variables. An intuitive interpretation is that @ and g8 tend
to be estimated so that the constructed vector ¥ has components uncorrelated
with the components of certain linear combinations of the vectors consisting of
lagged components of ¥. These sample properties reflect the process properties
that v, is uncorrelated with v,_, and y,_, fors = 1,2, ... .

Each quadratic form has the nature of x’z = }]7_, x, z,, where one or both of
the vectors is of the nature A—'w or B-'w. Because A and B are triangular, the
components of the vector can be computed recursively. In particular, x =
A~'w is found by solving Ax = w, yielding x, = w,, x, = w, — Y!Zla,x,_,, t =
2,---,¢q,and x, =w, — DL ax,_,t=qg+1,.-.,T.

In the method of scoring the components of (13,;_1, ﬁi_l, and ‘i"i_l are

(3.12) [®,_.],, = tr AZILL/AY
(3.13) [Q,_], = —tr AlZILLIB,
(3.14) (¥, ] = tr BIL*LIB,

forg,f=1,.--,9and k,l =1, ..., p. The equation for ith estimate of the
variance is ¥,_,¥,_,/T or ¥/ ¥,/T. In effect, the scoring equations result from
replacing v'A’~'L""L/A-'v by its expectation which is & tr A’~'L//L/A~'vv’, etc.

If A7(2) = }15.,0;2, then A~* = Y7 9,L¢. The coefficients are found by
solving Ad = (1,0, ..., 0), where 8 = (9, 9, - - -, 9,_,)". The explicit solution
isg,=1,0,= X' a6, yt=1,---,49,0,= - a0, ,t=qg+1, -,
T — 1. Then a term tr AA;:}L'QLf A;_ll is composed of a weighted sum of squares
or products of 8,6, j =0, ..., T — 1, where A,_, = Y77} §,0-VLJ.

3.3. Iterative procedures in the frequency domain. To obtain procedures in the
frequency domain we approximate the likelihood function of (1.1) by (2.6); this
amounts to replacing L in Section 3.2 by M = UDU’. In both the Newton-
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Raphson and scoring methods the components of the right-hand sides of (3.5) are

a I(lt)e' ¢ r I(4,)cos Zt(f 9) 5 - v
3.15 [Gioi]y = Di ——— = 240 Dty a
&1 2 Fioa(A)A,_y(e¥) Fia@)A,_y(e)? !
(3.16) [Broi)s = — Sy L0

t=1"A - A ..
fims(2)B,_s(e")
I(A,)cos A, (I — k) 2
:—Zg;o ?1 At ¢ 18( Y,
f1, l(lt)lﬁz l(e”t)l2
forg=1,.-.,gand k=1, ---,p. In the Newton-Raphson procedure the
components of the matrix on the left-hand side of (3.5) are

I(2;)ettve~t 4l I(A)cos A(9 — f)
(3.17) [@]yr = 21 ~ = i~ LA
T FL @) Fia@l i y(ee)

I(2,)etwe=t1al
fZ 1(/?t)Az 1(e“t)B (e
_ » I(A)cosd(g — 1+ j—h) 4,01 6D
2ih=o D80 2i- lfz 1('2t)|Az (e |BZ (e)]? 483 >
I(2,)etitke=ite _ s, IA(,L) cos A,(k — ) ’
fz 1('2t)|ﬁz ()P fi_l(lt)lﬁi_l(e“t)P
forg,f=1,..--,q9and k,l =1, ..., p. The equation for 4, is

(3.20) [2 N lfl(z(t;t) — T] [3 e lfl(l(t)) 2T:| &,

In this case equations (3.5) have the nature of least squares equations with
dependent variable B,_,(e't)z,]4;_,(e"t) = W, ", say, and independent variables
et 0| 4, _ (') and —et ek, =V [B,_ (e**). An intuitive interpretation is that
a and B tend to be estimated so that the constructs w, are uncorrelated with
the “relative exponentials” e“«,/d(e"*) and — e**¢*,/B(e**t). The correspond-
ing random variable w, = B(e‘*t)z,/ A(e*"t) is proportional to a signed square
root of I(2,)/f(2,); the latter are independently distributed (t = 1, -- -, 3[T]) as
11.®. An alternative view is that the equations correspond to weighted least
squares with weights 1/ Fii(Ry), dependent variable z, and independent variables
etz |4, (e'*t) and —e'ttkz,[B,_ (e'r).

In the scoring method the components of the left-hand side of (3.5) are

(3.18) [Q_],= -2

3.19 ¥ u=3XL

ilwe—“tf cos 4 (g _ f)
301 (I)Z i,r—-‘——— = 3T _A_t__._ )
(3.21) (Beotder = 2o (3 iop = 25 T @

eirtge—idsl

. Ol = — 5T
(3 22) [ z—l]gl Zt— /fi_l(e“t)ﬁ (e_“t)

- _ » r COS Ag—1+j—h @, b b |
Rikeo 250 (e[| Byy (e A
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etike=i2d . cosA,(k — I)
Byl T Bl

forg,f=1,---,qand k,l =1, ..., p. The iteration for the estimate of the
variance is

(3.23) ¥, 0. = 2,

(3.24) Zt . 1(2,) é_,
f1, l(zt)
The coefficients on the left-hand side of (3.5) for the method of scoring are
obtained by replacing 1(4,)/ fi-(2,) for the Newton-Raphson method by 1 since
in the circular model &1(4,) = f(4,).

3.4. Further discussion. Advantage can be taken of the fact that 3 log L9,
[as in (3.3)] is linear in the §,’s. In (3.5) if 8, — ﬂ _, is eliminated, the equation
for @&, — @&,_, is
(325 (P = QL THQLNE — Giy) = G — QT2
If partial derivatives of the logarithm of the likelihood function with respect to

the §8,’s in the direct lag model are set equal to 0 and if A is replaced by Ay
and B, by Bil=1,-.-,p, the resulting equations are

(3:26) 2l Y'AiiiL"L”A{-‘IYBz = —YAILAy, k=1,---,p.
When these estimates of §,, ---, 8, are used in place of B.v, ..., B,07Y in
(3-25) the replacement of p,_, is 0 and the right-hand side of (3.25) is simply

G,_, with these estimates of §,, ---, 8,. In the case of the circular model the
equations corresponding to (3.26) are

(3.27) Y, 1(2;) cos 2,(I — k) B= - I(4,) cos A,k

Fica)|Bo_y(e )2 T @B (e
k=1, ... P -

In any method if the estimate é‘i,l is consistent for any i = 1,2, ---, the
coefficients in the left-hand side of (3.5) divided by T are consistent estimates
of corresponding elements of the limiting average information matrix. More
precisely

L 1 A
lim,__| L <1>,._}
p 1m, I:T —1 s
(3.28) = lim,_, L - TL (LA —9) _ 1 o cOsMg —f) 5

AETE 2 T AT
= Z:—-max (g,f) 5 5t -f = ¢gf ’
. 1 A .
p ].llllT_,m [—T— Qi_l:lgl = _llmT—mo ‘T—,' ZtT=1

eilt(g—l)
-1 0%, .__em”—“_ di
2z " A(eP)B(e )

—_— )
= — Dlitmaxig,n) Ot—g Tt = @y

(3.29)
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. Qe . 1 cos A,(k — 1)
i, [ #.,] = tim, . g ot =D
P [T )y T e Aim T
(3.30) _ 1 cosdk—D)

B
= Ditmaxted Ti-kTi-t = Pt
forg,f=1,...,qand k,I =1, ---, p, where A7Y(2) = }i2,0,2°and B~(z) =

8=0 s

©,7s2°. The components of the limits of the average information matrix
referring to components of @ and B vs. ¢* are 0. The limit of the average
information for ¢* is 1/(20%).

In any method if"é‘i_1 is a consistent estimate of @ of order 7-% in probability,
then as T — oo T#@; — 0) has a limiting normal distribution with mean 0 and
covariance matrix equal to the inverse of the limit of the average information
matrix (as detailed above). The estimates are asymptotically efficient.

In the model using the matrix L the matrices A and B are triangular with 1’s
on the main diagonal; hence |A| = |B| = 1, and their derivatives with respect
to elements of @ are 0. The equations for the scoring method are based exactly
on & 9*log L/36 36", but the equations for the Newton-Raphson method involve
dropping from ¢* log L/ 96’ terms which are asymptotically negligible as T —
oo. In the circular model A and B are circulants, and the determinants depend
on @ and B, respectively. To obtain the equations (3.5), terms which are asymp-
totically negligible have been deleted from 0 log L/d@ and from 6 log L/36 96’
in the Newton-Raphson method and from & ¢*log L/06 9@’ in the scoring
method. A more detailed discussion is provided in Section 6.

4. Estimation of the moving average covariances and the autoregressive
coefficients.

4.1. The iterative procedures in general. When the parameters are the ,’s and
a,’s, the logarithm of the (modified) likelihood function is

4.1) log L = —1Tlog2r — 4 log|Z¥| + log |B| — 1y’'B'(£*)~'By,

where Z* is given by (1.8) and B = };7_, 8,K,. In the model with unobserved

variables set equal to 0, G, = L 4 L', g = 1,.--,q, and K, =L*, k =0,
1, ..., p, and in the circular model G, = M + M", g =1, ---, ¢, and K, =
M# k =0,1, ---, p. The derivatives are
(4.2) % log L = —4 tr (391G, + 3y'B/(2*)"'G,(Z) "By ,
g

g:O, 13 "':q,

(4.3) %logL = tr B-K, — yB'(2%)K,y, k=1,.--,p.
k

Let o’ = (g, 6y, - -+, 0,), 0 = (o', B'), éi’ = (o, ,éi’), the vector of estimates at

the ith stage, i = 1, 2, - - -, and @, the vector of initial estimates. The equations
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for @ at the ith stage are

(4.4) s s (=],
N’E—l ‘Fi—l .Bi_‘Bi—l f’i—1
where the matrix on the left-hand side is an estimate of the information

matrix for @ and the vector on the right-hand side is composed of estimates of
0 log L/dag, and 0 log L[0p,.

4.2. Iterative procedures in the time domain. Let @,_, = B,_,y = Aoi¥iss
where B,_, = B,_ (L) and A,_, = 4, ,(L). Then

(4.5) [8..], = $8,EL)G,(Er )b, — § tr 1) 'G,,
(4.6) [Bi-ids = — 8, (B)Lby
forg=0,1,..-,9and k =1, - .-, p. In the Newton-Raphson method
“.7) [A, ], = #,EE)6,E) G (B ) i,

— 3 tr E)G,EL) 76, ,
(4.8) [Nl = —,(Ee )G, (Er) LYy,
4.9) [¥,.]. = yL*Er,) 'Ly,

forg,f=0,1,.--,gand k,l =1, .-, p. The scoring procedure is developed
from the fact that Zuw’ = Z* and y = B~'u. The coefficients are

(4.10) A, = 3tr &)G,Er)G,,
(4.11) [Nioily = —tr G, (5t 'L'B7Y,

and (3.14) for g, f=0,1, ..., qand k, [ =1, ---, p. The equatiorls (4.11) can
be simplified somewhat by rewriting them as equations for ; and 8; — 8,_,.

In the case of the pure moving average process the equations for ™ can be
written (with # dropped from Z*)

(4.12) Yoot 4G, 56,69 = yvELG, SNy,  9=0,1,---,9.

These equatibns constitute a weighted least squares (as shown by Anderson
(1969) and (1973)). If the different components of yy’ are arranged in a vector,
say ¢, and those of G, similarly, say g,, then &¢c = ¥ 1_,0,8,, and (4.12) with
%,_, replaced by Z defines the weighted least squares (or Markov) estimates of
Oy Oyy =+ +5 0o

The calculation of vectors in the form x = Z-'w amounts to obtaining the
solution of Zx = w for x. The forward solution is recursive as in calculating
A-'z; the backward solution for x is also recursive. (See Anderson (1971b)
for details.) The computation of coefficients involving Gg(ﬁg_l)-l is more com-
plicated. Approximations to [Ai_l]” in the scoring method and exact compu-
tations for ¢ = 1 were given in Anderson (1971b).
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4.3. Iterative procedures in the frequency domain. The components on the
right-hand side of (4.4) are, withny=landn, =2,9=1,---,¢,

@13)  [8i], = 4n, S, TR COSAG 4 shr  COSAG
ft 1('zt)27ff “1(4r) L 2ﬂﬁ 1(/lt)
(4.14) [Bisle = — X0oo X0y 1(2,) cos (I — k) B,6-v
Jita(A)
= — ZP_ T I('zt) Cos Zt(l _ k) ‘B (i—1)

fi-sQ)1Bi_y(ee)?
forg=0,1,...,9and k =1, ..., p. In the Newton-Raphson method

@15) (Aol = nn, [ 2o, S OMIOAS _ 5y coshg O8],
Jia()[2nfi(4)] [27/:.(2,)]
I(2,) cos 2,9 e~ B;_ (')
2 f1 )P
I(lt) cos 4,9 cos A,(m — [) B,
2n[ﬁ (2]
I(2,) cos 2,9 e~ 43¢t
Z”ﬁ-l(lt)fiu—l(ze)ﬁi—l(e_”t)
I(2,)ettke=t2t . I(A,)cos A,(k — )
T AT T T Lat=1"Z s
Sia(4) fi-1()|Bi_y(e0)?
forg,f=0,1,..-,9and k,!/ =1, ---, p. Note that p,_, and '@'i_l are the same
as in Section 3.3. Here f* (1) = X¢_, n,7,% cos 1,9/(27).
The scoring procedure is obtained from the Newton-Raphson procedure by
replacing /(4,)/ fi_l(,lt) by 1 on the left-hand side because in the circular model
&I(2,) = f(4,). The componenis of the left-hand side of (4.4) are

[Ni—l]gl = —n, Zz;l

(4.16) = —My 21 Do

= —n, ZtT=1

(4'17) [‘.ﬁ.i—l]kl = ZtT=1

cosd,gcos i, f
[27f,(2)T
cos 1, g e~ 4!
Z”fi () B;_y(e ")
= —n, S T, cos 2,9 cos A,(m — [) R

277ﬂu 1(2,)[ @)

and [¥,_,],, given by (3.23) for g, f = 0,1, ---,gand k, [ =1, - .-, p.
In the case of the pure moving average process the scoring equations can be
written (with  dropped from f*(2)) as

(4.18) (AL = dmyn, D1

@19 [N ], = —n, 2L,

cos 4, gcosd,f . G,9 = n, NI, I(A;) cos Ztg
[27sz {(2)T 277"f12 1(42)
9g=0,1,.--,¢9.

(4.20) n, Yoo hy Diiey
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These equations can be considered as least squares with /(4;)/ fii(2,) as the
dependent variable and cos 4, g/[2x 7f.-1(2,)] as the independent variables or as
weighted least squares with 1/[2z fi-1(A,)T* as weights, 2xI(,) as the dependent
variable, and cos 4, ¢ as the independent variables.

4.4. Further discussion. As in the other parametrization, we can exploit the
fact that 9 log L/aB, is linear in the 8;’s. If B, — B;_, is eliminated in (4.4), the
equation for &, — &,_, is
(4'21) (Ai—l - Ni—lwi_—llﬁ:z—l)(&i - 6’1:—1) = §i—1 - Ni—lwi_—llﬁi—l .

One can estimate §,, - - -, f, in the matrix lag operator model from
(4.22) s yLkEe )Ly, = —y L+, k=1,--,p,
and in the circular model from

1) cos A,k — 1) 5 _ . I(2,)cos 2,k

(4.23)  Xp, nL, SR B = —yr, M) s Lk,

ST e ’ T )
k:l,...,P.

When p,_, is computed on the basis of these estimates, it is 0.

If the estimate @_1 is consistent for any i = 1, 2, - - -, the coefficients on the
left-hand side of (4.4) yield consistent estimates of corresponding elements of
the limiting average information matrix. That js,

. 1 4 . 1 cos 2,9 cos 4, f
4.24 lim,__ [ﬁ Ai_] — in n, lim, Ly COSA4gCOS4 ]
( ) p hmyp T o oMy Mo — 2ii=1 (22 [*2)
—3 ngnf3 i, cos 4, cosz,lfdl2 —2,,
(27) /]
. 1
lim,__ | — N,_ ]
P i [T ! gl
. 1 cos 4,9 cos A,(m — I)
4.25 = —n, lim,_, D% ,— 21i- ¢ A m
( ) 9 T Z 0 T Zt 1 21rf“(2,)|B(e“t)|2 ‘8
— M s s cos Ag cos A(m — l)dl _
oy 25 T R BT fu =2

forg,f=0,1,---,9 and /=1, ...,p. If 53_1 is a consistent estimate of @ of
order 7~ in probability as T — oo, then T*(@; — @) has a limiting normal dis-
tribution with mean 0 and covariance matrix equal to the inverse of the limit
of the average information matrix. The estimates are asymptotically efficient.
The coefficients for the lag operator model are exactly the partial derivatives
of log L and their expectations. In the circular model a term has been dropped
from p,_, and a term from 1’J\)'i_l; each of these is asymptotically negligible as
T — oco. (See Section 6.) The matrix f‘.i_l should be positive definite, and since
7:#(2) is an estimate of a spectral density it should be positive for —n < 1 < =.
A solution of (4.4) for &; may lead to estimates of Z* and f*(2) that do not
satisfy the necessary conditions. A remedy for this difficulty is to replace &,"
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by a number large enough to insure that the estimated matrix and spectral density
satisfy the necessary conditions. This procedure amounts to adding possibly a
multiple of I to £,% or a constant to £#(2). (The suggestion is similar to the use
of ridge regression.)

Initial consistent estimates of 8,, - - -, 8, can be obtained by solving the Yule—
Walker type equations

(4.26) Zf’=1ck—zﬁz(0) = —C>» k=qg+1,---,94+p,
where

1 1
(4'27) ck'_‘c-—k'_‘?Zt 1 ytyt+k—_fy’LkY" k=0’ 19 "'aq+P~

Then construct 4, = ﬁoy and estimate g, 0}, - - -, 0, by

(4.28) 6,9 = —4,/L,4,, 9=0,1,..-,9.

When initial estimates of a;, - - -, a, are needed (Section 3), estimate f*(1) by
(4.29) f'(3) = - X0 1,8, c0s 29

and factor f,*(2) into 6.2 4y(e"})|*/(2n)?, where dy(z) = 1 + &,Vz + .- + &, V2
has real coefficients and zeros outside the unit circle. (6, may have to be
adjusted to assure /42 = 0.) The (implied) equations ¢, = &,* 3928 &, &) ,,
9=20,1, ..., g, can be solved by an algorithm of Wilson (1969).

5. Comparison of procedures.

5.1. Selection of parameters. For the moving average part there is a choice
of parameters, either the covariances g,, ,, - -+, 0, of 4, = 3¢ @, v,_, or the
coefficients «,, - - -, @, and the variance ¢* of v,. (We shall not consider the use
of ay, a,, -+, @, with ¢* = 1.) An advantage of the use of the covariances is
that no modification of the moving average part is made in the direct lag model;
I = 39_,0,G, is exactly the covariance matrix of u,, ..., u,. If the process
is purely moving average, the iterative procedures (4.12) and (4.20) are based on
the exact (modified) likelihoods. The lag operator model is exactly the density
of the stationary process.

An advantage of estimating the coefficients directly is that often they
are the parameters of interest. If the covariances are estimated, to obtain
estimates of the coefficients the resulting estimated spectral density fi“(l) =
19 8,7n, cos 2g/(2r) must be “factored,” that is, must be expressed as
6.2 N0 g0 &P, P cos A(f — g)/(2n) for real &,, ..., &,. This can be done
if and only if ﬁ“(l) =0, —n < 2 < . If the estimated spectral density is not
nonnegative, it can be made so by increasing 4, sufficiently, but this method
is arbitrary.

In the time domain the computation of the coefficients in the equations with
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L is more difficult for the covariances than the coefficients of the moving aver-
age part because tr ;1 .G, by G, involves the inverse of %, , rather than of

. (See Anderson ( 1971 b), ( 1973), (1977) for further discussion of the com-
putation.)

To make the definition of a,, - - -, a, unique we took the zeros of A(z) to be
outside the unit circle (on the assumption that none is on the unit circle). The
corresponding conditions may be placed on the estimates to make them unique.
However, there seems to be evidence that there are computational difficulties
when some roots of 4,(z) are near the unit circle.

5.2. Direct lag and circular models. The model based on L involves approxi-

mating the stationary process by a distribution basedon y,=y_, = -.. =y, , =
0 and (in case of moving average coefficients) v, =v_, = ... = v,_, = 0. For
large T this effect washes out. The circular model involves a distribution based
O Yo = Yrs Yoy = Ypops > Yimp = Vroppr ANMA 0y = Vg, VU, = 0y, + o0, 0y =

Vr_q41- This would appear to be a rougher approximation to a stationary
process model than the model based on L. - To obtain the estimation equations
more negligible terms must be dropped from the circular model than the other
model. Of course, the asymptotic distributions (as 7 — o) are the same.

The circular model requires computation of I(2,) = I2t/T), t =1, ---, T.
By use of the fast Fourier transform the number of calculations (multiplications,
for example) is roughly proportional to Tlog,T. The lag operator model for
the coefficients involves (at the ith stage) A;l,w, where w is a T-component
vector. The number of calculations is proportional to ¢7. In the time domain
updating may be easier.

5.3. Scoring versus Newton—Raphson. In the case of the matrix lag operator
model for the right-hand side of the iteration equations one must compute
Ay = LA ,¥) and similar vectors; the number of calculations is roughly
proport10nal to ¢gT. Given such vectors, the computation of the coefficients
of the equations in the Newton-Raphson method only involves obtaining
#(9 + p)(q + p + 1) sums of squares and cross-products. The scoring method
involves rather similar calculations when «, - - -, @, and ¢* are among the pa-
rameters; the first column of A;%, is the solution of the linear equations with
the first column of I on the right-hand side, and each other column is the first
column shifted down. In the circular model the terms on the right-hand sides
of the iterative equations are also used as terms on the left-hand sides in the
Newton-Raphson procedure; however, the elements of ﬁi_l have to be computed
in addition.

Maximum likelihood methods in the time domain for the coefficients (proposed
by Astrém and Bohlin (1966)) have been used and studied by control and elec-
trical engineers. Numerical aspects of the likelihood maximization have been
extensively discussed in papers which appeared in a special issue on system
identification and time-series analysis of the IEEE Transactions on Automatic
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Control (Number 6 of Volume AC-19 (1974)). In particular, Gupta and Mehra
(1974) have indicated some of the computational problems of implementing the
Newton-Raphson method and the scoring method (termed Gauss—Newton) as
well as variable metric methods and suggest modifications for singular or nearly
singular estimated information matrices. A comprehensive summary of the
developments in computation, which should include the more general area of
maximization and optimization of nonlinear functions, is beyond the scope of
this paper. Mention might be made of a computer program by Akaike, Arahata
and Ozaki (1975) (referred to by Tong (1975)).

5.4. Monte Carlo studies. The eight sets of estimates of the coefficients (four
obtained from the estimates of ¢,’s and ,’s) have the same asymptotic distri-
bution as T — oco. However, for any finite value of T the sampling distributions
of the eight sets will differ. Because the exact distribution of a set of estimates
obtained by an iterative procedure is usually intractable, the distributions of
these estimates for small or moderate lengths of series have not been obtained.
To compare procedures on the basis of sampling characteristics, resort to Monte
Carlo studies must be made. Since it is the moving average aspect that requires
the use of iteration, the relevant simulation studies have mainly been done for
the pure moving average process, in fact, in the simplest case: ¢ = 1.

McClave (1974) has investigated the Newton-Raphson method for coefficients
and the scoring method for covariances in the frequency domain and the scoring
method for covariances in the time domain (as well as methods due to Durbin
and Walker, which are not considered in this paper because they are based on
principles different from approximating the likelihood of the observations). In
this study 7 = 100, the number of replications is 100, and the values of @, are
.5 and .9. One apparent conclusion is that although the initial estimate is con-
sistent, the estimate from the first iteration has a mean and standard deviation
quite different from «, and the asymptotic standard deviation, respectively.
Several successive iterations improve the performance of each procedure. At
a, = .5 the behavior of the scoring method for covariances seems to stabilize
on the third iteration and does not differ from the asymptotic theory; the be-
havior of the other two methods seems to stabilize at the fifth or sixth iteration
and also does not differ from the asymptotic theory. After a sufficient number
of iterations (at most ten) at a, = .5 the estimates by each of the three methods
agree with asymptotic theory and there is no statistically sound evidence on
which to prefer one method.?

At a; = .9 the mean of the estimates by each procedure (about .84) is not
significantly different from the parameter value, but the variance of the observed
estimates was 2 or 3 times the asymptotic value (which is also the Cramér-Rao

2 At a customary significance level one would not reject the hypothesis that the mean or
standard deviation of the estimate is equal to that of the asymptotic theory. The investigator
did not study how close the empirical distributions were to the normal.
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lower bound). A conclusion is that for «, as large as .9 the length of the series
must be greater than 100 for the asymptotic theory to be a good approximation.
The behavior of the two methods in the frequency domain stabilizes after 2 to
4 iterations, but the variance of the estimate based on scoring in the time do-
main does not stabilize by the tenth iteration. Ata, = .9and T = 100 there is a
nonnegligible probability that the estimates are such that f(2) is not nonnegative
for all 2in [—n < 2 < x] or that |@,| < 1. Thus there is some arbitrary treat-
ment of estimates failing to meet these conditions; that treatment affects the
reported statistical characteristics.

Nelson (1974) has also investigated the first-order pure moving average process
for ¢, = —.9, —.5, —.2,0, .2, .5, and .9 on the basis-of 500 replications for
T = 30 and 200 replications for T = 100. In addition to studying the initial
estimate (described in Section 4.4) and Durbin’s estimate, he studied a method
that is approximately the Newton-Raphson method in the time domain (of
Section 3.2) and a method to minimize y’Z-'y due to Box and Jenkins. Iter-
ations were carried to convergence (or stopped after 70 steps).

The means and variances of these two estimates at 7 = 100 agree with asymp-
totic theory except at a; = +.9. In the latter cases the mean is significantly
different from the parameter value, biased towards 0; the observed variances
are reported so ambiguously that it is impossible to test the hypothesis that the
observed variance agrees with the theoretical. (Reporting a variance of .002
only implies the observed variance is in the interval (.0015, .0025).) For T =
30 the conclusions roughly are that the means of the estimates are within
sampling error of «, except at @, = +.5 and +.9, where the estimates seem
biased towards 0, and each observed variance is significantly greater than the
asymptotic value.

Kashyap and Nasburg (1974) used the Newton-Raphson methods in the time
and frequency domains at 7 = 100 with 20 replications for the model with a, =
.5 and for the model with 8, = —.8, a, = .5. The means and variances are not
significantly different from the parameter values and the asymptotic variances.

To summarize: the asymptotic theory seems adequate at 7 = 100 and |q,| less
than some value between .5 and .9; there is insufficient evidence to compare
procedures for short series.

6. Mathematical details.

6.1. Estimation of the coefficients. The first and second partial derivatives of
the logarithm of the likelihood function for the general model (1.6) were given
in Section 5 of Anderson (1975a) for arbitrary matrices J, and K,. Newton—
Raphson procedures are developed in the time domain by substituting J, = L¢
and K, = L* and in the frequency domain by substituting J, = M? and K, =
MF, using the algebra of Section 2.2. (For C =yy' one uses tr PCQ =
tr Pyy'Q = tr yQPy = y’QPy.) However, some terms are asymptotically negli-
gible and are dropped to obtain the procedures presented in Section 3.
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The Newton-Raphson equations obtained by setting the right-hand side of
(2.29) equal to 0 and replacing R(y | 8, 6,) by 0 can be rewritten with &* replaced
by 0, and 6, replaced by ,_, as

1 o*log L A
6.1 — 9O Tih, — 0
(6.1) T 3606 |;,_, . —6)
— - 0logl] 1 Plogl| pygG gy
00 16, T 0606 |5_,

We are interested in cases where T#@, — ) has a limiting normal distribution,

its coefficient in (6.1) is a consistent estimate of the average information matrix,

and

dlog L
00

_ 1 &*logL T4, , — 6) =~ T~} dlog L
41 T 0606

6.2) T-t
(6-2) - 8

(evaluated at the “true” parameter vector @) has approximately a normal dis-
tribution. Thus we shall drop a term from ¢ log L/0€ 06’|; _ if such a term
divided by T converges to 0 in probability, and we shall drop a term from
dlog L[36);,_ if such a term divided by T* converges to 0 in probability (as
T — o0).

A term in " log L/oa, da,|; _ based on use of L is 27/d;_, times

S YBLACLAE, Ly
6.3 l s, B (i-1f (-1
(6.3) = T 2iki=0 B B,

% Z;Lo,j,m,n=0 3h(i—1)3j(i—1)5‘m(i—1)3”(i—1)errh+kLa+f+i+l+m+ny ,
where A71(z) = Y5, 4,%vzh. (For simplicity of notation it is convenient to
ignore the fact that L™ = 0 for m > T.) Since

1

1
6.4 ‘__ Lyl < Ly
(6.4) Y Y=Yy

has expected value uniformly bounded and 6,1 < K(p*=")™ for some 0 <
£~V < 1 with arbitrarily high probability for suitably large T, (6.3) differs by
an arbitrarily small amount from

1 A A
(6.5) T 2ihimo BVB Y

N § (i-1F§ (i-1§ (-1 G-Lygl] th+k] g+f+itl+m+n
X X g mm=0 0,700,470, 3,; y'L/h+k ot i y

for sufficiently large N, which in turn (by consistency of estimates) differs by an
arbitrarily small amount from

(6'6) 71: le:,l=0 ‘Bk ﬂl ZhN,j,m,'rt:O 6h 6.1' am 5% y!L!h+kLg+f+j+l+m+ny ’
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which in turn is approximated by

67) b Dhis BuBy Do Tfiane 5403000, YL LAty
= _;T TN pm 0;0, VLo Hitny

Since

(6.8) plim,_, —177 vLot/titey = &9, _, ia =0,

the probability limit of (6.7), and hence of (6.3) is 0. Other terms in second
partial derivatives such that when divided by T have prebability limits of 0 are
dropped; the terms are those that have explicitly powers of L but not also of L’
or powers of L’ but not also of L. Thus (3.8) to (3.10) are obtained.

In the circular model the terms —tr A~'M? and tr B-'M" in the first derivatives
are not automatically 0, but are asymptotically 0. One such term, for example,
in 9 log L/da,,-5,_,/T* is —1/T* times

A e—“tﬂ
(6.9) tr A, M = B, —————
A, (e
=, Y%, gju—l)e—iztu'ﬂ) =Ty, 5‘&—_1;

because Y7, et/ = T if f is an integral multiple of 7" and 0 otherwise. If the
zeros of A;_,(z) are different, 6,470 < R,_,pi_,, where K,_, is a positive quantity
and p,_, is the reciprocal of the smallest absolute value of the zeros. Because
@,_, is a consistent estimate of a, for sufficiently large 7' the probability is
arbitrarily great that K,_, is not greater than some positive constant K and
pi-1 < p, Where p is greater than the reciprocal of the smallest absolute value
of the zeros of A(z) and less than 1. Then for sufficiently large 7" and arbitrarily
high probability (6.9) in absolute value is less than or equal to

T
(6.10) T 5 Ko™ = TKp™= K (07) = -0
—p

2

which converges to 0 as 7 — oo.

Terms of 3*log L/0@ 6’/T which converge to 0 in the direct lag model also
do so for the circular model. In (6.3) to (6.7), for instance, L is replaced by
M. However, in (6.8) if g + f + j + n = kT for some integer k the expectation
is ¢?, but the sum of the coefficients of such a term is in absolute value

(6.11) | X5y 2557 Opr—j—y— s 05

< Do DM Kot el = K" T (T + T — g — et
which converges to 0 as T — co. Also one can drop such asymptotically negli-
gible terms such as

R n —id4(g+S
(6.12) tr A MeAp v = iz, S

A?ﬁ—1(e_“t)

— T 8 (i—1)§ (i—1)p—ids(h+3
— Zt=1 Zf,j:o 5h 2 )5j(z Jg— 4 +i+g+f) s
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which converges to 0 in probability by an argument similar to those used above.
Thus (3.15) to (3.20) are obtained (by use of the algebra of Section 2.2).

To develop the scoring equations components of —& 9*log L/36 98" are
needed. These have been given for the general model (1.6) in Section 5 of
Anderson (1975a), and the scoring procedure for the lag operator model was
presented. No terms needed to be dropped.

For the circular model J, is replaced by M¢ and K, by M*. Again terms are
dropped which are asymptotically negligible. More details of these develop-
ments are presented in Section 8 and Appendix A of Anderson (1975b).

6.2. Estimation of the covariances and coeficients. The first and second partial
derivatives of the logarithm of the likelihood function for the general model
(1.7) and (1.8) were displayed in Section 4 of Anderson (1975a). To develop
Newton-Raphson procedures in the time domam G, is defined by L¢ + L'? and
K, = L*; the asymptotically negligible term tr B lLkB;‘llL‘ is dropped to obtain
(4.5) to (4.9). In the frequency domain G, = M? + M~¢ = UT',U’ and K, =
M* = UD*U’. Dropping asymptotically negligible terms yields (4.13) to (4. 17).

In Section 4 of Anderson (1975a) were given the scoring equations
for the general model and for the model in the time domain. The term
tr B2, & ﬁ{:}L”‘(f‘.g_l)—lL’ has been replaced by (3.14) here which is asymptoti-
cally equivalent. More precisely

(6.13)  plim, % [tr B2, 8¢ Bio1L(8e )L — tr B, BI-ILALY = 0.

The argument is that if }¢__ 6,z = A*(2)A*(1/z) then Su s approxi-
mated by 4*(L)A4*(L’) and (ﬁ l) ~!is approximated by A*(L’)~*4*(L)~%

To obtain the scoring equations in the frequency domain G, = M? 4 M~¢
and K, = M¥; asymptotically negligible terms are dropped. More details are
given in Section 9 and Appendix A of Anderson (1975b).

APPENDIX

Derivation of Hannan’s estimates in the notation of this paper. Hannan (1970)
specified an estimation procedure in SLLbsectioAn (c) of Sec}ion 5 of Chapter VI
(and in (1969)). The initial estimates 8, and f,"(2) = 6,’|4,(¢)|*/(27) are those
described in Section 4.4. Then (3.27) or (4.23) for i = 0 is solved for 8. Next
solve for t

(A1) &t = —h,
where
I(4,) cos 4, g _
A.2 h == 7;%-, g—ly"'1qa
(A.2) [h], = 2 e

and (i>o and f(lt) are based on fo"(l) and ,é Let f)o and @'0 be defined as the
coefficients in Section 3.3 for the Newton-Raphson method in the circular
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model. Then Hannan proposed the estimate

= [ - &'Q,¥:0/1"@, — v + &
(A.3) = [(i)o S’\20"1}0 1Q ,]_l(ﬁo(&o —t) + @,
= [(i)o o@‘o 1Q o1 1[(1) @, + h] + a,
or
(A.4) [(i)o - Qoﬁgiﬁo'](él — @) = G -

This is (3.25) for i = 1 and p, = 0, which is the case because the estimates of
B> -+ > B, satisfy (3.27) or (4.23). With coefficients of (3.27) or (4.23) calcu-
lated on the basis of &, another solution for an estimate of ,B can be computed.
Note that f,_,(1,)|B,_(e")|* = ¢2_,|4,_
the first stage may be used to iterate to a second stage. (In Hannan (1969) Q,
is based on Newton-Raphson, and in Hannan (1970) on scoring.)
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