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DISCOUNTED AND RAPID SUBFAIR RED-AND-BLACK

BY STUART KLUGMAN
University of Iowa

A gambler seeks to maximize the expected utility earned upon reaching
a goal in a game where he is allowed at each stage to stake any amount of
his current fortune. He wins each bet with probability w. Inthe discounted
case the utility at the goal is 8= where 8, the discount factor, is in (0, 1) and
n is the number of plays used to reach the goal. In the rapid case the utility
at the goal is 1 and the gambler seeks to minimize his expected playing
time given he reaches the goal. Here all optimal strategies are character-
ized when w < } for the discounted case and when w < % for the rapid case.
It is shown that when w < } the set of rapidly optimal strategies coincides
with the set of optimal strategies for the discounted case.

1. Introduction. In red-and-black gambling problems the gambler can stake
any amount s of his current fortune f, 0 < s < f. If he stakes s his fortune be-
comes f + s with probability w and f — s with probability w = 1 — w where
0 < w < 1. The gambler is allowed to gamble repeatedly with a basic objective
of reaching fortune 1. The problem is to find a strategy which makes the prob-
ability of reaching the goal as large as possible.

In the more precise notation and terminology of Dubins and Savage (1965),
a red-and-black problem is defined by the set of fortunes F = [0, oo); utility
function u(f) = O or 1 according as 0 < f < 1 or f = 1; and for each fe F, the
set ', (f) = {(wo(f + s) + wé(f — 5): 0 < 5 < f} of available gambles at f. The
symbol 6(f) denotes the measure which assigns mass 1 to {f}. To distinguish
this problem from the modifications introduced later it will henceforth be re-
ferred to as basic red-and-black.

A strategy o available at f in T, is a sequence g, gy, - - - Where o, I',(f)
and, for each positive n and each finite sequence (f;, - - -, f,) of elements of F,
0.(fi» - +s fu) €T,(f,). Define an incomplete stop rule ¢ by #(fi, f;, -++) =
inf{n: f, =0 or f, = 1}. The utility of a strategy ¢ is given by u(s) =
E,[u(f,)] = P,[f, = 1]. Define U,(f) = sup u(s) where the supremum is taken
over all ¢ available at f and call a strategy ¢ optimal if u(¢) = U,(f). For a
fortune f, let R,(f) be the set of all optimal strategies that are available at f
inT,.

The first modification to be discussed here is the introduction of a discount
factor 0 < B < 1. It reflects the concept that the value of money decreases with
time. A direct way of incorporating the discount factor into basic red-and-black
is to change the definition of the utility of a strategy to u(s) = E,[S'4(f)]- Let
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D, 4f) be the set of all optimal strategies available at f for this problem. In
Section 2 an equivalent, but more useful, model for the discounted problem is
given and then the bold strategy is shown to be optimal when 0 < w <  and
0 < g < 1. In Section 3 it is shown that D, ,(f) does not depend on w and S
for 0 <w < } and 0 < 8 < 1 and its members are characterized. Section 4
shows that for w = 4, D, ,(f) does not depend on 8 for 0 < 8 < 1 and this set
proves to strictly contain D, ,(f) for 0 < w < 4.

The second modification provides a more direct way of encouraging the
gambler to quickly resolve the game. Let T(0) = E,[¢|f, = 1] be the rapid
utility of strategy ¢ and T,(f) = inf T(s) with the infimum taken over all s €
R,(f). A strategy ¢ available at fis called rapidly optimal if o € R,(f) and
T(¢) = T,(f).- In Section 5 some properties of this problem are investigated.
In Section 6 it is shown that for 0 < w < % the set of rapidly optimal strategies
is D, ,(f) forany 0 < g < 1.

2. Discounted red-and-black. The discounted red-and-black problem is for-
mally defined by T',, ,(f) = {wB6(f + ) + WBS(f — s) + B6(0): 0 < 5 < f} for
all f = 0. All other defining items are identical to those for basic red-and-black.
To see that this is the same problem as the one given in Section 1, note that for
any strategy the gambler’s expected utility, given that it took exactly n plays to
reach the goal, will be " times the same expected utility for basic red-and-black.
This conforms to the intuitive notion that the utility of 1 is discounted by 8 at
each play.

Dubins and Savage (1965) showed that the bold strategy is optimal for basic
red-and-black with w < 4. The bold strategy may be defined by the stake-valued
function s(f) = min (f, 1 — f) for 0 < f < 1 and s(f) = 0 otherwise. That is,
when the gambler’s current fortune is f the bold strategy requires that he stake
5(f) on the next play. It seems reasonable to expect that the bold strategy is
also optimal for discounted red-and-black with w < } since this strategy con-
cludes the basic game in the least expected number of plays (Ross (1974)).

Let Q(f) be the utility of the bold strategy when the gambler’s initial fortune
is f. After one play the gambler’s fortune will be f + s(f) with probability wp,
f — s(f) with probability w8, and 0 with probability 3. Thus

2.1 Q(f) = wpQ(2f) 0
(2.2) Q(f) = wB + wBO(2f — 1) 3

Of course, Q(f) =1iff > 1.

Call a fortune f a binary rational if it can be written in the form f = k2-* for
some integer k and some nonnegative integer n. The order of a binary rational
is the smallest value of n for which f can be written in this form. The binary
expansion of any fortune is f = Y52, x,2~* with x, an integer, x, = 0 or 1 for
each i-> 0, and an infinite number of the x, must be 0.

The following three lemmas establish some useful properties of Q.

IA
IA

f
f<1.

1
2

IA
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LemMma 2.1. If 0 < f < 1 is a binary rational of order n, then
(2.3) Q(f) = QU — 27) + (w)*(wp)*

where a is the number of 1’s appearing in the binary expansion of f and b = n — a.

Proor. If n =1 then f=14, a=1, b =0, and (2.3) becomes Q(}) = wp
which follows directly from (2.1). Assume (2.3) holds for all fortunes of order
less than n and let f be a binary rational of order n. If 0 < f < 4 use (2.1) to
write

Q(f) = wBQ(2f) = whlQ(2f — 277") + (wB)'(WB)*~']
= Q(f — 27") + (wB)"*'(wB)* " .
If § < f < 1 a similar argument using (2.2) completes the induction.
LemMa 2.2. Q is strictly increasing on [0, 1].
Proor. Let0 < f<g=<landh=9g —f Iff<} < g write
(2.4) O(f) = wBQ(2f) < wB < wB + #PO(20 — 1) = Q(g) -

If g <} then (2.1) yields Q(g) — Q(f) = wB[Q(20) — Q(2f)] while if f > 4
then (2.2) yields Q(g9) — Q(f) = wp[Q(29 — 1) — Q(2f — 1)]. In both cases
the arguments of the two functions on the right-hand side are separated by 2.
Repeatedly applying either (2.1) or (2.2) to the resultant expression will eventu-
ally separate them by more than } so that the argument used in (2.4) yields the
desired result.

LemMA 2.3. Q is right-continuous at all f = 0. In addition, Q is left-continuous
at f if and only if f is a binary irrational.

Proor. Let 0 < f <1 and let 3, x,27¢ be its binary expansion. Define
fom=2rx2%and f,t =f,~+2"forn=1,2,.... Letn,<n, < --- be
the subsequence of all positive integers i for which x; = 0. Use Lemma 2.1 to
write

0 <Q(fz) — QN = Q(f3) — Q(fs) = (wh)*s+'(wp)*~
where a; is the number of 1’s in the set {x,, - - -, Xp 15 1} and b; = n; — a;. By
the definition of binary expansion b; — oo as j — oo and therefore Q( fa)—
Q(f)as j— co. Since f;. decreases to f, right-continuity is established. If f
is not a binary rational, f,~ < f for all n and the same argument shows left
continuity.

Now let f = 3%, x;27* be a kth order binary rational less than 1. Let f, =
f—2rforn=k,k+1, ..-. By Lemma2.1, Q(f,.,) — Q(f,) = (wB)***}(wp)—*-*
where b is the number of zeros in {x,, - .-, x,}. From the same lemma, Q(f) —
Q(f,) = (wB)***(wB)*~*-*. Combine these as a telescoping sum to obtain

Q(f) — Q(fa) = (WP (W)=~ — (WB)**(WB)-— X1 — (WH)*M)/(1 — wH) .
Then lim, ., [Q(f) — Q(f,)] = (WB)***(8)~*=* — (wB)***()*~>*/(1 — wp) > 0.

Noting that f, increases to f completes the proof.



DISCOUNTED AND RAPID RED-AND-BLACK 737

THEOREM 2.4. For discounted red-and-black with 0 < w < % the bold strategy
is optimal.

Proor. By Theorem 2.12.1 of Dubins and Savage (1965) it is sufficient to
show that

(2.5) Q(f) =2 wBQ(f + 5) + WBQ(f — 3)
forall 0<f<1 and 0=Zs<f.

By Lemma 2.3 it is sufficient to show (2.5) holds for all binary rational values
of f and 5. The proof then follows by an induction on the order of f and s.
The details are identical to the argument used in Theorem 5.3.1 of Dubins and
Savage and will not be presented here.

The following corollary outlines the cases where inequality (2.5) is strict.

CoROLLARY 2.5. Q(f) > wBQ(f + s) + wBQ(f — s) if either

(i) w<iando<f—-—s=}i<f+s<l,or
(i) $<f—s=f—s<1,0r
(iii) 0<f—s<3=f<f+s<1l.

3. Other optimal strategies for w < }. Determining all optimal strategies is
the same as finding every stake which is conserving at each fortune. For any
fortune f < 1 a stake is said to be conserving at f if Q(f) = wpQ(f + s) +
wRO(f — ).

The set of all conserving stakes can be expressed by a sequence of stake-

valued functions. Forn =0, 1, ... let
Su(f) = min (f, 27" — f) 0=f<2™
=min (f, 1 — f) 2 f< 1.

Since S,(f) yields the bold stake, it is conserving. Now suppose S,(f) gives
conserving stakes for n = 0,1, ---,k — 1. Let Q,(f) be the utility for the
strategy that stakes S,(f). For 0 < f < 2-*

Qu(f) = Q(21)Q(2™") = (Wh)~"Q(f)(wh)* = Q(f) -

Thus this strategy is optimal and S,(f) is a conserving stake-valued function.
It turns out that there are no other conserving stakes.

THEOREM 3.1. For0<w<3and 0<f <1, Q(f)=wBQ(f+ 5) + wpBQA(f— )
if and only if s = S,(f) for somen =0,1, - ...

Proor. It has already been shown that §,(f) is conserving for all n. To
show that no other stakes are conserving let &= {s: Q(f) = wBO(f + s) +
WwBQ(f — ) for some 0 < f < 1 and for at least one such f, s + S,(f) for all n}.
Assume that .%”is not empty. To obtain a contradiction choose s € & such that
s > 4 sup S”and let f be a fortune for which s is conserving and s # S,(f) for
all n.
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First assume [+ s<4. According to (2.2), Q(2f) = wBQ(2f + 2s5) +
WwRQ(2f — 2s), so 2s is conserving for 2f. This implies that 25 = §,(2f) for
some n and therefore s = S, ,,(f) if 0 < f < 2=V or 5 = S§y(f) if f = 2-»+D,
In either case there is a contradiction. By Corollary 2.5 only the bold stake is
conserving when f + s > } so that &is empty and the theorem is established.

Theorem 3.1 along with an argument identical to that used in Theorem 5.4.2
of Dubins and Savage (1965) is sufficient to characterize all optimal strategies

for0<w< 4.

THEOREM 3.2. For0 < w < $and0 < B < 1, a strategy o is optimal if and
only if, immediately following each of the at most denumerably many partial histories
of positive a-probability only stakes of the form S,(f) for somen = 0,1, ... are
used.

Thus the set of optimal strategies D, ,(f) is constant over 0 < w < % and
0 < B < 1. In Chapter 5 of Dubins and Savage (1965), R,(f) is shown to be
constant over 0 < w < 4. For future reference these two sets will be denoted
by D(f) and R(f). Savage is said to have been “incredulous” (page ii, Dubins
and Savage, 1976) to learn that R(f) contains strategies other than bold. We
expected D(f) to be strictly contained in R(f) but were equally surprised to
find that D(f) also contains nonbold strategies.

4. Discounted fair red-and-black. Although the case w = 1 is subfair in the
sense that U(f) < f for all f, Corollary 2.5 suggests that there are more optimal
strategies than when w < 4. From Section 3 it is clear that any strategy optimal
for w < % is also optimal for w = 4. In this section the remaining optimal strate-
gies will be characterized.

Since the bold strategy is optimal, the utility is given by Q(f). Once again
the problem reduces to determining the set of conserving stakes. Let f =
2i%14;27" be the binary expansion of the gambler’s initial fortune. Apply
Lemmas 2.1 and 2.3 to obtain

o(f) = L. aiBf2)*

Let 0 < s < f be a stake available at f with f+ s < 1 and write f 4 5 =
Yiab27%and f — s = 37, ¢,27%. This stake will be conserving if

(4.1) 251 a(8)2)" = L (b + ¢)(B[2)+.

Also, except for the bold stake, which is known to be conserving, any stake-
fortune combination for which (4.1) does not hold cannot be conserving. If
a,=0and b, + ¢; < 2fori > 0 thena;,; = b, + ¢, for i > 0 and (4.1) holds.
There are no other conserving stakes.

THEOREM 4.1. For discounted red-and-black withw = L and 0 < 8 < 1, s is a
conserving stake for fortune f = % if and only if s =1 — f. For f < 4, s is con-
serving if and only if b, 4+ ¢; < 2 forall i > 0, where b, and c, are the ith coefficients
in the binary expansions of f + s and f — s respectively.
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Proor. From parts (ii) and (iii) of Corollary 2.5 the bold stake is the only
conserving stake for f > 4. For f < 4, a, = 0 and the stakes given in the theo-
rem are all conserving. Let &= {s: s is conserving for some f < } and f and
s do not satisfy the hypothesis}. Assume .&”is not empty and choose s € &such
that s > } sup . If f 4+ s < } then 2s is conserving for 2f and they must satis-
fy the hypothesis. However, this implies that f and s also satisfy the hypothesis
and thus f + s > }. Let k = inf{i: b, 4+ ¢, = 2}. The assumption implies that
k < oo. A contradiction will be obtained by an inductive argument. Generate
a sequence of conserving fortunes and stakes in the following manner. From
Case 3 in the proof of Theorem 2.4, s® = |2s — }| is conserving for f® =
2f — %. As binary expansions [ = }2,4a;,,27" and {f + s, fO — sV} =
(502, b, 275 e 27 If k = 2, then (f® 4 sV) + (f® — s™) = 1 but
f® < 4 and thus k > 2. After the (n — 1)st step the process will have termi-
nated or else kK > n will have been established and s»~" will be a conserving
stake for f*~Y = 3 a,,, ,27" with

{f(”_l) + sh, fm—l) - s("_l)} = {Z;;l bi+n—12_i’ Z:;l ci+n—12—i} .
The nth step may be divided into three cases.

Case 1. f*D <3 < fD 4 5D, This is the same situation as in the first
step. A similar argument will derive /™ and s and show that k > n + 1.

Case 2. f*P < L. The stake s = 25" is conserving for f™ = 2f=-b,
Since b" =€, = 0’ {f(”) + S(M’ f(”) - S(M} = {Z“l:l bi+n2_i3 Z:;l ci+”2—i} and
if Kk =n 41 then (f™ + s™) 4 (f™ — 5) = 1 contradicting the fact that
f™ < 4 and thus k >n 4 1.

Case 3. } < f 0 £ frb 4 5D < L. Define s and f™ as in Case 2.
Since f™ =} and s™ is conserving, s =1 — f™ and s =4 — foV,
But if f™- 4 s*-b = £ then either b, = 1 and b, = 0 fori > norc, =1 and
¢, = 0 for i > n. Either possibility contradicts the fact that n < k < oo and in
this case the induction may be immediately terminated.

If Case 3 never occurs the induction shows that k > n for all n and this con-
tradiction completes the proof.

5. Rapid subfair red-and-black. Another method of encouraging the gambler
to conclude the game quickly is to require him to choose a strategy that mini-
mizes the expected number of plays. It turns out to be more interesting to con-
dition the expectation on the event that he reaches the goal and also to restrict
the gambler to those strategies optimal for the corresponding basic game. More
formally, for any strategy o, let T(s) = E,[¢|f, = 1] and let the rapid utility of
the game be T, (f) = inf T'(s) with the infimum taken over all ¢ € R,,(f). Then
o available at f will be called rapidly optimal if ¢ € R,(f) and T(s) = T, (f).

It is useful to have a formula for evaluating T(¢) in terms of the expected
time for the game using the same strategy strating at the gambler’s fortune after
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one play. For astrategy o let o f] denote the strategy available at f that is used
when ¢ leads the gambler to fortune f after one play. For a stop rule = and a
fortune fsuch that ¢(f, f;, fo» - - -) # 1 define astop rule [ f] by e[ f1(fi, fa» - ) =

(fifofo )= 1.
LEMMA 5.1. Let o be a strategy available at f and let s be the initial stake speci-
fied by 6. Then

(CRY) T(o) = [wu(o[f + sD( + T(a[f + s1)
+ wu(a[ f — sh(1 + T(of — s])]/u(o) -
If 0 € R, (f), then
(5.2)  T(e) =1 + [WU(f + )T (@Lf + s]) + WU(f — )T (L f — sDYU(S) -
Proor. For 0 < f< 1, let A(f) = {(fufo -+*) funZ 1} o< f—s=
f+s<1,
1
u(o)

= oy ¥ Saoran QU 51+ 1) ol + 51
+ W Sas-o (Lf = 51 + 1) do[f — 5]]
= [wu(a[f + sH(A + T(eLf + s]) + wu(lf — sH(1 + T(oLf — sI/u(@) -
If f — s = 0 then #(s[0]) = 0, + =1 on all histories beginning with f, = 0,
and a similar argument establishes (5.1). If f + s = 1, then u(o[1]) = l,t=1
on all histories beginning with f; = 1, and (5.1) again follows.
If ¢ e R,(f), then u(s) = U(f), u(a[f + sl) = U(f + s), and u(o[f — s]) =
U(f — s) and (5.2) follows directly from (5.1).
Let TB(f) = T(c) when ¢ is the bold strategy and f is the initial fortune.
Then Lemma 5.1 implies

(5-3) TB(f) = 1 + wUQf)TBRf)U(f) = | + TB2f) 0<f=}
(5.4) TB(f) = 1 + WUQ2f — DTB2f — DIU(f) ~ $<f<1.
LEMMA 5.2. For 0 < w £ } and o € D(f), U(f)T(s) < w/w.

T(o) = §$acrp CLA] + 1) dol fi] doo(f2)

Proor. For any positive integer n, there is at most one partial history
(fis + - +» fu) Of positive g-probability such that f, > 1. If o is the bold strategy
then there is exactly one sequence of wins and losses that leaves the game unre-
solved after play n — 1. To possibly end the game at play n with f, = 1, the
gambler must win his stake at play n and thus at most one such partial history
exists. For any o € D(f), if the gambler is at a fortune for which ¢ does not
specify a bold stake, he will have a fortune of the form 2-* if he wins the stake
and the only partial history that reaches the goal requires exactly k more plays.
If he loses the stake, any partial history must take more than k more plays to
reach the goal. Let I(n) = 1 if such a partial history of length n exists and
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I(n) = 0 otherwise. Use the fact that w < W to write
U(f)T(0) S Dgu nl(nyim < B
An immediate consequence of this lemma is that T'() is finite for all ¢ € D(f).

6. For 0 < w < 4, D(f) is the set of rapidly optimal strategies. First it will
be shown that T(s) is constant over ¢ € D(f). This will be done by showing
T(c) = TB(f) for all ¢ € D(f). Then it will be shown that T(s) > TB(f) for
s e R(f) - D(f).

Some definitions are now in order. Let o be any strategy and = a stop rule.
Let the strategy o° be one that follows ¢ until time ¢ and then switches to the
bold strategy. If r is identically n then o™ will be used with ¢° denoting the
bold strategy. Let a(r), the structure of c, be determined as follows. If 7 is
constant, then a(r) = 0. For an ordinal @ > 0, 7 is said to have structure at
most « if for each f e F the stop rule zf given by ¢f(f;, fos - - ) = =(fs fus fos -+ +)
has structure at most 2 < a. If such an a exists, ¢ is said to be structured and
a(r) is the smallest ordinal for which 7 has structure at most a. All stop rules
are structured (page 20, Dubins and Savage (1965)).

THEOREM 6.1. For basic red-and-black with 0 < w < &, let 0 € D(f). Then
T(¢) = TB(f)-

Proor. The proof will consist of four steps. In Step 1 it is shown that
T(¢") = TB(f). Step 2 shows T(¢") = TB(f) for n=1,2, .... Step 3 shows
T(¢7) = TB(f) for all stop rules. In Step 4 a sequence of stop rules (z,, 7,, - - -)
is constructed so that T(s"») — T(¢), completing the proof.

To begin Step 1, note that there are at most two possible initial stakes for ¢.
One is the bold stake, in which case ¢' = ¢° and T(¢") = TB(f). A second stake
is possible if there exists a positive integer k such that 2-%*+V < f < 2-* and
then the stake is s ='2-*% — f. If this is the initial stake,

T(e") = 1 + [WUQ2"TB(27*) + wU(2f — 279)TB2f — 27")]/U(f)  (by (5.2))
= 1 4 [WFHTB(2) + wwkU(2Ff — 1)TB(2f — 2-%)]/wU2¥f)  (by (2.1))
=1 4 [wk + WkUQ2*f — 1) + WU2Hf — 1)TB2Hf — 1)]/U2%)

(by (5-3))
= k + TB(2*f) (by (5.4) and (2.2))
= TB(f) (by (5.3) -

Step 2 is established by an induction. Assume T'(¢") = T'B(f) for any fortune
fand any o € D(f). Let o"*! be based on ¢ as given in the theorem and let s be
its initial stake. Then,

T(e™) = 1 + WU(f + )T(e""[f + s] + WU(f = )T(e*"'[f — sDI/U(S)
=1+ WU(f + )TB(f + 5) + WU(f — )TB(f — 9)]JU(f)
= TB(f) .



742 STUART KLUGMAN

Step 3 requires that T(¢°) = TB(f) be established for all z. This will be done
by a transfinite induction on the structure of z. Since the structure of = cannot
exceed the cardinality of F X F X ... (page 15, Dubins and Savage (1965)),
the induction will be sufficient to complete this step (Theorem 10.6, Goffman
(1963)).

Let = have structure 0. Then r = n and T(¢°) = TB(f) by Step 2. Now
assume T'(¢7) = TB(f) for all f, all ¢ € D(f), and all = with a(r) < & where « is
an ordinal greater than 0. Take ¢ and f as in the theorem and let = be a stop
rule with a(r) = k. Let 5 be the initial stake of ¢ and note that s is also the
initial stake of ¢ and ¢°e D(f). Then by (5.2), T(¢7) =1 + [wU(f +
)T (e f + s]) + wU(f — 5)T(e°/~*)[ f — s])]/U(f). The inductive hypothe-
sis implies that T(¢*/*)[ f + s]) = TB(f + s) and T(¢e*V~*)[ f — s]) = TB(f — 5)
and then by (5.2), T(¢7) = TB(f).

Begin Step 4 by defining o* = inf{n:f, =0 orf, = 1 or (f;, ---,f,) has 0
g-probability}. If fis a binary rational, then ¢* is a stop rule. Clearly T'(¢*") =
T(s) and then by Step 3, T(s) = TB(f). If f is a binary irrational, there is
exactly one history (fi*, f,*, ---) such that for all n > 0, f,* is a binary ir-

rational and (fi*, ---,f,*) has positive g-probability. Define a sequence of
subsets of F X F X --- by A4, =(fi*, -+, fu*) X FXF X ... for n=1,
2, .... For each n let 7, be a stop rule given by
T,=nh on A,
=r* otherwise.

Theorem 6.1 will be established if it can be shown that T(¢*») — T(s). To
see this let B, = 4, n [f, = 1]. Then,

T(o%) — T(o) = 6(173“”" tdos — ,_tda].

By Lemma 5.2, T(¢) < co and the dominated convergence theorem implies that
{5, tdo — 0. Again apply Lemma 5.2 to write

V5, tdo» = o(A)U(f.*)(n + TB(f.*))
= nw 4+ wU(f,*)TB(f,*)
é nwr + wn+l/w2

and therefore {; fdo*» — 0, completing the proof.

THEOREM 6.2. For basic red-and-black with 0 < w < }, a strategy o is rapidly
optimal if and only if ¢ € D(f).

Proor. Itissufficient to show that if ¢ € R(f) but o ¢ D(f) then T(¢) > TB(f).
This will be done by roughly following the same four steps used in the proof
of Theorem 6.1. .

Step 1 is to show that if the initial stake specified by ¢ is not conserving for dis-
counted subfair red-and-black, then T(¢*) > TB(f). Dubins and Savage (1965)
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characterized all conserving stakes for subfair basic red-and-black. To find
such a stake for fortune f, obtain nonnegative integers i and » such that 2™ <
f< @i+ 1)2=. Then s = min (f — 27", (i + 1)27* — f) is a conserving stake.
Let s be the initial stake specified by ¢. Let i and n be integers used to obtain
s. For s to be not conserving for discounted subfair red-and-black i + 0 and
iff=i2 4 2=V theni+ 1 #2*fork=1,2,...,n.

Step 1 will be established by an induction on n. The smallest value of n for
which a required stake existsisn = 1. Theni=1,}<f< $,s=f—4,and

T(s) = 1 + [WUQ2f — HTBQS — §) + wUR)TBH)I/U(S) (by (5.2))
=1+ [woer—p (1 + 22 ;(j}?gf =2) +wi |fun
, (by (5.4))
=1+ [w* + wahU@f — 2) + wwU(4f — 2)TB(4f — 2) 4+ ww)]/U(f)
: (by (2.2))
> 1 + [wwU@f — 2)(1 4 TB(4f — 2)) + ww]/U(f)
=1+ [WUQRf — 1)TBQ2f — 1)]/U(f) (by (2.1) and (5.3))
= TB(f) (by (5.4)) .
Now assume T(¢') > TB(f) for n = 1,2, ...,k — 1. There are four cases

to consider to show Step 1 holds for n = k.

Casel. i=1,2,...,2% — 1 and f < i27% 4 2-%*Y. The initial stake is
s=f—i2"%and

T(e") = 1 + [WUQf — i2"¥)TBQ2f — i27*%) + wU(i2-*)TB(i2~*)]/U(f) (by (5.2))
=1 4 [WUAf — i2=% V)1 4 TB(4f — i2=*-1)}
+ wwU(@i2- % -1){1 + TB(4f — i2=*=)}]/U(f) (by (2.1) and (5.3))
=1 4 [wUQ2f) + wiwU(4f — i2=*-D)TB(4f — i2=*V)
+ WU(2-*-P)TB(2- )/ U(f)
=1+ [1 4+ {(wU@f — i2=* D) TB(4f — i2-*-Y)
+ WU~ D) T B2~ )} U2S)] | (by (2.1))
=1+ T(s*)
where o* is the strategy available at 2f that uses an initial stake of 2f — 2=~V
and then plays boldly. By the inductive hypothesis, T(¢*) > TB(2f) and thus
T(¢") > 1 + TB(2f) = TB(f).
Case2. i=1,2,...,2¥ i+ 1£2mforall m<k—1;and f = i27% +
2-t+D, The initial stake is s = (/ + 1)27* — f and the argument is identical to
that used in Case 1.

Casg 3. i =21, ...,2F — 1 and f < i27% 4 2-*+D_ The initial stake is
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s =f—i27*and
T(c") = 1 + [wUQRf — i2=*)TBQ2f — i2-%) + wU(i2-*)TB(i2-*)]/U(f) (by (5.2))
=1+ [wUQRf — i27%) + wwU@4f — 1 — 2= *-D)TB@4f — 1 — i2-%-1)
+ wU(@i27%) + wU(@i2-%-P — 1)TB@E2-%* — 1)]JU(f) (by (5.4))

=1 + [U(f) + wUQRf — INT(e*) — 1}]/U(/)
=1+ [w + wUQRf — )T(a%)]/U(f) (by (2.2))

where o* is the strategy available at 2f — 1 that uses an initial stake of 2f —
i2=%*-Y and then plays boldly. By the inductive hypothesis T(s*) = TB(2f — 1).
The inequality is not strict since if i = 2*~, o* is the bold strategy and if i 4
1 — 2% = 2™ for some m < k — 2, then o*e D(f). Then T(¢") =1 + [w +
WURS — DTBf — DJJU(S) = 1 + [w + {TB(f) — WUNIIU(S) = TB(f) +
wU(f) > TB(f).

Case4. i=2¢1 ..., 2" _2and f > i27% 4+ 2-%*+D, The initial stake is s =
(f + 1)27* — fand the argument is identical to that used in Case 3.

Step 2 is to show that T(¢"+*) = T(s") for n = 0. Another induction will be
used for this step. For n = 0, first assume that the initial stake s of ¢ is con-
serving for discounted subfair red-and-black. Step 1 in the proof of Theorem
6.1 shows that T(¢") = T(¢°). If s is not conserving for discounted subfair red-
and-black then T'(¢') > T(s°) by Step 1 of this proof.

To complete the induction assume T(¢6"**) = T(¢") for n =1,2, .-+, k — 1.
Let s be the initial stake of ¢ and write

T(c**") = 1 + [WU(f + $)T(e**'[ f + s]) + wU(f — s)T(e**[f — sDI/U(f)
2 14 [WU(f + )T@*[f + s]) + wU(f — )T(*[f — sDI/U(S)
= T(d*).

For a history (f,f5 ---), let g(fi, fy ---) = inf{n:|f, — f,_,| is not con-
serving for f,_, in discounted subfair red-and-black}. Define the infimum of
the empty set to be co. For a strategy o let .7(g) be the set of stop rules given
by 7o) = {r:v(fi, fo» - +) = 9(fs fo» - - -) for at least one history for which
(fi» - -+ f.) has positive g-probability}. Step 3 is to show that T(¢") > TB(f)
for all 7 € 7(0). This will be done by a transfinite induction on the structure
of r. Let r € 7(s) have stucture 0. Then r = n for some rn and there is at least
one partial history of length less than or equal to n and positive g-probability
that involves a stake not conserving for discounted subfair red-and-black. From
Steps 1 and 2, T(¢™) > TB(f).

Now assume T'(¢%) > TB(f) for all f, all ¢ € R(f) with ¢ ¢ D(f), and all €
7 (0) with a(r) < & where £ is an ordinal greater than 0. Take ¢ and f as in
the theorem and let r € 7 (s) with a(r) = x. Let s be the initial stake of a.
Since s is also the initial stake of ¢ and ¢° € R(f), by (5.2), T(¢") =1 +

WU(f + )T LS + D) + #U(f — )T(o"[f — sDI/U(S)- U o'[f + s] € D(f + )
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and o°[f — s]e D(f — ), then T(s°[f + s]) = TB(f + s5) and T(c*[f — 5]) =
TB(f — s). Since g ¢ D(f), s cannot be conserving for discounted subfair red-
and-black and T'(¢%) > TB(f) by Step 1. If o°[f + 5] ¢ D(f + s) then z[f + 5]
is well defined and [f + s]e Z(s[f + s]). By the inductive hypothesis,
T(o°[f + s]) > TB(f + s). Similarly, if o°[f — s] ¢ D(f — s), then T(¢°[f —
s]) > TB(f — s). If at least one of ¢°[f + s] and ¢°[ f — s] is not optimal for
discounted subfair red-and-black, then T(s%) > 1 + [wU(f + $)TB(f + s) +
wU(f — s)TB(f — 5)]/U(f) = TB(f) with the second inequality following from
Theorem 6.1 if s is conserving for discounted subfair red-and-black and from
Step 1 otherwise.

Define 7* as in Step 4 of the proof of Theorem 6.1. If fis a binary rational,
then t* is a stop rule, t* e 7 (o), and T(¢7") > TB(f). Clearly T(s%") = T(0)
and the proof is completed for this case.

If f is a binary irrational define (f,*,f,*, ---), (t1, 7oy +++), (4, 4,, ---) and
(Bys By, -+ +) as in Step 4 of the proof of Theorem 6.1. There exists an integer
N such that 7, € (o) for all n = N. Then from Step 3, T(s7») > TB(f) for all
n = N. By an argument similar to that used in Step 2, T(¢"») is nondecreasing
in n. It suffices to show that T(¢*») — T(s). Argue as in Step 4 of the proof of
Theorem 6.1 to show {, tds»— 0. Complete the proof by noting that if
T(s) = oo, Theorem 6.2 is trivially true, while if T(s) < oo, the dominated
convergence theorem implies §, ¢ds — 0.
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