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Introduction. The study of characterizations of probability distributions has
had a long history. Indeed, Gauss (1809) proved (under certain restrictions) that
the maximum likelihood estimator of the location parameter of a distribution is
the sample mean if and only if the distribution is normal.

In general, a characterization problem takes the following form: Suppose
that for a random vector X, there is a family .& of distributions such that
A(X)e .7 implies that X has a certain property 52 The characterization
problem is the converse, namely, to show that if the random vector X exhibits
property &, then A(X) e .~ .

There are two ingredients in a characterization problem: the family of dis-
tributions %", and the property . The list of possible families includes the
normal, exponential, gamma, beta, geometric, Poisson, Cauchy, and Wishart
distributions, but the normal distribution receives most of the attention. The
various possible properties cannot be described very succinctly, but the follow-
ing brief topic headings provide some loose indications: identical distributions of
specified functions of X, independence of specified functions of X, convolutions
of the distribution of X, functions of X having specified regression on other
functions of X, functions of X being maximum likelihood estimators (or admis-
sible estimators) of an unknown parameter of the distribution of X.

Although Polya proved an elegant result in 1923 characterizing the normal
distribution by the identical distribution of two linear statistics, characterization
problems did not begin to attract serious attention until 1935 when Paul Lévy
conjectured that if X 4 Y is normal,’ then X and Y are normally distributed,
that characterization problems began to attract some interest. Cramér (1936)
proved Lévy’s conjecture, while Raikov (1937) proved a similar result for the
Poisson distribution. Marcinkiewicz (1939) proved a result related to that of
Polya mentioned above, and Kac (1939) and Bernstein (1941) proved that X + Y
independent of X — Y implies that X and Y are normal. There was a modest
amount of activity in the 1940’s, followed by a rapid growth of activity in the
1950’s.

There have been few expository works covering this material; of import are
the review paper by Lukacs (1956), and the monograph by Lukacs and Laha
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! In the remainder of this review it will be tacitly assumed that all random variables are inde-
pendently distributed.

583

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

d ®
www.jstor.org



584 BOOK REVIEW

(1964). The book under review is the first extensive work on the subject. It is
an outgrowth of a set of lectures originally presented in Russian; the present
volume is a translation (by B. Ramachandran) of the Russian text. We have
not checked the accuracy of the translation. The book does not purport to be
a complete review of the field. As the authors state in the preface, they have
collected together many results and formulated problems which appear to them
to be of interest and importance. As a consequence, some topics and references
that would have been included in a comprehensive review of the field are missing
from the book.

A comment about the bibliography is in order. Because the book is a trans-
lation, the references are listed alphabetically according to_the Cyrillic alphabet.
This leads to a sequence such as Bernstein, Blackwell, Van der Waerden, Weber,
Wolfowitz, Hajek, Giri. In addition, there are some late additions at the end of
the bibliography. This word of caution should help the reader to locate specific
references. Perhaps a more serious deficiency for the historically minded reader
is that the use of Jones [5] rather than Jones (1950) detracts considerably from
trying to follow the chronology of results. ‘The use of years would also have
permitted an easy rearrangement of authors.

The book contains thirteen chapters, plus one chapter of unsolved problems
and two addenda. We now describe these in some detail.

1. Review of principal tools. The mathematical tools needed in some areas
of the field will be alien to many probabilists and statisticians; Chapter 1 con-
tains a welcome review listing some of the mathematical tools used in the book.
The techniques least likely to be known include some basic results of algebraic
geometry and the detailed analytic study of the solutions of certain functional,
integral and differential equations. A functional equation (or variants thereof)
that often arises in characterization problems is ¢,(u + b,v) + -+ + ¢, (u +
b,v) = A(u) + B(v) + P,(u, v), where P, is a polynomial, ¢;,, 4 and B are com-
plex valued functions subject to various regularity conditions, and u, b, and v are
(possibly matrix valued) variables. This equation is considered in some detail.

It was first noticed by Laha (1953) that some characterization results do not
use full independence E exp(itX + isY) = (E expitX)(E expisY), but only (*)
E(Y expitX) = (EY)(E expitX). Further, Y has constant regression on X, i.e.,
E(Y|X) = EY, if and only if (*) holds for all real . A number of techniques
are needed to carry through the arguments after weakening the assumption of
independence to that of constancy of regression. These techniques are discussed
in Chapter 1.

This chapter also contains a straightforward review of facts about character-
istic functions, infinitely divisible laws and related topics. A particularly nice
result proved in detail is Zinger’s theorem on the existence of the moments in
terms of the convergence of the integral {§*[1 — F(ax)]=* dF(x), A > 0.

2. Linear statistics. The second chapter brings up to date the first modern
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characterization result, namely that of P6lya (1923): If Xand Y are independent
identically distributed, have moments of all orders, and are such that X and
aX + bY (a, b # 0) have identical distributions, then X and Y are normal. In
1938 Marcinkiewicz extended this to the same conclusion if aX -+ oY and c¢X +
dY are identically distributed. Now, if X, Y are independent with the same dis-
tribution F, then aX + bY and c¢X + dY are identically distributed for a suitable
choice of a, b, ¢, d if F is any symmetric stable law. Consequently, additional
conditions are needed in order for F to be normal. The main thrust of the re-
search presented here is to extend the result to two linear statistics in any finite
number of summands and to weaken the original moment restrictions.

Readers should be warned that Chapter 2 is the most technically intricate
chapter in the book. It presents Zinger’s simplifications and extensions of
Linnik’s 1953 work on this problem. This work is too complex to be adequately
described in the space of this review, and we give only a sketch of the ideas.

Let X,, X,, - -+, X, be i.i.d., then the identical distribution of Y, = 7 a, X;
and Y, = Y7 b, X, implies that each X, is normal, provided that certain con-
ditions defined in terms of the a;, and b, are satisfied. If W is the log of the
characteristic function of the law of X,, then Y, and Y, have the same distri-
bution if and only if Y2 W(a;t) = ;¢ W(b;t). The essence of the proof is to
introduce a transform of W and to study the properties of W through the be-
haviour of this transform in the complex plane. This leads to a study of the
complex zeros of 6(z) = Y7 (a,* — b;°) in restricted parts of the plane, the results
of which provide a proof of the theorem.

Using very elaborate machinery, Linnik (1953) proved the result stated at the
beginning of the previous paragraph. Zinger (1969) provided considerable sim-
plification of this proof, but even this “simplified” proof contains substantial
difficult analysis. Typical of the work on this problem is the following result
due to Linnik: Suppose max (||, - - -, |a,|) = max (|6, - - -, |b,]); let y be the
largest real zero of ¢(z), and suppose the moment of order y 4 2 of X, is finite,
then X, is normal.

This chapter also has two brief extensions of the theorem characterizing the
normal law by the identical distribution of a pair of linear forms. One extension
is to multivariate distributions, and the other uses a clever duality argument
to obtain a characterization result in terms of certain identically distributed
maxima.

One of the simplest characterizing properties of the normal distribution is the
independence of a pair of linear forms in independent random variables. The
result, that if X, Y are independent random variables such that X + Y and
X — Y are independent, then X and Y are normally distributed, was first essen-
tially proved independently by M. Kac (1939) and S. N. Bernstein (1941). A com-
plete proof of the extension of this characterization result to an arbitrary number
of random variables was first given by V. P. Skitovi¢ (1953), who used the
method of exhaustion of possible cases (perhaps even of author and reader); an
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elegant proof was provided by A. Zinger and Yu. V. Linnik (1955). Various
extensions (to an infinite number of multi-dimensional random variables, etc.)
have since been obtained.

Chapter 3 deals with these topics. Section 3.1 presents the proof by Zinger
and Linnik (without explicit mention of the authors) of the fact that if two
linear forms in a finite number of independent random variables are independent,
then each random variable which appears in both forms is normally distributed.
Section 3.2 deals with multivariate extensions of this result, and Section 3.3 with
countably infinite dimensional linear forms. In Sections 3.4 and 3.5 modifica-
tions to “relativistic” linear statistics and applications to statistical physics are
discussed.

These last two sections contain material which might be particularly interest-
ing to the general reader of the book, since they establish a connection with
areas such as relativistic and molecular physics and cosmology. Unfortunately
there are no precise references to help guide the reader. For example, on page
96 (line 5 from below), the authors mention that the relation between the addi-
tion law for the hyperbolic tangent and Einstein’s relativistic addition of col-
linear velocities was first pointed out by A. Sommerfeld (1969); but the original
reference is omitted. For the convenience of the original Russian edition of the
book, the authors refer to a Russian book on relativity by Fok; the convenience
of readers of the English edition might have been served better by the English
translation of Fok’s book which had existed for some years before the book
under review was written. Actually, the reviewers have been unable to locate
any reference to Sommerfeld in Fok’s book. On the other hand, Henri Arzeli€s,
(1966) gives an excellent historical discussion and the reference to Sommerfeld’s
paper.

Some results (due to Khatri, Kotlarski, Rao), dealing with characterizations
through properties of linear functions, would normally be included in Chapter 3.
These were not available when the original Russian edition went to press, and
are treated in Appendix A.

In 1936, R. C. Geary proved, under the restrictive assumption of the exist-
ence of the moment generating function, that the stochastic independence of the
mean and variance of a random sample from a population implies normality of
the underlying distribution. The restrictions were eliminated by T. Kawata and
H. Sakamoto in 1949, and independently by A. Zinger in 1951. These results
have been extended in several directions to various special cases of the inde-
pendence of a linear and a nonlinear polynomial statistic, of two nonlinear
polynomial statistics, independence of “quasipolynomial” statistics, and finally
independence of pairs of linear forms whose coefficients are random variables.

Chapter 4 deals with the topics listed in the previous paragraph. Section 4.2
is devoted to the independence of the mean and variance of a sample of i.i.d. ran-
dom variables, and to extensions of this problem in which the mean is replaced
by a more general linear form and the variance by a more general quadratic
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form. Sections 4.3 and 4.4 are concerned with the consequences of independ-
ence of “quasipolynomial” statistics in independent (but not necessarily identi-
cally distributed) random variables. A “quasipolynomial” statistic S is a function
with the property that there existsa continuous function ¢ and polynomials p and
g, both of the same degree, such that p(x) < ¢(S(x)) < g(x) for all x.

3. Regression and structural properties. Chapter 5 begins with the result
that if X, ---, X, (n = 3) are i.i.d. with EX, =0 and ECX,|X, — X, ---,
X, — X) = 0, then the X, are normally distributed. The result is then gener-
alized to permit other linear combinations instead of X; — X. A complete
analysis is provided for the case of n = 2. The condition E(X, — aX,| X, +
BX,) = 0 for |f| < 1, and more generally E(Za, X, }Zb,X;) = 0, is a weaken-
ing of the Kac-Bernstein assumption by replacing independence with constant
regression. The proof depends on the solution of the functional equation f(r) =
TI27*[f(B: 1)), where f is the characteristic function of the X;. A final extension
to infinite sums is then provided. In this latter case, the solution of the func-
tional equation (*) f(r) = [I7 [A£B;0)]H 0< B; < 1,0 7y, j=1,2, -+, s
needed, where f is a nonvanishing characteristic function not identically equal
to 1. A first step is to show that if the y; are positive integers, then (*) implies
that f cannot vanish. Once this is proved, it is shown that f is the characteristic
function of a normal law if and only if }}7 7,8, = 1.

Characterizations by the constancy of regression for nonlinear statistics is the
topic of Chapter 6. In 1937, E. J. G. Pitman showed that if X;, - .., X, arei.i.d.
having a gamma distribution, }; X, is independent of every scale-invariant sta-
tistic S(X;, - - -, X,), i.e., for every S such that S(X,, - - -, X,) = S(aX,, - -+, aX,)
for all real @ &= 0. This property is suggestive of a number of characterizations.
The first result proved (by Khatri and Rao (1968)) is that if X;, - - -, X, (n = 3)
are positive random variables (not necessarily identically distributed) with finite
expectations, and if the regression of 3 X; on the vector (X,/X,, - - -, X,/X)) is
constant, then each X; has a gamma distribution with the same scale parameter.
This result is extended in a variety of ways. There is little motivation or dis-
cussion of the development of these results.

Chapter 10 concerns multivariate versions of some results presented in earlier
chapters. For example, let 4 and B be two constant matrices with the property
that no column of A is proportional to any column of B. If X is a p-dimensional
random vector (p = 2) having the representations, X = AU and X = BV, where
U is an r-dimensional random vector and V is an s-dimensional random vector,
then the X,’s have a normal distribution. A discussion of factor analytic models
and other structural equations models is included.

4. Statistical properties. Chapter 7 is entitled “Characterizations of Distri-
butions Through the Properties of Admissibility and Optimality of Certain Es-
timators.” The results in this chapter are different in flavor from the previous
results in the book. The underlying idea is to translate statistical optimality
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properties to properties of constant regression. Suppose that X;, - -+, X, (n = 3)
are independent random variables whose distributions depend on a location pa-
rameter 6, i.e., Pl{X; < x} = Fy(x — 0), j=1, ---,n, and having EX; = 0,
0 < EX? = g < oco. The optimal linear unbiased estimator for § (with quad-
ratic loss function) is L = }; ¢; X;, where ¢; = 0,7/}, 0,7, If we start with a
normal family, then it is well known that L is admissible (in the class, Z/, of
all unbiased estimators of ). The new feature is that if L is admissible in 7/,
then the df’s must be normal. The condition n > 3 is shown to be essential;
the admissibility of L in Z is not a characterizing property of the normal dis-
tribution for n = 2.

Once it is shown that an admissibility condition implies a constancy of re-
gression, there are a myriad of possible extensions. For example, consider a
Gauss-Markov model in which Y, ..., Y, are independent, EY, = 6,,and § =
CB, where 0’ = (0, ---,0,), Cisaknown n X m matrix and § is an unknown
m X 1 vector. Suppose we wish to estimate a’8, where a is prescribed vector.
Let L be that linear combination of the Y; that is the least squares estimator of
@'B. Then under conditions on the rank of C, and using quadratic loss, the ad-
missibility of L in the class of unbiased estimators of @’8 is again a characterizing
property of the normal distribution.

Section 7.8 deals with the case of dependent observations, where an autore-
gressive model is assumed, and provides a very nice extension of the admissibility
result concerning the linear statistic L. In the remainder of the chapter, other
loss functions (e.g., the absolute value) and other families of distributions are
discussed. Some previously unpublished results characterizing families of distri-
butions by means of properties of Bayes estimators are contained in Appendix B.

Chapter 8 contains a straightforward presentation of well-known results about
sufficiency. The material covered includes definitions, the Halmos-Savage ver-
sion of the factorization criterion, and finally Dynkin’s derivation of the
Koopman-Pitman-Darmois result that the only family of distributions with
range independent of the parameter that admits a nontrivial sufficient statistic
is the exponential family. Significant contributions to Dynkin’s treatment were
made by Brown (1964).

The chapter also contains some of the less well-known results on sufficiency.
If location (scale) families admit the sample mean as a sufficient statistic, then
the underlying distribution is normal (gamma).

The final section of Chapter 8 gives a clear, short treatment of Kagan’s no-
tions of sufficient subspaces. At the present time only very simple cases are
well understood, but the notion could lead to a significant generalization of the
exponential families. No mention is made of the work of Dynkin (1961) and
others on characterizations of nonregular families admitting sufficient statistics.

5. Some related and unrelated results. Chapter 11 contains no characteri-
zation results; it is devoted to the study of various properties of functions of
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polynomial statistics from a multivariate normal distribution. Two of the most
useful facts about n-dimensional normal vectors are that they can be related to
n-dimensional vectors with independent standard normal coordinates by linear
transformations, and that the distribution of vectors with independent normal
coordinates with the same variance remains unchanged by orthogonal linear
transformations. Chapter 11 deals with the question of what happens when
linear transformations are replaced by polynomials, rational functions, entire
functions or meromorphic functions. For example, if X and Y are independent
standard normal, then 2XY/(X? + Y?)? and (X* — Y?)/(X*® + Y?)! are independent
standard normal. The authors initiate a classification of such phenomena, but
the problems are far from simple. For example, it is not known if the distri-
bution of a general polynomial of degree 3 in n standard normal variables is
determined by its moments.

The bulk of this chapter is devoted to discussing the converse of the following
proposition: Let X = (X, ---, X,) be a vector of independent and identically
distributed normal random variables, and P and Q be functions of n variables,
such that P(X) and Q(X) are independent. If I is any orthogonal transformation,
then it is immediate that P(XT)) and Q(XT) are independent. In particular, if P
and Q depend on disjoint subsets of the coordinates, they will be independent.
The authors consider the converse of this proposition for the case where P and
Q are polynomials; that is, they try to establish the truth of the conjecture that
every pair of independent polynomial statistics can be “unlinked” in the sense
that there exists an orthogonal transformation I' such that P(XT") and Q(XT') are
functions of disjoint subsets of coordinates in the transformed variables XT'.

The results to date are far from complete, and the methods developed are fairly
complex. The most important cases in which the converse has been verified all
have a symmetry assumption attached to them; although Zinger and Linnik
(1967) have shown that the unlinking conjecture holds for a “large proportion”
of polynomial pairs P and Q. The definition of “large proportion” has to do
with the topological dimension of the spaces of coefficients associated with P and
Q. The proofs make heavy use of the algebraic properties of the variety in the
coefficient space generated by the relations E(P*Q™) — E(P")E(Q™) = 0.

The material of Chapter 12 is different from the major part of the book in
that what are being characterized are sequential estimation plans rather than
distribution functions. The key result is that for estimating the parameter, p, of
a binomial process, a compléte finite sequential plan of size n is completely
determined by the values of the mean stopping time, for any (n 4 1) distinct
values of p. The proofs used in this chapter are similar to the proofs of Girshick,
Mosteller, and Savage (1946) and DeGroot (1959).

6. Miscellaneous characterizations. Chapter 13 contains miscellaneous re-
sults, some of which are deep and complex. Various members of the exponential
family are characterized by the property of having minimum Fisher information
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or minimum entropy, subject to constraints on the expectation of a fixed finite
set of functions. Such properties have been proposed to justify the use of par-
ticular prior distributions in a Bayesian context [e.g., Jaynes (1968)]. In this
context, maximum entropy has been used by Posner (1975) to choose a particu-
lar multivariate distribution with given marginals.

We illustrate the usefulness of Section 13.4 by means of an example. R. A.
Fisher’s approach toward determining the correct number of degrees of freedom
in the chi-squared goodness of fit test for the multinomial distribution was to
use the fact that if n is chosen from a Poisson distribution and then a sample of
size n is drawn by flipping a coin n times, the unconditional number, s, of heads
has a Poisson distribution and is independent of the number of tails. One easily
sees that if the Poisson distribution is replaced by the' geometric distribution,
then s has a geometric distribution. Unfortunately, in this case s is not inde-
pendent of the number of tails. Theorem 13.4.4 shows that if s is independent
of the number of tails, then » has a Poisson distribution. This shows that useful
variations of Fisher’s result are not possible.

Section 13.5 deals with the problem of characterizing families of distributions
by means of the distributions of sample statistics. The problem is formulated
more precisely as follows: Let .&” be a family of probability laws, and let
X,, .-+, X, be independent random variables (or vectors) all having the same
distribution Pe %" Let T be a function of (X,, - - -, X,) with the property that
its distribution F, is the same for all P e .27 then what pairs (&, T) do there
exist with the property that 7 has the distribution F_, only if the common dis-
tribution of the X; is an element of &7 ? For each of the three location-and-scale
families generated by the standard normal, the standard exponential and the
standard uniform, there exists a characterizing statistic whose distribution is
uniform over an appropriate surface.

When several samples are available which are known to have come from the
same family (though perhaps not the same distribution), tests of uniformity of
distribution can then be used to identify the family. In the case of the normal
family, the surface of uniformity is a sphere, and the procedure for testing for
uniformity is relatively simple. On the other hand, the statistical problem is
more difficult for the exponential and uniform distributions. A discussion of
this problem is given by Giné (1975).

7. Scope for further work. Whereas most work in the area of characteriza-
tion of distributions deals with the precise characterization of distributions, from
the practical point of view it is often adequate to know whether a particular
property characterizes a distribution sufficiently closely. To make this notion
precise, let us consider the Lévy-Cramér theorem, which states that if X, Y are
independent and X + Y = Z is normal, then X and Y are normal. Now, we
ask ourselves: What can be said about the distributions of X, Y if Z is e-normal
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in the sense that its cdf is within a distance ¢ of the standard normal cdf (distance
being measured in the sup norm)?

The short Chapter 9 deals with such questions; its shortness is due to the
paucity of work on such problems, which in turn is due to the fact that most
of these questions lead immediately to quite difficult problems.

In the opinion of the reviewers, this area provides opportunity for new and
worthwhile contributions to the field of characterization. These would stem
from the obverse approach to the problem: whereas the attitude of Chapter 9 is
to regard a characterization as relatively “stable” if a small perturbation in the
characterizing property leads to only a small variation in the admissible distri-
bution, one could regard a characterizing property as being relatively “precise”
if a small perturbation in it permits a large class of underlying distributions. It
appears clear that powerful mathematical tools will be required to obtain results
in this general area.

Chapter 14 lists unsolved problems which are of interest and importance.

8. Conclusion. To summarize, there is a wealth of information in this book,
some of which was previously unavailable in English. The writing tends to be
in the theorem-proof format. Although some discussions are provided, they do
not suffice for the general occasional reader, and the novice will not find the
book immediately readable. However, the monograph was written for the re-
searcher in the field, for whom the book will be exceedingly useful. The sheer
amount of material covered by the authors makes this an essential and indis-
pensable book to the specialist.
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