A PARADOX IN ADMISSIBILITY¹

BY SHERALI MAVJIBHAI MAKANI

University of California, Berkeley

Let X_1 , X_2 be two independent variables with means θ_1 , θ_2 . Then two examples are given (one binomial, one normal) in which an estimator, depending only on X_2 is admissible for estimating θ_1 .

The purpose of this note is to exhibit the following phenomenon. Let X_1 , X_2 be two independent random variables (normal, binomial, Poisson) with means θ_1 , θ_2 . Then there may exist a nontrivial estimator $\delta(X_2)$, not depending on X_1 , which is admissible for estimating θ_1 . In Example 1 below the distributions are binomial, the loss function is squared error, and the estimator $\delta(X_2)$ is linear in X_2 . In Example 2, which is concerned with normal distributions, the loss function is quite general.

Example 1. Let X_i $(i = 1, \dots, k)$ be independent binomial random variables corresponding to n_i trials and with success probability p_i .

Then a necessary and sufficient condition for the linear estimator

(1)
$$\delta(X_1, \dots, X_k) = \sum_{i=1}^k a_i \frac{X_i}{n_i} + c$$

to be admissible for p_1 , when the loss function is squared error, is that either

(2)
$$0 \le a_1 < 1, \quad 0 \le c \le 1$$
 and $0 \le \sum_{i=2}^k a_i + c \le 1, \quad 0 \le \sum_{i=1}^k a_i + c \le 1$

or

(3)
$$a_1 = 1$$
 and $a_2 = \cdots = a_k = c = 0$.

This is easy to prove by the method of Cohen (1965) and Johnson (1971); a detailed proof is given in [4].

If we now put $a_1 = 0$ in (2), we find that a linear estimator (1) of p_1 which is a function only of X_2, \dots, X_k is admissible for estimating p_1 provided $0 \le c \le 1$ and a_2, \dots, a_k satisfy

$$0 \leq \sum_{i=2}^k a_i + c \leq 1.$$

A similar result holds in the Poisson case. On the other hand, if X_i ($i = 1, \dots, k$) are independent normal variables with mean μ_i and known variance σ_i^2 , a necessary and sufficient condition for

$$\delta(X_1, \dots, X_k) = \sum_{i=1}^k a_i X_i + c$$

Received October 1976.

AMS 1970 subject classifications. Primary 62F10; Secondary 62C15.

Key words and phrases. Paradox, admissibility, normal distributions, binomial, Poisson.

www.jstor.org

¹ This paper was prepared with the partial support of National Science Foundation Grants GP-5059, GP-7454 and GP-3101X. The paper is part of the author's thesis [4].

to be admissible for estimating μ_1 with squared error loss is that either

(6)
$$\sigma_1^2 a_1(a_1 - 1) + \sum_{i=2}^k \sigma_i^2 a_i^2 \le 0$$
 and $a_1 \ne 0$

or

(7)
$$a_1 = 1$$
, $a_i = 0$ for $i > 1$ and $c = 0$.

This follows easily from the results of Cohen (1965). Hence no nonconstant linear function of X_2, \dots, X_k is admissible for estimating μ_1 .

However, even in the normal case the paradox continues to exist when the restriction to linear estimators is dropped. This is shown by the following example communicated by L. D. Brown.

Example 2. Let X_1 , X_2 be independent normal random variables with unknown means μ_1 and μ_2 and known variances σ_i^2 . Let $L((\mu_1, \mu_2), \delta)$ be any loss function satisfying $L((\mu_1, \mu_2), \delta) = 0$ for $\delta = \mu_1$, and > 0 for $\delta \neq \mu_1$. (Of course, the usual quadratic loss $(\delta - \mu_1)^2$ for estimating μ_1 satisfies this condition.) Consider the estimator $\delta(x_1, x_2) = \operatorname{sgn} x_2$. Then this estimator is an admissible estimator for μ_1 , even though it depends only on x_2 .

PROOF. For convenience take $\sigma_i^2 \equiv 1$. Let δ' be any estimator such that $R((\mu_1, \mu_2), \delta') \leq R((\mu_1, \mu_2), \delta)$. Let $r(\mu_2) = \int (\delta'(x_1, \mu_2) - 1)^2 \phi(x_1 - 1) dx_1 \geq 0$. Then, for $\mu_2 > 0$,

(8)
$$0 \ge R((1, \mu_2), \delta') - R((1, \mu_2), \delta)$$
$$\ge \int_0^\infty r(x_2)\phi(x_2 - \mu_2) dx_2 - \int_{-\infty}^0 4\phi(x_2 - \mu_2) dx_2$$

since $(\delta(x_1, x_2) - 1)^2 = 0$ for $x_2 > 0$ and $(\delta - 1)^2 \le 4$. Well-known properties of exponential families yield that

$$\lim_{\mu_2 \to \infty} \frac{\int_0^\infty r(x_2) \phi(x_2 - \mu_2) \, dx_2}{\int_{-\infty}^0 \phi(x_2 - \mu_2) \, dx_2} \to \infty$$

unless $r(x_2) = 0$ for almost all $x_2 > 0$. (See, e.g., Theorem 3 of Birnbaum (1955).) Now, $r(\cdot)$ must satisfy this latter condition since (8) is equivalent to $\int_0^\infty r(x_2)\phi(x_2 - \mu_2) dx_2/\int_{-\infty}^0 \phi(x_2 - \mu_2) dx_2 \le 4$.

The symmetric argument yields that $r(x_2) = 0$ for $x_2 \le 0$. Hence $\delta' = \delta$ a.e. This implies that δ is admissible, as claimed.

Acknowledgment. I wish to express my deepest gratitude to Professor Erich Lehmann who gave generous help and guidance during the course of this work.

REFERENCES

- [1] Birnbaum, A. (1955). Characterization of complete classes of tests of some multiparametric hypotheses with applications to likelihood ratio tests. *Ann. Math. Statist.* 26 21-36.
- [2] COHEN, ARTHUR (1965). Estimates of linear combinations of the parameters in the mean vector of a multivariate distribution. *Ann. Math. Statist.* 36 78-87.
- [3] JOHNSON, BRUCE McK. (1971). On the admissible estimators for certain fixed sample binomial problems. *Ann. Math. Statist.* **42** 1579-1587.

[4] Makani, Sherali Mavjibhai (1972). Admissibility of linear functions for estimating sums and differences of exponential parameters. Ph.D. thesis, Univ. of California, Berkeley.

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720