The Annals of Statistics
1977, Vol. 5, No. 3, 544-546

A PARADOX IN ADMISSIBILITY"

BY SHERALI MAVJIBHAI MAKANI

University of California, Berkeley

Let Xi, X; be two independent variables with means 1, 6. Then two
examples are given (one binomial, one normal) in which an estimator, de-
pending only on X; is admissible for estimating 6;.

The purpose of this note is to exhibit the following phenomenon. Let X, X,
be two independent random variables (normal, binomial, Poisson) with means
0., 0,. Then there may exist a nontrivial estimator d(X,), not depending on X,
which is admissible for estimating 6,. In Example 1 below the distributions are
binomial, the loss function is squared error, and the estimator d(X,) is linear in
X,. In Example 2, which is concerned with normal distributions, the loss func-
tion is quite general.

ExampLE 1. Let X, (i = 1, - - -, k) be independent binomial random variables

corresponding to », trials and with success probability p,.
Then a necessary and sufficient condition for the linear estimator

(1) 3(Xpr -y X)) = {F=1ain£i+c
to be admissible for p,, when the loss function is squared error, is that either
() 0<ag <1, 0cg 1 and
0< Sh,a+e<l, 0<3h,afc<1
or
3) a=1 and 4= -.--=a,=c=0.

This is easy to prove by the method of Cohen (1965) and Johnson (1971); a
detailed proof is given in [4].

If we now put @, = 0 in (2), we find that a linear estimator (1) of p, which is
a function only of X,, - - -, X, is admissible for estimating p, provided 0 < ¢ < 1
and a,, - -, g, satisfy
(4) 0§Zi“=2ai+c§l~

A similar result holds in the Poisson case. On the other hand, if X; (i =
1, ..., k) are independent normal variables with mean z, and Known variance
o2, a necessary and sufficient condition for

(5) Xy - X)) = Tha, X, + ¢
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to be admissible for estimating y, with squared error loss is that either

(6) olaa, — 1) + Xr,0%a" <0 and a+0
or
@) a=1, a, =0 for i>1 and c=0.

This follows easily from the results of Cohen (1965). Hence no nonconstant
linear function of X,, - .., X, is admissible for estimating u,.

However, even in the normal case the paradox continues to exist when the
restriction to linear estimators is dropped. This is shown by the following ex-
ample communicated by L. D. Brown.

ExAMPLE 2. Let X, X, be independent normal random variables with unknown
means g, and g, and known variances ¢,.>. Let L((#, #,), 0) be any loss function
satisfying L((x, s), ) = 0 for § = p,, and > 0 for 6 # p,. (Of course, the
usual quadratic loss (3 — g, )* for estimating s, satisfies this condition.) Consider
the estimator 6(x;, x,) = sgn x,. Then this estimator is an admissible estimator
for y,, even though it depends only on x,.

Proor. For convenience take ¢” = 1. Let ¢’ be any estimator such that
R((t11 12)5 9") = R((p12» t1a)> 0).  Let r(pg) = § (0'(xy5 p12) — 1)°(x, — 1) dx, = 0.
Then, for p, > 0,

(8) 0 = R((L, 1), ) — R((L, ), )

= (& r(x)p(xs — p) dxy — (Lo 4h(xy — p5) dx,
since (6(x,, x;) — 1)> = 0 for x, > 0 and (6 — 1)> < 4. Well-known properties
of exponential families yield that
lim, §0° r(x,)P(xs — 13) dx, — oo
e L B(Xy — p5) dx,

unless r(x,) = O foralmostall x, > 0. (See, e.g., Theorem 3 of Birnbaum (1955).)
Now, r(+) must satisfy this latter condition since (8) is equivalent to {5 r(x,)¢(x, —

) dxof (% P(xs — pta) dxy < 4.
The symmetric argument yields that r(x,) = 0 for x, < 0. Hence ¢’ = 0 a.e.

This implies that ¢ is admissible, as claimed.
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