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ROBUST LOCATION ESTIMATES!

By RupoLF BERAN
University of California at Berkeley

Measures of location differentiable at every density in the Hellinger
metric are constructed in this paper. Differentiability entitles these loca-
tion functionals to the label ‘“‘robust,” even though their influence curves
need not be bounded and continuous. The latter properties are, in fact,
associated with functionals differentiable in the Prokhorov metric. A
Hellinger metric concept of minimax robustness of a location measure at
a density shape f is developed. Asymptotically optimal estimators are
found for minimax robust location measures. Since, at f, their asymptotic
variance equals the reciprocal of Fisher information, asymptotic efficiency
at f and robustness near f prove compatible.

1. Introduction. In his fundamental paper on M-estimators, Huber (1964)
demonstrated the existence of an M-estimator of location with minimax asymp-
totic variance over a specified neighbourhood of a given distribution shape.
Although suggestive, the minimax property does not strictly imply robustness
of the corresponding M-estimator: uniform convergence in distribution over the
specified neighbourhood was not established and the bias caused by an asym-
metric data distribution was not fully analyzed.

Hampel (1968, 1974) assessed robustness of an estimator by viewing it as a
functional of the empirical cdf and examining the behaviour of the first Volterra
derivative of this functional at the ideal model cdf; this approach generated the
influence curve concept. Hampel argued, heuristically, that the influence curve
should have certain properties, such as boundedness and continuity, to ensure
robustness of the corresponding functional and estimator. This idea led him to
the construction of M-estimators which sacrifice some asymptotic precision in
return for qualitative robustness.

The first to consider an estimator as a functional of the empirical cdf and
systematically draw conclusions from the nature of the functional was von Mises
(1947). His paper established a link between the asymptotic distribution of an
estimator and the Volterra derivatives of the corresponding functional. The
well-known relation between the influence curve of an M, L or R location esti-
mator and its asymptotic variance can be viewed as a special case of von Mises’
idea (see Huber (1972) for details).

Takeuchi (1967) was the first to study robustness from a functional viewpoint.
His unpublished paper included the following ideas, presented heuristically:
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characterize those functionals of the data cdf which correspond to location
parameters, scale parameters, etc.; restrict attention to those functions which
are continuous and Fréchet differentiable with respect to some metric on the
space of all cdf’s; study the sensitivity of functionals to small changes in the
underlying distribution through the Fréchet derivatives and identify as robust
those functionals which appear most insensitive to changes in distribution; esti-
mate parameters by the value of the corresponding functional of the empirical
cdf. Unresolved questions in Takeuchi’s paper were: choice of topology and
precise definition of the Fréchet derivative; clarifying what is meant by an op-
timally robust functional; construction of functionals with specified derivative;
justification for the estimators used.

A further development of robustness ideas related to Takeuchi’s and Hampel’s
work was carried out by Bickel and Lehmann (1975). Their paper systematically
studied location functionals of various types; in particular it identified sub-classes
of M, L and R functionals which are Prokhorov continuous and have estimators
with globally well-behaved asymptotic variance. Differentiability of functionals
was not considered but it was noted that any theory of optimal estimation for
location functionals must take into account the existence of super-efficient
estimators.

A basic question remains: Is it possible, in general, to reconcile the require-
ment that a location estimator be robust in a neighbourhood of a specified dis-
tribution shape with the requirement that the estimator be asymptotically efficient
at the given distribution shape? The robustness papers cited above strongly sug-
gest that the answer is negative if attention is restricted to M, L or R estimators
and if Prokhorov continuity or bounded continuous influence curve is the robust-
ness criterion; the best known instances occur when the ideal model distribution
is normal or asymmetric.

The present paper shows (subject to technicalities) that robustness and asymp-
totic efficiency of a location estimator are compatible requirements. The result
is established by introducing a new class of location estimators and by using a
slightly weaker concept of robustness (which, however, is still strong enough
to deal with common models of data contamination). Other results include a
minimax concept of optimally robust location functionals and a theory of as-
ymptotically optimal estimation for such functionals.

The specific statistical model considered is as follows. We observe random
variables X}, X,, - - -, X, and assume that, apart from possible data contamination,
the random variables are i.i.d. with density f which is known up to translation.
We wish to construct a location measure which is translation equivariant, co-
incides in value with a prescribed location functional (such as mean or a quantile)
if the data density is actually some translation of f, is quantitatively insensitive
to small perturbations of f (data contamination), and possesses a robust and ef-
ficient estimator. Admittedly, this model is too simple to be of much practical
use—for that purpose it would be preferable to consider a location-scale model,
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at least. However, the pure location model provides the fewest technical ob-
stacles to theoretical insight. Extensions to more complex models are possible
and will be treated elsewhere. The assumption of a data density is not so re-
strictive as it might appear; although we shall assume densities with respect to
Lebesgue measure, other choices of measure are possible in the theory.

Formally, let .7~ denote the set of all densities defined with respect to Lebesgue
measure on the real line. For any function r whose domain is the real line, let
r « h denote the translation of r defined by (r x h)(x) = r(x — h). A real-valued
functional T defined on .7~ will be called a measure of location (or location func-
tional) if it is equivariant under arbitrary location shifts:

(1.1) T(g + by = T(g) + h

for all ge .7 and all real 2. Our first goal is to identify those location func-
tionals which are continuous and differentiable in a suitable topology at the
model density f and its translations.

2. Differentiable functionals. Let ||<|| and (., .} denote, respectively, the
usual norm and inner product in L,. If f and g belong to .77, the Hellinger
distance between f and g is defined as || f* — g#||. Convergence in the Hellinger
metric clearly implies convergence in the Kolmogorov and Prokhorov metrics,
but the converse is not true. We will use the Hellinger metric in discussing
continuity and differentiability of location measures for three main reasons.
First, differentiability in the Hellinger metric is relatively easy to check for spe-
cific functionals. Secondly, the Hellinger metric underlies substantial portions
of classical large sample estimation theory. It is not surprising, therefore, that
Hellinger differentiable functionals prove to have an accessible asymptotic esti-
mation theory. Thirdly, the Hellinger metric makes possible and useful a minimax
robustness concept (Theorem 5) and the reconciliation of estimator robustness

with estimator efficiency.

DEFINITION. A real-valued functional T defined on .7 is said to be differen-
tiable at g € 7~ if there exists a function p, € L,, depending on both g and T,
such that

(2.1) lim, ... [|9.} — ¢*|17[7(9,) — T(9) — {p,, 9.} — 91)] =0
for every sequence of densities {g,} converging to g in the Hellinger topology.

The function p, is called the Fréchet derivative of T at g with respect to the
Hellinger metric (see Luenberger (1969) for more details on Fréchet derivatives).
It is easily seen that the property (2.1) does not define p, uniquely; the function
p, + agtwillalso work in (2.1) for arbitrary choice of real «. To avoid ambiguity
and simplify later formulae, we will construct the derivative p, to be orthogonal
to gi. Under this convention, the function p,/(2¢?) coincides with Takeuchi’s
derivative or Hampel’s influence curve when all of these exist. It is clear from
(2.1) that differentiability implies continuity in the Hellinger metric.
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For arbitrary g, and g in .77, we have, by projection, the representation
(2.2) g,t = cos (0,)g* + sin (4,)d,, ,
where cos (6,) = <g,}, g*), 0, €[0,7/2], ||0,|| = 1 and (g%, 6,» = 0. The follow-
ing is immediate:

THEOREM 1. A functional T is differentiable at g if and only if there exists p, € L,
depending upon g and T such that for every sequence {0,,: 0, — 0,0, € [0, n/2]} and
every sequence {9, ||0,|| = 1,<g%,d,) = 0}

(2.3) lim, ., 0,7 7(g,) — T(9) — 0,{p,,0,>] =0,
where g, is defined through (2.2).

A location functional 7 will be called robust at ¢ if it is differentiable at g,
and therefore at all translations of g. Since differentiability implies continuity,
the robustness label seems justified. Moreover, the local linear approximation
entailed by differentiability makes possible quantitative comparisons of robust-
ness among different location functionals (cf. Section 3).

Analogous definitions of differentiability and robustness can of course be made
using other metrics, such as the L, or Prokhorov metrics. However, the class
of functionals differentiable in the Hellinger metric is substantially larger than
the differentiable classes generated by the other metrics; this fact is essential to
the reconciliation of robustness with asymptotic efficiency and to the statement
of Theorem 5. Though less restrictive as a robustness concept, Hellinger metric
differentiability can handle simple data contamination models, such as the mix-
ture model. Indeed, if g,(x) = (1 — a)f(x) + ak(x) for f, he &% and a ¢[0, 1],
then by Vitali’s theorem, lim,_, ||g,} — f?|| = 0 i.e., a small mixing fraction «
corresponds to a small perturbation of f in the Hellinger metric.

THEOREM 2. Let T be a measure of location differentiable at g. Then
(i) T is differentiable at {g x h: he R'} with p,,, = p, * h.
(i) If g is absolutely continuous and ¢'[g* € Ly, then {p,, —9'[(29%)) = 1.

Proor. Let{g, € .7} converge to g in the Hellinger metric. Since 7(g, x k) —
T(g + h) equals T(g,) — T(g) for all real 4 and since {p,, 3, equals {p, * h, 3, x h),
conclusion (i) follows from Theorem 1 and (2.2).

Under the assumptions of (ii), a standard argument shows that

(2.4) lim,_, ||h7'[g% « h — ¢*] + ¢'/(29%)|| = O,
which implies
(2.5) lim,_, (o, £ g% x b — g*]> = {o,, —9'/(29%)) -

Conclusion (ii) follows from the fact that A='[T(g x h) — T(g)] = 1, from dif-
ferentiability of T, and from (2.5).

Also of interest is the question converse to Theorem 2: given a density f and
a function p ¢ L, which is orthogonal to f* and satisfies either (o, —f"/(2f?)) = 1
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or o', ft) = 1, according to which assumptions are preferred, does there exist
a location functional differentiable at f such that p, = p? The answer proves
to be affirmative; moreover, the construction yields a functional which is dif-
ferentiable at all ge.77. One plausible approach is to consider the possible
derivatives at f of the usual M, L and R location functionals. Unfortunately these
functionals solve our converse problem only for restricted choices of p € L,. For
example, an M-functional cannot have derivative p at f unless the function p/f*
is uniformly bounded. To obtain an answer for more general p, we introduce
a new class of location measures.

Let T, be any location functional which is differentiable at every density g € .7~
(cf. Theorem 4 for one such class of functionals) and define a functional T by

(2.6) I(9) = To9) + § p(N)gix + To(9) — To(/)] dx,
for every ge .77, It is evident that T is a location functional and that T(f) =
Ty(f) since p is assumed orthogonal to f4.

THEOREM 3. Suppose that p € L, is orthogonal to f* and is absolutely continuous
with derivative o' € L, which satisfies (o', f*> = 1. Suppose that T, is a location
functional differentiable at g with derivative p, ,. Then

(i) T defined by (2.6) is a location functional differentiable at g with derivative
0(x) = [1 = § 0" (NG}t + To(9) — To(f)) dt]oy,o(x)
(2.7) + o(x — To(9) + T(f))
— [V o(t = To(g) + To(/))gH(r) dr]gi(x) .
(ii) In particular o, = p.
Proor. Let {g,} be defined as in (2.2), with § — 0 as n — oo and {4, } arbitrary

apart from [|6,|| = 1. Write D, for Ty(g,) — Ty(f) and D for T(g) — Ty(f). By
assumption,

(2-8) D, =D = T9.) — Ty(9) = 0.p0,4> 3:) + 0(0,) -
From the assumptions on p,
(2.9) fimy o |[i=p « & — p) + /|| = 0.

It follows from (2.8) and (2.9) that
§ p(x)0,(x + D,) dx
= <05 (0,) § p(x)g*(x + D,) dx + sin (6,) | p(x)d,(x + D,) dx
(2.10) = | p(x)g}x + D) dx — (D, — D) § p'(x)g*(x + D) dx
+ 0, § p(x)0,(x + D)dx + o(0,)
= { p(X)g*x + D) dx — 0, § py,(x)3,(x) dx § o'(t)g¥(t + D) dt
+ 0,5 o(x — D)o, (x)dx + o(0,) .
Hence 7(g,) = T(9) + 0.{0,, 9,y + 0(8,), with p, defined by (2.7); note that
o, is orthogonal to gt.
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If g = f, the first and third terms in (2.7) vanish under the assumptions on

o, proving (ii). :
Initial location measures 7, differentiable at every density g € .7~ can be found
within the class of Huber’s M-functionals. Define 7, implicitly through the

equation
(2.11) Volx — Ty(9)]g(x) dx = 0.

THEOREM 4. Suppose that the function ¢ is strictly monotone and bounded,
lim, ., ¢(x) > 0, lim,_,_,, ¢(x) < O, and ¢ has a continuous bounded derivative ¢'.

Then the location functional T, defined by (2.11) is differentiable at every g € .7~ with

derivative
(2.12) 00,(x) = —221* = T(9)19}(x)

| ¢'Lx — Tg)lo(x) dx -

Proor. For fixed g, H,(z) = { ¢(x — z)g(x) dx is a continuous, bounded, strictly
monotone function of z, with lim,_, H,(z) < 0, lim,_,_,, H,(z) > 0. Hence, Ty(g)
is well defined by (2.11) for all ge 7~. If g, — g in the Hellinger topology,
then (2.11) and boundedness of ¢ imply that

lim, ., § ¢[x — Ty(9,)]9(x)dx =0, i.e., lim,_ ., H[T(9,)] = H[T(9)]-

Since H,~" is continuous the functional T, is continuous at every g € .7
Now

(2.13) 0= §g[x — Ty(g,)]gn(x) dx
=V glx — To(9)]9u(x) dx — [Ty(9,) — To(9)] § ¢'(x — &,)9.(x) dx,

where &, lies between Ty(g,) and T(g) and hence converges to T,(g) as n — co.
Since

(2.14)  §Ilx — To(9)]9.(x) dx = 20, § $[x — T(9)]g*(x)3,(x) dx + 0(0,?) ,
in view of (2.11) and (2.2), and

(2.15) §9/(x — £,)9.(x) dx = § ¢'(x — £,)g(x) dx + O(0,)

and § ¢'(x — z)g(x) dx > O for all real z, the theorem follows from (2.13).

REMARKS. Many well-known functions ¢ fulfill the requirements of Theorem
4: for instance, ¢(x) = arctan (x).

If ¢ is assumed to have a bounded second derivative, the conclusions of The-
orem 4 can be strengthened to

(2.16) Ty(9,) = Ty(9) + 0,{po, 0,y + O(F,7) .

Similarly, if o’ is absolutely continuous with p” € L, and if the preliminary loca-
tion functional 7, satisfies (2.16), then the remainder term in Theorem 3 is also
0(0,%. This fact will be used in Section 5.

An argument similar to the proof of Theorem 4 establishes Hellinger metric
differentiability of the median functional at every density g which is continuous
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and positive at its median. The derivative at g can still be expressed in a form
resembling (2.12) by letting 7, denote the median functional, setting ¢(x) =
sgn (x), and replacing the denominator with 2g[T(g)]. If g has a finite deriva-
tive at its median, then (2.16) also holds.

It can be shown readily that the mean functional is nowhere Hellinger dif-
ferentiable or continuous. This remains true even when attention is restricted
to those densities that have a finite mean. Thus the boundedness assumption
on ¢ in Theorem 4 cannot be abandoned.

3. Minimax location functionals. Consider anew the estimation of location
problem described in the introduction. If the effect of data contamination is
represented by a small perturbation (Hellinger metric) in the expected density
shape f, it is reasonable for the sake of robustness to restrict attention to those
location functionals which are at least continuous at f and its translations. If
differentiability is postulated, quantitative comparisons of robustness at / become
possible.

Indeed, suppose T, and 7, are any two location measures. Then the functional
T,* defined by T,*(9) = Ty(9) + [T\(f) — Tu(f)] for all g € 7 is also a location
measure and coincides in value with 7, at all translations of f. Differentiability
of T, implies the same for T,* and the derivatives coincide. Thus, in principle,
there exist a vast number of location measures which coincide in value at all
translations of f but have different derivatives at these points. The robustness
of any particular location measure belonging to this multitude depends upon
the behavior of the linear term in the definition of a differentiable functional.

The situation described can be viewed as a zero-sum game between the statis-
tician and nature with payoff function L(p, d) = [{p, )|. The quantity 26L(p, J)
is a first order approximation to the change |T(g) — T(f)| that occurs in the value
of T when f is perturbed, in “direction” 4, into the density g defined by g#(x) =
cos (0)f#(x) + sin (6)6(x); it is assumed that T is differentiable at f with deriva-
tive p and that & > Oissmall. Toachieve quantitative robustness, the statistician
attempts to minimize L(p, d) by choice of derivative p, subject to the constraints
satisfied by the derivative at f of a location functional: pe L,, p | f*, p,
—f'/(2f*)» = 1. Nature, assumed malevolent, seeks to maximize the payoff by
choice of perturbation “direction” 9, subject to the constraints ||d]| = 1 and
o | f* Fortunately for our analysis, the game has a saddle point in pure
strategies.

THEOREM 5. Suppose that f is absolutely continuous with finite Fisher information
Kf) = /" f7HP p € Ly, oo =f7(2fH)) = 1,0 L f*and ||]| = 1. Then

3.1 max, min, |{p, )| = min, max, [{p, 6)| = [{0,, 0,)| ,
where
(3-2) py = =27 (f)f" [

b=~
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ProoF. Since max, min, |[{p, d)| < min, max, [{p, d)|, it suffices to prove the
reverse inequality. By the Cauchy-Schwarz inequality, max, [{p, d)| = ||o||,
the maximizing choice of § being ||o||~'p. Because of the constraints on it, p
may be represented in the form p = p, + o, where p, is defined in (3.2) and
o € L, is orthogonal to both p, and fi. Hence

(3.3) min, max, [(p, 3| = min, [|o, + || = ||ool| = 2174(/) -
On the other hand, for d, defined in (3.2)
(3-4) max, min, [<o, 5)| = min, [, )| = 2I7¥(f) ,

the last step using the equality constraint on p. The desired inequality and
therefore the theorem follow from (3.3) and (3.4). Evidently, (o,, g,) is a saddle
point for the game.

The influence curve that corresponds to g, is ¢, = —I7'(f)f’f~*. Unless ¢,
is uniformly bounded, there does not exist an M-functional that has derivative
0, at f; the M-functional having ¢, as its score function is not even continuous
in the Hellinger topology when ¢, is unbounded, hence is not robust. A well-
known example occurs when f is N(0, 1) so that p,(x) = 2(27)~*x exp(—x*/4)
and ¢,(x) = x. However, in this example, the construction of Theorems 3 and
4 does yield a location functional having derivative p, at the N(0, 1) density.
This functional is minimax robust at all translations of the N(0, 1).

4. Asymptotically optimal estimators. Let X;, X,, - .- be a sequence of i.i.d.
random variables each distributed according to density g € 7. Let T be a loca-
tion functional differentiable at g with derivative po,. We pose the question: how
well can T(g) be estimated on the basis of the sample (X;, X,, - -+, X,)? To
exclude pathological super-efficient estimators (cf. Bickel and Lehmann (1975)
regarding the existence of such), it is necessary to impose some regularity as-
sumptions upon the class of estimators considered. Theorem 6 in this section
provides an asymptotic answer to our question under restrictions on the esti-
mators which are consistent with the goal of robustness. This theorem is an
extension of Hajek’s (1970) representation for limiting distributions of regular
estimators in parametric families of distributions.

Let <7(g, B) denote the set of all sequences of densities {g,} such that
(4.1) lim, . [|n}(g.t — g%) — Bl =0,
where S e L, and g € .. Note that (4.1) implies that 8 is orthogonal to g*. Let
Z(g) denote the union over § of all sets {Z7(g, 8): fe L, 8 L g}}. Let T, be
any estimator of the location measure T which is regular at g in the sense that,
for every sequence {g,} € €1(g) and for (X,, X,, - - -, X,) independent and identi-
cally distributed with density g,, the distribution of n¥[T, — T(g,)] converges
weakly to a distribution <(g) that depends only on g and not upon the particular
sequence {g,}. This assumption excludes super-efficient estimators and is, in
fact, a robustness property because it entails lim,_,, T(g,) = T(g) for every se-
quence of densities {g,} € Z(g). Indeed T, — T(g) — ,0 under g, T, —T(g,) —»0
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under every sequence {g,}€ &(9) and the density sequences {[]7, 9.(x.)},
{I17-: 9(x;)} are contiguous, as can be verified with the aid of (4.3) below.

THEOREM 6. Suppose that T is differentiable at g with derivative p, and T, is an
estimator regular at g. Then <7(g) can be represented as the convolution of a N(0,
4= |p,||*) distribution with Z,(g), a distribution depending only upon g.

Thus, for no regular estimator T, can /(g) be less dispersed than N(O,
4-Y|o,|[). It is not immediately clear whether the distribution & (g) can be
made degenerate at zero by suitable choice of regular 7,. However, in Section
5, we shall see that this is the case, at least under supplementary assumptions.

Let L, be a random variable defined by

(4.2) L, = 2log {[Ii= [9.4(X0)/g*(X) T}
whenever (4.2) is finite. The following result is needed for the proof of Theo-
rem 6.

LemMA. Let {g,} be a sequence of densities such that (4.1) holds for some B ¢ L,.
Then for every ¢ > 0, '
(4.3) lim, ., Pyf|L, — 2n7% 333, f(X)g~H( X)) + 2[BI[Y] > <] = 0.

The proof of this lemma is implicit in arguments given by Le Cam (cf. Le Cam
(1968), for example). The lemma implies that for every {g,} € €7(g), the density
sequences {]7; 9,(x;)} and {I]7, g(x;)} are contiguous. Note that (4.3) can also

be used to deduce the more familiar expansion of log-likelihood for a suitably
regular parametric family of densities.

Proor oF THEOREM 6. We use a characteristic function approach developed
for the parametric case by Bickel (cf. Roussas (1972) for a published version of
that proof). Since T is differentiable at g and ni[g,t — g¢] — L, Basn— oo,

(4-4) lim, ... n}[7(g,) — T(9)] — <o, ) = 0.
Therefore, the characteristic function of nt[T, — T(g,)] under g, is
E, expliun¥(T, — T(g,))]
(4.5) = E,, expliun¥(T, — T(9)) — iu¢p,, BY] + o(1)
= E, expliunk(T, — T(9)) + L, — iup,, B3] + (1) ,
this being true for all e L, orthogonal to gt. Choose 8 = hp,||o,||™*, h being

an arbitrary real constant. By considering only a subsequence if necessary, we
may assume that under g, the random vectors

([T, — T(9)], 17 Ty 0,(X)losl| 97 4(X0))}

converge weakly to a random vector (S, Z), depending on 0,, such that Z has
a N(0, 1) distribution. It follows from (4.3) and the choice of 8 that the random
vectors {(n[T,, — T(g)], L,)} converge weakly under g to the random vector
(S, 2hZ — 21%).
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In addition.
(4.6)  lim,_, E, exp[iun¥(T, — T(g)) + L,] = E exp[iuS + 2hZ — 21°] .
For, on the one hand
(4.7)  E,j|exp[iun¥(T, — T(g9)) + L,]| = 1 = Elexp[iu$ + 2hZ — 24| .
On the other hand, there exists a probability space and versions of ([T, —
7(9)], L,)} and (S, 2hZ — 2hk?) defined on that space such convergence w.p. 1.
holds as well as weak convergence. Since (4.7) remains true for these versions,
Vitali’s theorem gives (4.6).

From (4.5), (4.6) and regularity of T,
(4.8) E exp[iuS] = Eexp[iuS + 2hZ] exp[—iuiz||pg|| — 2h7]
for all real . Let ¢(u, v) = E[expiuS + ivZ] denote the characteristic function
of (S, Z). Equation (4.8) becomes

(4.9) o(u, 0) = EexpliuS + 2hZ] exp[—iuh||p,|| — 2h*] .

The right side of (4.9) is analytic in &, constant for all real &, hence constant
for all complex 4. In particular, the choice of & = 27%v yields, for all real u, v,

(4.10) o(u, 0) = o(u, v) exp[27'uv||o,|| + 2%

= ¢(u, ) exp[273(v + 27|, ||u)’] exp[—87"|o,|[*] -
The special choice v = —27"||o,||u gives
(4.11) o(u, 0) = o(u, —27|0,|[u) exp[— 87|, |"#’]

for all real u. Since ¢(u, 0) is the characteristic function of (g) and the first
factor on the right side of (4.11) is the characteristic function of S — 2|0, ||Z
while the second factor is the characteristic function of a N(0, 47*|o,||?) distribu-
tion, the theorem follows.

The above proof makes use of the apparently arbitrary choice 8 = kp,||o,||~*,
h areal number. In fact, this choice yields the strongest possible theorem state-
ment; other choices of 8 would result in smaller variances for the normal com-
ponent of (g), hence would transfer probability mass into the component Z,(g).

5. Robust location estimators. A natural estimator for a location measure
T(g) is T(9,), where g, is the kernel density estimator
X — Xi>

n

(5.1) Gu(x) = (ne,) Yty w (
{c,} being a sequence of positive constants converging to zero at a suitable rate
and w being a smooth member of .7,

THEOREM 7. Suppose

(i) w is absolutely continuous and w' is integrable.
(ii) g is continuous.
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(ili) lim,_. ¢, = 0 and lim,_,, n’c, = co.

(iv) T is a functional continuous in the Hellinger metric.
Then T(§,) —p T(9) as n — co.

Proor. Let G, denote the empirical cdf based upon (X;, X, -+, X,), let G
denote the cdf of g, and let

5.2 §(x) = c, 1 X~ )V} dG(y).

(5:2) 7.9 = e v (X2) d6(y)
Integration by parts yields

(5.3) [9a(x) — Ga(x)| < n7ic, " sup, |B, - G(x)| - § |w'(x)| dx,

where B, is the empirical Brownian bridge process. Also,

(5:4) Gu(x) — 9(x) = {[9(x — ¢,2) — 9(x)]w(z) dz,

which tends to zero for every x as n — co. From (5.3), there exist versions of
the {g,}, defined on a suitable probability space, such that sup, |§,(x) — F.(x)| — 0
w.p. 1. Hence P[lim,_., §,}(x) = g¥(x) for every x] = 1. Since |[g,}|| =1=
[lg¥||, we conclude by Vitali’s theorem that lim,_., [|§,} — ¢}|| = 0 w.p. 1 for
these versions. The theorem follows by continuity of T.

Suppose that T is differentiable at g. The following theorem shows that, under
some additional assumptions, T(§,) is an asymptotically optimal estimator of
T(g) in the sense of Theorem 6. We expect that weaker assumptions would
suffice, but do not have a proof in that case.

THEOREM 8. Suppose

(1) w is symmetric about 0, square integrable, and § x*w(x) dx < co.
(ii) w is absolutely continuous and w' is integrable.
(iii) g is absolutely continuous, g’ is absolutely continuous, and g" is uniformly
bounded.
(iv) g(x) vanishes outside a closed, bounded interval I C (— oo, o) and g(x) =
0> 0forxel
(v) lim,_, ntc, = oo and lim,_, ntc,’ = 0.
(Vi) T(g,) = T(@) + <o, 0t — 0¥ + O(llg.} — gH|[)) for g, in a Hellinger
neighborhood of g.
(vii) p, is continuous on I and vanishes outside I.
Then the limiting distribution of n[T(§,) + T(g9)] as n — oo is N(0, 47%||0,|*).
Proor. Under assumption (vi), it suffices to examine the asymptotic behavior
of {p,, 9, — ¢9*> and ||9,} — ¢}||*. By Taylor expansion,
w0009 — 9] g
2g%(x)

5.5) — b g, L0 =IO e

=T, + T, , say,

n%<pg’ g\n% - g{t> =
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where &,(x) lies between §,(x) and g(x); since g, §,, and p, are continuous, &,
can be constructed measurable. From assumptions (i) and (ii), for g, defined
by (5.2),
(5.6) sup, [7.,(x) — 9(x)| < 27, sup, |g"(x)| | xw(x) dx
= 0(c,}) .
Write
(5.7) Ty = nt§; GO[Ga(x) — Fu(x)]dx + 0t §; ([T u(x) — 9(x)] dx
where ¢(x) = p,(x)/(2g%(x)). The second integral on the right is O(n*c,’?) because

of (5.6). The first integral can be expressed as V,, = §,dB,(y) { ¢(y + ¢, 2)w(2)dz,
where B,(y) = n}[G,(y) — G(y)]. Now .
(5:8)  E[V,— §;$()dB. ()T = §,dGOIT{(y + €a2) — ¢()}w(z) dz]f
tends to zero as n — oo, since ¢ is continuous and bounded. We conclude from
(5.7), (5.8) and assumption (v) that T, is asymptotically N(0, 47%||o,|[*).

On the other hand, T,, —,0 as n — co. Indeed, there exist versions of {9.}
such that sup, |§,(x) — g(x)| — 0 w.p. 1 (cf. proof of Theorem 7); hence for suf-
ficiently large n, sup, |£,(x)| = 6/2 w.p. 1. Thus w.p. 1

(5.9) Tl = 2(20)7Hn? {1 |0(N)|[Gn(*) — Fu(x)] dx
+ 1§ e()|[Fu(x) — 9(x)J* dx}
= 220) Wy + W], say.
From (5.6) and assumption (vii), W,, = O(n%c,'). Moreover,

(510) B = a0 5o [ e Y (F2) g(y) dy |

— nte, 1§, |o(x)| dx § Wi2)g(x — ¢,2) dz = O(n~ie, ™).
Hence T,, —,0as n— oo. The above considerations imply that n:{o,, §,} — g*)
is asymptotically N(0, 47%||o,||~%)-
To complete the proof of the theorem, it remains to show that nt||g,} — g¥|[*—,0
as n — oo. But this follows from the representation

(5.11) .t — gH" = —2nt §; GH[GH(x) — 9}(x)] dx
since the right side of (5.11) behaves analogously to the left side of (5.5), with
Tln = O'

REMARKs. If g, is represented in the form (2.2), it becomes evident that
O(|lg.t — ¢*|])) = 0(4,>). Thus the location functional T defined in Theorem 3
satisfies assumption (vi) of Theorem 8 under the conditions described at the end
of Section 2. The corresponding location estimator is

(5.12) T(@.) = TyGa) + § 0()F}x + To(Ga) — To(f)]dx .

If Theorem 8 is applicable, a contiguity argument shows that 7(g,) is a regular
estimator of 7(g) in the sense of Theorem 6. If p = p, defined in Theorem 5,
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the asymptotic variance of 7(g,) under f or any translation of f is precisely the
reciprocal of the Fisher information of f. Thus, asymptotic efficiency at f is
compatible with minimax robustness at f.

The preliminary estimator 7,(§,) appearing in (5.12) may be replaced by any
estimator T, , such that n¥[Ty(§,) — T,,] —,0. If T, is an M-functional, the
corresponding M-estimator often has this property.

EXAMPLE. Suppose that the ideal model for the density of X; is f(x — ), where
fis N(0, 1) and @ is unknown. Let T, be the median functional, let p(x) =
2xf¥(x) = 2(2m)~tx exp(—x*/4), and define the location functional T by (5.6).
As noted at the end of Section 3, T is a minimax robust location functional at
all translations of the N(0, 1) distribution. .

Estimate the actual data density g by the kernel estimator §, defined in (5.1),
using the Epanechnikov kernel w(x) = 3/4(1 — x%) |x| < 1, for computational
simplicity. Define the location estimator 7(§,) by (5.12), with one difference:
replace T(g,) by the sample median since that is simpler and asymptotically
equivalent (under Theorem 8 at least). The integral in (5.12) can be evaluated
numerically since the integrand is continuous and has compact support by choice
of w.

The asymptotics of Theorem 8 do not specify ¢, in a useful manner. The
following procedure is plausible: for given n, simulate several N(0, 1) samples
of size n and determine, by trial and error, which choice of ¢, will bring the
values of 7(g,) into close match with the corresponding sample means. The
asymptotic equivalence under normality of 7(g,) and the sample mean (see the
proof of Theorem 8) is the rationale here.

Strictly speaking, Theorem 8 does not apply to this example because neither
o nor f has compact support; we will overlook this deficiency which, fortunately,
appears to be of small practical importance. If the {X;}arei.i.d. N(4, 1) random
variables, we expect that for sufficiently large n the distribution of n¥(7(g,) — 6)
is approximately normal with mean 0 and variance 4! { p%(x)dx = 1. Thus
T(g,) is both robust and efficient at normality as an estimator of #. It should
be noted that the symmetry of the normal model plays no essential role in this
example.
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