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OPTIMAL ALLOCATION OF OBSERVATIONS IN
INVERSE LINEAR REGRESSION

By S. K. PERNG AND Y. L. ToNG
Kansas State University and University of Nebraska

Consider the problem of estimating x under the inverse linear regres-
sion model

Yi=a+ fxi+e,, Zi=a+ px+¢f
fori=1,---,n,---,j=1,-..,m, ..., where{e}, {¢,'} are two sequences of
i.i.d. rv’s with 0 means and finite variances, {x:} is a sequence of known
constants and a, 8, x are unknown parameters. For fixed T = m + n, this

paper considers a sequential procedure for the optimal allocation of 72 and
n. It is shown that, as T— oo, the procedure is asymptotically optimal.

1. Introduction. Consider the following model of the inverse linear regression
problem:

(11) Y~——‘a+,8xi+€,; ‘i:1,2,"'9n""

1

Z;=a+ Bx + ¢ j=12,..-,m, ..

J

where {¢}, {¢,'} are two sequences of i.i.d. random variables with means 0 and
finite unknown variances a,> > 0, ¢,> > 0, respectively; {x,} is a sequence of
known constants, and «, 8 and x are unknown. Under the assumptions that
the random variables are normally distributed with ¢, = ¢, and that n, m are
predetermined, the point and interval estimations of x have been studied previ-
ously (e.g., [6], [7]). In this paper we consider, under more general conditions,
the optimal allocation of n (and m) for the interval estimation of x so that the
probability of coverage is maximized when the total number of observations
T = n + m is fixed and is large.

In Section 2 the coverage probability function (of the ratio § = lim,_,, (n/T))
is investigated. Bounds on the optimal value of ¢ are given, and a sequential
procedure is considered in Section 3 so that the observations may be allocated,
one at a time, for observing either a Y, or Z;. It is shown that this procedure
is asymptotically optimal as T'— co. Monte Carlo results are given in Section 4.

2. Asymptotic theory and the coveraée probability function. For n =1,
2, ... let

- I ., n -
(2.1) Xn = " PIARE St = Dt (x — X,).
We shall restrict our attention to those {x;} sequences satisfying, as n — co, (a)
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(1/n) max, ., x;* — 0, (b) there exists two real numbers z and ¢ > * such that
%, — p and (1/n) -, x* — ¢. Since the problem remains unchanged when the
x,’s are replaced by the values obtained through a linear transformation, without
loss of generality it is assumed that © = 0 and ¢ = 1.

Now for observed Y, Z,,i =1, .--,n,j=1, ..., m consider the estimator
(2.2) *=(Z—a)p
where
(2‘3) A (a’ ﬁ)' = (xn xn')_lann ’
Z = (l/m) Z;.';l Zj, Yn' = (Yl’ ey, Yn) and
(2.4) xnz(”"*)‘
Xlxz PRI xn

Since &, f are unbiased estimators of a, 8 it follows that

™ @ —a B — B = n(X,X,)X,V,
g

1

where V)= (Vy, -+, V.), Vi=(lJo)(Y; — EY), i=1,...,n and V,, ---,
V,, -+ isasequence of i.i.d. random variables with zero mean and unit variance.
It follows from a theorem in [5] (page 153) that

1

—X,V,—,;NQO,1I) as n— oo,
nt

where 7 is the (2 X 2) identity matrix. Let T = m + n denote the total number
of observations available to the experimenter and let ¢,, , = (n/T), lim,_.4,, , =
0¢€(0,1), 0 = g*/o,. We have thus obtained

THEOREM 1. For every 6 ¢ (0, 1),
THa — a, f — B, ¥ — a — px)' —, N(0, 0,°D)

as T — oo, where D is a diagonal matrix with elements d\;, = d,, = 1/0 and d;, =
o/(1 — 6).

Now consider a sequence of positive real numbers {d,}, denote the confi-
dence interval for x by (¥ — d,, ¥ + d;). Then the probability of coverage is
P[|%* — x| £d,]. Forf#e(0,1)letr = r(x,0,0)be

(2.5) e =1+ x)/0 + 8/(1 — ).

THEOREM 2. If B ++ 0 and the sequence {d,} satisfies T* d, — a where a is either
oo or a finite real number, then

(2.6)  lim; . P[|* — x| < d;] = @(alf|/(s,7%))
— O(—alf|/(o,7*)) = 9(0) , say,

where D is the standard normal cdf.



OPTIMAL ALLOCATION 193

Proor. Applying Theorem 1 and a theorem in [1] (page 76) yields
THE — x) =4 N0, (0,/B)") -
If a = co, then (2.6) is obvious. Otherwise, for fixed ¢ > 0 let T, be such that

|P[|B|TH(% — x)/(0,7%) < 2] — ®(2)] < ¢  uniformly in =z,
and
{R(IB|T? dr/(0,7Y)) — D(—|B|T* dpf(a,7t))} — 9(6)| < ¢

hold simultaneously whenever T > T, (the existence of 7T, is assured by the
continuity of ® and the uniform convergence in distribution to ®). Then

[P[|X — x| < d;] — 9(0)] < 3e

holds whenever T > T,. This completes the proof of the theorem.

Let 6, satisfy g(6,) = sup, g(f). This 6, is the approximate solution for the
problem of optimal allocation of observations when T is large, and it can be
obtained by minimizing z(x, 4, ). It is easily seen that

2.7 b= (1 + SB[ + x)* + %)

or equivalently, 6,/(1 — 6,) = ((1 + x)/6)}; which gives 7, = z(x, d, 0,) =
((1 + x** + o%)* and

(2.8)  9(6y) = @(alf|[{on((1 + x)* + 3} — ©(—a||[{on((1 + ¥)* + o4} .

3. A sequential procedure and its asymptotically optimal properties. Since
the optimal ratio of allocation 6, given by (2.7) depends on both ¢ and x where
x is the parameter one wishes to estimate, the problem of optimal allocation of
observations cannot be solved when n and m are predetermined. In the follow-
ing a sequential procedure is proposed for this purpose and its asymptotically
optimal properties (as T — oo) are investigated. The idea under this procedure
is to allocate the fixed number of T observations sequentially so that at each
step estimators of 6 and x are calculated, a decision is then made on where the
next observation should be taken from.

ProcEDURE R. (a) For arbitrary but fixed n, = 3, m, = 2 observe Y, .-,
Yop Zyy ooy Zoy. (b)AAfter Y,.--,Y,and Z,, ..., Z, are observed for r > n,,
s = m,, compute &,, 8,, Z,, %, ,, = (Z, — &,)/,, and §,,, = v,/u,, where u, =
(A)r —2) iy (Yo — &, — B,x.), v, = (1)(s — 1)) X5_, (Z; — Z,)* are the es-
timators of ¢, and ¢’ respectively. (c) For the next observation, observe Y,,,
if (rfs) < ((1 + £, ,))/0,..)}; otherwise observe Z,,,. (d) Stop whenr + s = T
with N=r, M =35 where NN, M =T — N are the random sample sizes.
Compute £, = (Z,_, — &N)/BN and construct a confidence interval (£, — d,,
%y + dp).

Now letting ©® = N/T (a random variable) denote the proportion of obser-
vations allocated for the Y,’s, we investigate the asymptotic properties of the
sequential procedure in the following.
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THEOREM 3. Under the Procedure R, if the conditions stated in Theorem 2 are
satisfied, then
3.1 lim,_,0 =6, a.s., lim,_, EO = 6,,
(3.2) lim,_ {P[|Xy — x| =d;] —9(6y)} = O,
where 0, and g(0,) are defined in (2.7) and (2.8), respectively.

Proor. Clearly, as T — o0, N— oo a.s. and (T — N) — co a.s. It follows
that &, — a a.s. and f, — B a.s. ([8]), uy — o a.s. and v,_, — ¢ a.s. ([4]) as
T — oco; which implies 8, ,_y, — 6 a.s. and £, — x a.s. Applying a lemma in

[9] it follows that ©/(1 — ©) = N/(T — N) — ((1 + x*)/9) a.s., hence 0 — 0,
a.s., as T — co. Since O is umformly bounded, we have E® — §,. This proves

3.1).

It remains to show (3.2). Clearly for every fixed T

Pl|Xy — x| £d;] = P[|V,| = T? dT|BN|/(‘71705)] ’
where
(3.3) Ve =THZ;_y — @y — xBN)/("lz'oé) .

Since T*d,|f,|/(0,7,}) converges to aB/(o,7,}) a.s. as T — co, by the Slutsky
theorem ([3], page 254) it suffices to prove that ¥, has an asymptotically stand-
ard normal distribution as T — oo. Let K = [¢,T] denote the largest integer
less than or equal to 6,7, V', can be rewritten as

Ve = Ti{(ZT—K — Qp — xBK) + (ZT—N - ZT—K) — (Ay — d)
(3-4) — x(By — B} (o,/7s)
= Ul,T + Uy r — U3,T - U4,T »  say.

By Theorem 2, U, , is asymptotically normal (0, 1). Therefore again by the
Slutsky theorem is suffices to show that U, (i = 2, 3, 4) converges to 0 in prob-
ability as T — oo.

We now show the convergence of U, ,. Since

(ﬁn_ﬂ)/gl_Zzl(xsz )Vz

holds for every n > 3, where V,, V,, - .- is a sequence of i.i.d. random variables
with 0 mean and unit variance, we can write

(3.5) TR — Pl = QR — 1) i x,V, — (R%, — %) LIV} + W,
=W, + W,+ W,, say,
where I = min (n, K), @ = T*/S,*, R = S;*/S,* and
Wy,= —0[ 5. xV, — X 250 Vi) n< K,
(3.6) =0 for n=K,

Q ZK+1X i — X, 2%m Vi] n>K.
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For arbitrary but fixed ¢ > 0 let n* be large enough such that for n > n*,
(S2m) — 1] < e, [(Tpxifm)—1] <e,
hold (the existence of n* is assured by the conditions imposed in Section 2). Let
A= A@eT)={n[n* < n S T,|(K) — 1| <& [R — 1] < &},
then by (3.1) there exists a T, such that, under the Procedure R,
P[Nc A(e, T)] =1 — ¢
for every T > T,. Since
P[max,., |W,| > ¢] < P[Q¢! - max, ., |2 x, V| > €]

< eT - S,2)(S) < e(1 + €)/(6,(1 — €)) = be say,

where H = [(1 + ¢)K] and the second inequality follows from Kolmogorov’s
inequality, it follows that

P[|W)] > ¢] £ P[max, . |W)| > ¢, Ne A] + P[N¢ 4]
< P[max,., [W)| > el +e< (b+ 1)e

holds for every T > T,. Therefore W, —,0. Similarly it can be shown that
W, —,0and W, —_ 0. This implies U, ; —,0 as T — oo.
To show the convergence of U, , consider the expression

Uprfoy = (1 = 2=%) T* TIV V(T = N)

+ TV, = TR VT — X)),

the assertion follows by the convergence of (T — N)/(T — K) to 1 in probability,
the discussion in [2] (page 198) and Kolmogorov’s inequality. The convergence
of U, , can be shown similarly. This completes the proof of the theorem.

4. Monte Carlo results and some concluding remarks. The Procedure R had
been programmed and Monte Carlo studies on an IBM 360/65 at the University
of Nebraska Computing Center were carried out with various sets of parameter
values. In most cases the numerical results are quite similar. Table 1 gives the

TABLE 1
Monte Catlo result
T=25 T=150 T=175 T =100
Normal Distribution
Average ¢ value 0.7238 0.7349 0.7305 0.7307
S.D. of ¢ 0.0888 0.0716 0.0535 0.0412

Observed probability 0.7800 0.8300 0.8350 0.8600
Uniform Distribution

Average 0 value 0.6816 0.6871 0.6779 0.6812

S.D. of § 0.0998 0.0689 0.0398 0.0241

Observed probability 0.8100 0.8200 0.8000 0.8200
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average 6 values, their standard deviations and the observed probabilities of
coverage of 200 experiments with « = 0.2, 8 = 0.4, x =0.9, 0, = 0.3, 0, =
0.15, d, = 2/T* and x;, = (—1)* for i = 1,2, .... Both normal errors and
uniform (0, 1) errors were considered in the study.

With this set of parameters 6, = 0.7291 and g(,) = 0.8516. It appears that
the numerical results and the rates of convergence are acceptable from a practi-
cal point of view.

If the situation does not allow the experiment to be carried out sequentially
or if the experimenter prefers to apply a single stage procedure, then (2.7) can
provide bounds on 6, if the experimenter has an idea about the ranges of x and
d; this is because 6, is monotonically increasing in |x| and monotonically de-
creasing in 6. In particular if 6 = 1(s, = 0,), then 6, = } always holds, and
6, = } holds iff x = 0. In this case we should always observe more Y,’s than
Z;’s, which is not intuitively obvious.
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