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BOUNDS FOR ESTIMATION OF DENSITY FUNCTIONS
AND THEIR DERIVATIVES

By TErrY G. MEYER
Texas A and M University

Lower bounds on the radius of various confidence sets for density func-
tions and their derivatives are determined. In each case investigated, the
smallest radius obtainable and the radius actually obtained by using known
estimates exhibit the same dependency on the fixed sample size .

The lower bounds are derived using methods in Meyer (1976). Al-
though only a few combinations of pseudometric and density class are
considered here, the techniques illustrated can be used elsewhere with little
conceptual difficulty.

1. Introduction. In estimating a density function, much attention has cen-
tered on kernel estimates, first proposed by Rosenblatt (1956) and later investi-
gated extensively by Parzen (1962), Watson and Leadbetter (1963), and Schuster
(1969), among others. Although the idea behind a kernel type estimate is con-
ceptually appealing, rigorous arguments recommending these estimates over
competing procedures were lacking until Farrell’s (1972) paper. In that paper,
Farrell considered a sequence of i.i.d. random variables, X, X, ..., X, with
density f(x) in a particular class C, and a sequence of estimators 7,(x,, x,, - - -, X,,),
one estimator for each sample size. Defining 4, as any sequence for which

(1.1) lim inf, inf .o P{|7, — f(0)| < 2,} > O,

Farrell obtained “fastest” rates of convergence for 1,. Since kernel estimates
achieved the fastest rate for the classes of densities considered, an optimality
property of kernel estimates was proved. Wahba (1975) recently used a slight
variation of Farrell’s proof to show that several types of density estimates in-
cluding kernel estimates are optimal in this sense for a slightly different class of
densities. The present paper shows that an improvement and a generalization
of Farrell’s procedure (Meyer (1976)) can be used to determine bounds for
particular sequences {4,} in a variety of cases not considered previously. Kernel
estimates achieve the fastest rate allowable for 4, in the cases considered.

Notation in this paper and references to theorems correspond to Meyer
(1976). In accordance, we shall redefine {2,} from (1.1) above to particular
sequences as follows:

(1.2) 2, = 2,(b) = inf {u: inf,eq Py(d(i,, 10)) < u) = 1 — b}

where 7, = 7,(x,, x,, - - -, x,) is an estimate of #(6), and d(., -), ©, P, and #(9)
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are defined in Meyer (1976). Bounding 2, is conceptually simple though com-
putationally complex. Theorem 2.2, which in its statement includes the definition
of H,(b), from Meyer (1976) is the basic tool used throughout this paper. For
a given problem specified by a pseudometric 4 and a class &= {P,: 6 € 0}, the
technique involves finding, in a suitably restricted subclass, a pair of measures
which are furthest apart relative to d. Attention is restricted here to only a
few of the more interesting combinations of d and &

2. Definition of the functions e(%, k, 0, x). In this section, a sequence of
functions, e(h, k, d, x), are defined in a fashion slightly more complicated than
but similar to Farrell (1972). The constructions and properties although tech-
nically involved are needed to apply Theorem 2.2 in later sections. Let

e(h,0,d,x) =h —0<x<0
= —h 0<x<ao
=0 elsewhere

and define recursively for k > 1

e(h, k, 8, x) = ("t e(h, k — 1,6, 0)dr for x<0
= —e(h, k, 0, —X) for x> 0.
Graphs of e(4, k, 0, x) for k = 1, 2, and 3 are shown in Figure 2.1. Some of

1 2ns®

e(h,3,8,x) -\
\

e(h,2,8,x)~

ans™t

FiG. 2.1.
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the basic properties of these functions are catalogued here for later use:
(2.1) e(h, k, 0, x) is odd
(2.2) e(h, k, 8, x) is zero on the complement of (—2*g, 2*4)
(2.3) le(h, k, 0, x)| < ho*2-—DE=D2 — o(h, k, §, —2*15) for k=1
e (h, k, 0, x) existseverywhereif 1 <i<k—1, (e denotes as
(2.4) usual the ith derivative) and |e‘(h, k, §, x)| < hok-12¢k-1-Dtk=2-0/2
e, k,0,x), some x,, for 1<i<k-—1
(2.5) e®(h, k, 0, x) exists except at a finite number of points,
le®'(h, k, 0, x)] < h, and there exists a point x, such
that e*(h, k, 8, x)) = h
(2.6) §9 .00 e(h, k, 0, x) dx = hok+12kk-172
2.7 the first k — 1 derivatives of e(h, k, 9, x) are zero at
2k, —2%1, 0, 2¢15, and 2%
(2.8) e*=Y(h, k, 9, x) is a sum of translated replicas of e(4, 1, 4, x) .
3. The class C,(c, y). Define C,(c, y) as the class of density functions f
satisfying:

(a) for k =1, fin Cyu(e, y) iff f{x) < a and |f(x) — flu)| £ a - |x — u| for all
X, uin (y — e,y + ¢);

(b) for k > 1, fin C,,(c, y) iff f(x) and its first k — 1 derivatives exist and
are bounded by a in (y — ¢,y 4 ¢) and |f*V(x) — f* V()| < « - |x — u| for
allx,uin(y—e,y+e).

Also define a function f for k > 1 as

f(x) =e(l, k,0,x —y 4 302FY) x <y — 2kg
=8 y—2g < x<y
=f(2y — x) x> y.
Note that f is symmetric about y and vanishes outside (y — 5.2k,
y + 5 -2¥g). Now define
9(x) = fix) + e(h, k, 0, x — y — 2k775) where d < o.

In order that fand g be densities,

3.1) 26+ 4 [gk+1pkk-1/2 — |
by property (2.6) and §, f = 1;
(3.2) B = ho*2k-Dk-22

by property (2.3) and ¢ > 0. Note {,g = 1 follows from (3.1) and the fact
that e is odd.
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Further if we wish fand g to be in C,,(¢, y), we must have

(3.3) B = lgtatk-eenn
by (2.3) and f{y — 26 —) = fly — 2*+04),
(3.4) ha, I a
by (2.8) and the Lipschitz condition, and
(3.5) hok-iQk-1mik=1-0 < o
lok-i2tk=1mbtk=2-bi < o for 0<i<k-—1

by (2.4) and the bound on derivatives.
Note by property (2.7), (2.4) and (3.3) above, the first k — 1 derivatives of
S and g exist everywhere. Graphs of fand g when k = 2 are shown in Figure 3.1.
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FiG. 3.1. Graphof fand g = f + e when &k = 2.

4. Theorem 2.2 applied tod = |/ — f(y)|. Consider the distribution of n i.i.d.
random variables with density in C,,(¢, y), and let &2 be the class of all such
distributions for all densities in Cy,(¢, ). In order to apply Theorem 2.2 in
Meyer (1976), an element in Hy(b) must be found. Consider ([]7_,g(x,),
1171 f(x;)) where g and f are defined in Section 3. If this pair is to be in Hy(b),
fand g must first be in C,,(¢, y), so (3.1) through (3.5) must hold, and in addition

(4.1) [$z(9/f)f dx]" = (1 — b)*/b.
Since e(h, k, 9, x) is odd, (4.1) becomes

eh, k,8,1) ;T e
(4.2) [1+su~——fa—dt] < (1— by

where U is (y — 2¥719, y + 3. 2¥-15). (4.2) is implied b
Y Y P y

(4.3) B\ peh, k, 6, 1) dr < (1= 0)Y/b)
n
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which by (2.3) and (2.6) is implied by

In (1 — b)*/b)

(44) 2‘8—1h22(k—1)(k—1)52k+1 <

Thusifd =

f — f(y)|, y fixed, fin C,,(, y) by Theorem 2.2 and property (2.3),
4.5) 22, = |f(y) — 9(y)| = h*2uk-vik-n2

where 6 and / are any numbers subject only to constraints (3.1) through (3.5)
and (4.4).

If 9 is taken proportional to n~V®¥+V [ js taken proportional to ¢~*, and 4, 3,
and ¢ are constants, the R.H.S. of (4.5) is maximized and all constraints are
satisfied. The rate achieved is thus O(n=*'**¥+V), Since 1, for the kernel estimate
is proportional to n=*/*+1 by a slight variation of Parzen’s (1962) analysis, this
estimate achieves the best possible rate.

5. Different pseudometrics for C,,(c, y); extensions to C,,(co0, 0). As ex-
plained, the above argument essentially is in Farrell (1972). (Actually Farrell
proved that liminf, 2, - n¥/¥+Y > 0, without allowing calculation of a lower
bound for fixed finite n.) By Theorem 2.2, though, the constructions in Sections
2 and 3 can provide many similar new results. For example, if the class C,,(co, 0)
and the pseudometric sup, |f(x) — f(x)| are considered, the above argument un-
changed gives a best rate of O(n=***+1) again. Schuster (1969) has proved that
the rate for the kernel estimate with the “sup norm” is o(n*/*+»)  in excellent
agreement.

Or consider C,,(¢, y) again and the pseudometric |f“(y) — {| for fixed y and
1 <i<k—1(f? again denotes the ith derivative of fat y). By translating
the function e(h, k, 6, x) which is added to f to make g, (4.5) becomes 24, >
ho*~12tk=-ntk=i=2/2 subject to (3.1) through (3.5) and (4.4). Making 4, g, A, B,
and [/ the same as before yields an O(n~'*="/*+1) rate. It is relatively easy
to show this is precisely the rate achieved by the ith derivative of the kernel
estimate.

Using instead sup, |{(x) — f'“(x)| as the pseudometric and C,,(co, 0) as the
class, the O(n=t*=?/@#+1) rate still obtains by identical arguments. However, in
this problem, only the case i = k — 1 was considered in Schuster (1969) where
it is proved that the kernel estimate has a'4, which is o(n="®+?)  in good agree-
ment again. No one, to this author’s knowledge, has considered the cases
i < k — 1 for the “sup norm”.

6. Algebraic classes and integrated square error. Another type of global
loss function besides the “sup norm” is integrated square error (ISE), examined
by Watson and Leadbetter (1963):

(6.1) [§ ({(x) — f(x))* dx]t .

They proved that A, ~ n=#+Y4 for a kernel estimate when distributions are
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restricted to C,,, an “algebraic class of degree k.” That is, C,, is the class of
all probability measures with characteristic functions y(f) which satisfy

(6.2) limy, o [f*[x()] = « .

To prove this rate is in fact the fastest possible rate, the same functions f and
g are used (the dependency on 8, d, 4, ¢, and [ is suppressed as before). Con-
ditions (3.1) and (3.2) are imposed to make f and g densities again. Integrating
fand g by parts shows that only condition (3.3) need be imposed to insure the
limit in (6.2) is less than or equal to a. (In fact, it is 0.) Thus (3.1) through
(3.3) insure fand g are in C,,,.

Theorem 2.2 states

(6.3) 22, = [z €(h, k, 0, x) dx]?
where f'and g obey (4.4) in addition to (3.1) through (3.3). Since the R.H.S.

is proportional to h6**%, it might appear from (4.4) that the fastest rate is O(n~?).
To see this is not the case, choose

B proportional to n'*

0 proportional to n~'*

h  proportional to n'*

[ proportional to nit!2
¢ proportional to n="?*,

Then hd*+* becomes proportional to n—i+!# the kernel estimate rate.

7. Other classes of distributions and other pseudometrics. Other classes of
distributions and pseudometrics besides those mentioned have been studied by
various authors (e.g., Leadbetter and Watson (1963) studied other forms of
asymptotic behavior of the characteristic function besides algebraic for ISE
loss; Schwartz (1967) and Wahba (1971) studied various combinations of square
integrability conditions on derivatives of the density while investigating estimates
that were not of the kernel type). Each new variation can be similarly analyzed
using the general theorems in Meyer (1976) without proving special cases of
these theorems for every problem. The cases in this paper were selected as
examples only because they have been extensively studied in the past.
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