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SOME EXTENSIONS OF A THEOREM OF STEIN ON
CUMULATIVE SUMS

By S.-S. PERNG
Howard University

Let u, w1, us, - -+ be a sequence of i.i.d. random k-vectors and ay, az, - - -
be a sequence of k-vectors. Let S, = X7 ai’u;. For any positive L, let N =
min{r = 1:|S,| = L}. In case k£ = 1 and all a,’s are equal and nonzero,
Stein [5] showed that N is exponentially bounded provided that « is non-
degenerate at 0. In this paper, conditions on the a,’s and on # which guar-
antee the exponential boundedness of N defined above are obtained. The
exponential boundedness of N’ = min {n = 1:|S, + Ca| = L}, where Ci,
Cs, .-+ is an arbitrary sequence of real numbers, is also considered. Some
applications are given.

1. Introduction. Let u, u,, u,, - .- be i.i.d. random k-vectors and a,, a,, - - -
a sequence of k-vectors. (Vectors will be column vectors and prime denotes
transpose.) Let

(1.1) S, = 2ta'u
and for any given positive L, let
(1.2) N=min{n = 1:|S,| = L}.

The objective of this research is to establish conditions for the exponential
boundedness of N, i.e., for any L > 0 there is ¢ > 0 and 0 < p < 1 such that

(1.3) P[N>n] <cp", n=1,2,....

Stein [5] showed that in case k = 1, all q,’s are equal and nonzero and u is
not degenerate at 0, (1.3) holds. This result has been an invaluable tool in prov-
ing exponential boundedness of the stopping time of SPRT’s both in the case of
simple hypotheses (Wald SPRT) [5] and in the case of composite hypotheses,
e.g., [1],[4], [6]and [7]. In this paper, we shall investigate the condition under
which (1.3) holds for a general sequence {a,}.

We shall also be interested in the exponential boundedness of

(1.4) N =min{n > 1:]S, + C,| = L},

for any sequence {C,} of real numbers. The main results for the one dimensional
case are contained in the Theorems 3.1 and 3.2. Some extensions to the case that
the a, and u, are vectors are given in Theorems 5.1, 5.2 and 5.4-5.6. Examples
to justify the need of some assumptions are given in Section 4. The results in
this paper can be used to prove the exponential boundedness of the stopping
time of SPRT involving non-i.i.d. random variables, especially those tests of
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parameters in (sequential) linear models. Three examples are considered in
Section 6 as illustrations.

2. Preliminaries. For any positive integer r to be chosen later, we shall write
forj=1,2, ...

(2.1) by = 219G 1rtis
(2.2) Bi = 2ia1 @G s
(2.3) S; = Lie1 mvrrifiionrss s
where, for a,’ = (a,,, ---, a,,), we write

(2-4) A = |a,] = 351 1a] -

For any sequence {x,}, we write systematically ¥, = (1/n) 37 x,.
It follows from the definition (1.2) of N that

[N>n]clls;] <2L,j=1,2,---,[nr]]

where [x] denotes the largest integer which is not greater than x. Thus, in order
to prove (1.3), by the independence of s, s,, - - -, it suffices to show that for any
L > 0, there exists a positive integer r such that [7 P[|s;| < L] < cp" for some
¢ > 0and 0 < p < | and hence, equivalently, it suffices to show that for any
L > 0, there is a positive integer r such that

(2.5) lim sup (1/n) X7 log P[}s;| < L] < 0.

Following a similar argument as above to show the exponential boundedness of
N’ defined in (1.4), it suffices to show

(2.6) lim sup (1/n) X7 log P[)s; + 7;] < L] < O,

where y; = 7., ¢.;_1,,4; and {c,} is any sequence such that C, = Y1 c,.

Let {n;} be a subsequence of the sequence of positive integers of at most ex-
ponential growth, i.e., liminfn;/n; , > 0; for short we shall call such a sequence
steady.

We shall prove that (2.5) and (2.6) hold under certain of the following assump-

tions. An assumption made throughout is that there is 4 > 0 such that |a,| < 4
for all n.

ASSUMPTION (a). d, — a, for some a = 0.

AssUMPTION (b). There is a steady sequence {n;} along which @, — a, for some
a=+0.

AssUMPTION (c). Thereis a steady sequence {n,} along which &, — a, for some
a > 0, where «, is defined in (2.4).

When the a,’s are real, we specify

AssuMPTION (b’). There is a positive number a and a steady sequence {n;}
along which @, = 2a (or < —2a).
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LEMMA 2.1. Let {d,} be a bounded sequence of real numbers such that d, —d > 0
(<0) and let n’ be the number of d,, - - -, d, which are larger (less) than d|2. Then
lim inf n’'/n = p, > 0.

The proof of this lemma is elementary.

COROLLARY 2.1.1. The lemma holds if d,—d is replaced by d, = d >0
d, £d<0).

LemMma 2.2. If a, converges to a along a steady sequence {n;}, then there is a
steady sequence {n,'} along which b, converges to ra, where b, is defined in (2.1).

Proor. Let n;/ be the first multiple of » which is not less than n;. Then

(2.7) (I/n}") 13" a; = (n/n))(1n;) Zti a, + (Yn) Z3i' a
Since 1 = (n;/n;') = n;/(n; + r) — 1 as j — oo and the second sum on the right-
hand side of (2.7) is bounded by r4 in absolute value, we have the right-hand
side of (2.7) converging to a as j — co. Noting that b, = r((nr)™* 37" a;), we
have b, converging to ra along {n;}. Further, noting that n;/(n;,, + r) <
n;'/n}., < (n; + r)/n;,, and taking lim inf as j — co, we see that {n,’} is steady.

We can similarly prove

COROLLARY 2.2.1. Under Assumption (b'), there is a steady sequence along which
b, = ra (or £ —ra).

It is recalled that a k-vector 1 is called a point of increase (of the distribution)

of u if for any neighborhood V of 2, Plue V] > 0.

LeMMA 2.3. Let a be any k-vector. If a'u is nondegenerate at 0, then there is a
point of increase 2 of u such that a'A + 0.

The proof of this lemma is elementary and will be omitted.

CorOLLARY 2.3.1. Ifuisarandomvariable such that P[u>0]>0 (P[u < 0]> 0),
then there is at least one positive (negative) point of increase of u.

3. Univariate case. In this section as well as in the next one, we assume
k =1, i.e., both the u,’s and the a,’s are real.

THEOREM 3.1. If P[u < 0] > 0 and P[u > 0] > O and {a,} satisfies Assumption
(c), then both N and N’ are exponentially bounded.

Proor. We divide the proof into several steps.

(i) By Corollary 2.3.1, there are positive numbers 2 and ¢ such that both
Plu> 2] > eand P[u < — 2] > ¢ hold. Therefore, fori = 1,2, ..., P[(sgna,)u, >
2] > ¢, where sgnx = 1if x = 0 and — 1 if x < 0. Recall thatu, u,, u,, -- - are
i.i.d. Thus, multiplying by |a,| both sides of (sgna,)u; > 2, and summing, we
get

3.1) Pls; = B;A]l = Pl(sgnayu;, > A, i=(j—r4+1,...,jr] > >0,
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where §; and s; are defined respectively in (2.2) and (2.3). By Assumption (c)
and Lemma 2.2 applied to {a,}, there is a steady sequence {n,;} along which §,
goes to ra > 0. Choose r so large that ra > 2L/2 and let n,” be the number of
B, i=1,2, ..., n', which are larger than L/A. Then, by Lemma 2.1,

(3.2) liminf n,”/n,' = p, > 0.

Thus if 8, > L/2, by (3.1), we have

(3.3) Pls; = L] = P[s; = B;4] > ¢
(ii) Therefore, when 8; > L/A,

(3.4) Plls;l =z L] > ¢

and hence

(1/m) Zi# log Plls;| < L] = (m”'[m/) log (1 — ¢7) .

Taking lim sup over k on both sides and observing (3.2), we get

(3.5) limsup (1/n,') >3 u, log P[|s;| < L] < polog (1 —¢") < 0.

(iii)y Now, for any n, n,’ < n < nj,,, for some k, we have

(1/m) Tt log Plls;| < L] = (m/[m,)(1/m') 25 log Plls;| < L]
Taking lim sup on both sides and observing that {n;’} is steady, (2.5) follows

from (3.5). Therefore, N is exponentially bounded.

(iv) Similar to the proof of (3.3), we can show that if 8, > L/, we get
(3.6) Pls; < —L]> ¢ .
Now if y; = 0 and 8; > L/2, by (3.3) we have P[s; + 7, = L] = P[s; + 7; =
L + y;] > ¢. Similarly, if y; < 0 and 8; > L/4, using (3.6) we have P[s; +
7; £ —L] > ¢". Therefore, for 8;"> L/2, we have P[|s; + 7,/ = L] > ¢". This
is the analogue of (3.4) and the rest of the argument is the same as in steps (ii)
and (iii).

Since Assumption (a) implies (b) which, in turn, implies (c), we have the
following corollary.

CoroLLARY 3.1.1. If Plu > 0] > 0 and Plu < 0] > 0 and {a,} satisfies either
of Assumptions (a) and (b), then both N and N' are exponentially bounded.

Note that if the expectation y = E(u) is finite and u is nondegenerate, then

Plu > p] > O0and Plu < p] > 0. With y; being replaced by 7, + ¢ 27, a;_1)p44
in (2.6), we have

CoroLLARY 3.1.2. If p = Ep(u) is finite and u is nondegenerate, then N’ is ex-
ponentially bounded.

By using Corollaries 2.1.1 and 2.2.1 following the same argument as in the
proof of Theorem 3.1, we can show
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CoroLLARY 3.1.3. If P[u > 0] > 0 and P[u < 0] > 0 and {a,} satisfies Assump-
tion (b’), then both N and N’ are exponentially bounded.

Under Assumption (c), the assumption that « has positive probability on both
sides of 0 in Theorem 3.1 cannot be relaxed. As a counterexample, we consider
a,=(—1)',n=1,2, ..., and u = 1 with probability one, then {a,} satisfies
Assumption (c), but |s;/ < I with probability one and hence (2.5) cannot be
true for L > 1.

We now decrease the restrictions on the distribution of # and increase the
restrictions on {a,}.

THEOREM 3.2. If Plu = 0] < 1 and {a,} satisfies Assumption (b), then N is ex-
ponentially bounded.

Proor. (i) The assumption on u implies that either P[#>0]>0 or P[u<0]>0.
Without loss of generality, we may assume the former case. By Corollary 2.3.1
there is a positive point of increase 2 of u. Thus, for any d > 0 there is ¢ =
¢(0) > O such that P[A — 6 < u < 2+ 0] > e. Thus, fora, = 0, Pla,(2 — 0) <
a,u; < a,(A 4 0)] > ¢and for a; <0, Play (A + 0) < a,u; < a (2 — d)] > ¢. There-
fore, recalling the definitions of 8;, b; and s; defined in (2.1)—(2.3), we get

3.7) P[Ab; — 0B; < s; < Ab; + 98,1 > ¢” .

(i) We consider the case that @ > 0 (the case a < 0 can be reduced to the
case a > 0 by reversal of the signs of the a,). Choose r so large that ria > 4L.
By Assumption (b) and Lemma 2.2., there is a steady sequence {n,’} along which
B,;converges tora. Letn,” be the number of b,,i = 1, ---, n,/, which are larger
than 2L/4; then by Lemma 2.1, lim inf n,”/n,’ = p, > 0. Note that, since 3, <
rA, we have Ab; — 6f8; = 2b; — orA. Choose ¢ so small that or4 < L; then if
b; > 2L/2, we have 2b; — orA > Land thus 2b; — 68, > L. Therefore, by (3.7),
if b, > 2L/, we have

(3.8) Pls; =z L] >«

which is the analogue of (3.3) in the proof of Theorem 3.1.
(iii) Following the same argument as (ii) and (iii) in the proof of Theorem
3.1, we have (2.5). Hence N is exponentially bounded.

CoroLLARY 3.2.1. If Plu =0] < 1 and {a,} satisfies Assumption (a), then N is
exponentially bounded.

In the following section, we give two examples to justify the inclusion of the
boundedness of {a,} and the steadiness of {n;} respectively, in the assumptions.

4. Remarks and examples.

1. Example 1 shows that if the boundedness condition of the sequence {a,}
is removed, then the results in Section 3 are no longer true in general.

ExaMPLE 1. Let a, = 1, a, = i/2 if i = 27 for some positive integer j and all
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other a,’s be 0, so that {a,} is not bounded. Observing that Y% a, = 2%, it is

=11
readily seen that limsupa, = 1 and lim infa@, = 4. Thus {a,} satisfies Assump-
tion (b).

Now let Plu = —1] = P[u = 0] = P[u = 1] = 4. For any fixed positive in-
teger r, choose / so large that 2! — 2!=* > r and for any given L > 0, choose m
so large that 2™ > L. Let j, = max(/, m). Then for j = j, P[|s;] < L] < 1 if one
(and only one) of (j — I)r +i,i =1, ..., r, is of the form 27 for some positive
integer p and for such j, 1 > P[|s;| < L] = (4)7; for all other j > j, we have
P[|s;] < L] = 1 (s; is defined in (2.3)). Therefore

0= 2% 3% log P[|s;| < L]
= 27% miomtlog Pllsy| < L]+ (k — jo + 1)27" log (3)"
—0 as k— oo
and hence lim sup (1/n) 3 7 log P[|s;| < L] = 0, i.e., (2.5) is not true.

2. It might be suspected that in Assumptions (b) and (c), the steadiness condi-
tion, i.e., lim inf n;/n; ; > 0, can be removed. This is not the case in general
as can be seen in the following counterexample.

ExampLE 2. The sequences {n,’} and {r,} in this example have no connection
with those used in Section 2. They are defined successively as the following:
n' =0andn, = 1; for k = 2, let n,’ = n,_, + k¥ and n, = n,’ + k*. Thus
4.1 n =2yt 4 kF—1,

(4.2) n,=2%%7—1.
Leta,=0forn, <i<n,, ,anda, = 1ifn’ <i<n,. Forn, <n<nj,, ‘
Dva = Xr(n; —nf)=Xij
In particular, if n = n,, noting (4.2), we get
(I/n) Xt a, — % as k— oo.
Note that
/M = mf(n, + 2(k + 1)¥) >0 as k— oo.
Thus all conditions of Assumptions (b) and (c) are satisfied except the steadiness
of subsequence {n,} along whicha, (= &,, in this example) converges to its nonzero
limit £.
Let u be defined as in Example 1 and b; and s; as in (2.1) and (2.3). Note

that P[|s;] < 6;] = 1 and hence for L > b; we have P[|s;] < L] = 1. If L < b;
(which implies » = L), then

1>P[s;] < L] = Plu;=0,i =1,2, .-, r] = (3)
and hence
(4.3) 0 = (1/ny) Tz log Plls;| < L]
= (/i )(/r) 25 (i + 2r)log (3)" -
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Combining (4.1) and (4.3), we get
lim sup (1/n) 337 log P[|s;| < L] =0,
i.e., the conclusions of Theorems 3.1 and 3.2 are not true.

5. Multidimensional case. We now extend the previous results (Theorems
3.1and 3.2) to more than one dimension. We write a,’ = (a,,, - - -, a,,). Similar
notation applies to u,,.

THEOREM 5.1. Let{a,} satisfy Assumption (b) in Section2. Ifa'uis nondegenerate
at 0, then N is exponentially bounded. (It also suffices that {a,’'A} satisfies Assump-
tion (b').)

Proor. (i) By Lemma 2.3, there is a point of increase A of u such that a’2 = 0.
Either a’2 > 0 or < 0. Without loss of generality we may assume a’4 > 0 (the
other case can be reduced to this case by reversing the signs of a,). By definition
of 4, for any ¢ > O there is ¢ > 0 such that

P, —0<u, <2, +0d,p=1,2,..., k] >¢,
where we write 2’ = (4, ---, 4,). Hence, fori=1,2, ...
Pla/2 — da; < d'u; < a2 + oa;] > ¢,
where «, is defined in (2.4). We thus have
(5-1) P[b'2 — 0B; < 5; < b4 + 0B;] > €,
where b;, 8; and s; are defined in (2.1)—(2.3).

(i) Note that we assume a’2 > 0. From (5.1) we have

(5:2) Plls;| = b2 — 38,1 > < .

Using Assumption (b) and Lemma 2.2 applied to the sequence a,’4, there is a
steady sequence {n,’} along which b,’2 converges to ra’4. Choose r so large that
ra’2 > 4L and 6 > 0 so small that 68; < L for j = 1,2, .... The latter is pos-
sible due to the assumption that the a, are bounded. Let n,”” be the number
of b/2, j=1,2, ..., n/, which are larger than 2L. Then by Lemma 2.1,
lim inf n,'/n, = p, > 0. Thus, if /2 — 0B; > L, then by (5.2), we have

(53) Plls| = L] > .

This is the equation analogous to (3.4). The rest of the proof is similar to (ii)
and (iii) in the proof of Theorem 3.1.

CorOLLARY 5.1.1. Theorem 5.1 is true in particular if {a,} satisfies Assumption
(@)

THEOREM 5.2. Let {a,} satisfy Assumption (b). If a'u has positive probability on
both sides of 0, then N' is exponentially bounded.

PrRooF. Since a'u has positive probability on both sides of 0, there are points
of increase 4, and 2, of u such that @’2, > 0 and a'1, < 0 (cf. Lemma 2.3).
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Similar to (5.1), we obtain for p = 1, 2

P[bj2, — 0B; = s; < b2, + 0B;] > &

and hence

(5.4) Pls; = b2, — 36;] > ¢
and

(5-5) Pls; < b2, + 08;] > ¢

By Assumption (b) and Lemma 2.2 applied to the sequence a,’4,, there is a steady
sequence {n,'} along which 5,2, converges to ra’2,, p = 1, 2. Note that in the
proof of Lemma 2.2, {n;’} depends only on {n,;} and r. Choose r so large that
rmin (a’d,, —a’d,) > 4L and 0 so small that d8; < L. Let n,”'(1) (n,”(2)) be the
number of 6,/4,(—b;/4,)’s, j = 1,2, ---, n,’, which exceed 2L. Then by Lemma
2.1, we have lim inf n,”’(p)/n,’ = py(p) for p = 1,2. Letn,” = min(n,''(1), n,''(2)).
Then

lim inf n,"/n,’ = p, = min (o,(1), p4(2)) > 0 .
Now, if min (b;'2;, —b;'2,) > 2L, by (5.4) and (5.5), respectively, we have

(5.6) Pls; = L] > &
and
(5.7) Pls; < —L] > .

For min (b,’4,, —b,’4,) > 2L, we have (if ¢; = 0, use (5.6) and if ¢; < 0, use
(5.7))

(5.8) Plls; +¢;|] = L] > ¢ .

This is an analogue of (3.4) and the rest of the proof is similar to (ii) and (iii)

in Theorem 3.1.

COROLLARY 5.2.1. Theorem 5.2 is true in particular if {a,} satisfies Assumption
@).

LemMA 5.3. Let T = {te R*: |t| = 1} (|+| defined in (2.4)). If t'u has positive
probability on both sides of O for every t € T, then there are 6 > 0 and ¢ > 0 such
that for all te T, P[t'u > 0] > e and P[t'u < —0] > e.

Proor. Note that T is compact and that for any re T, if s — ¢, then s'u — t'u
everywhere. Therefore this lemma is a special case of Lemma 5.2 in [6], page
119.

THEOREM 5.4. Let {a,} satisfy Assumption (c) and suppose that c'u has positive
probability on both sides of O for every ¢ & 0. Then N’ is exponentially bounded (and
hence so is N).

Proor. By assumption

(5.9) (jn)y X, - a >0
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along a steady sequence {n;}, where a, is defined in (2.4). By Lemma 5.3, there
are 0 > 0 and ¢ > 0 such that

(5.10) Pla/u, = oa;] > ¢,
and
Pla/u, £ —oa;] > ¢.
(Note that the above inequalities are trivially true if a, = 0.) Hence
(5.11) - Pls; = 0B, > &,
and
Pls; = —0B;] > ¢,
where $8;and s; are defined in (2.2) and (2.3) respectively. Thus, for any sequence
{ri}
(5.12) Plls; + 75l = 08,1 > <.

Note that, by (5.9) and Lemma 2.2 applied to {a,}, B, — ra along a steady {n,’}.
Choose r so large that ra > 2L and let n,”” be the number of 8;, j = 1,2, ...,
n,', which are larger than L; then, by (5.12), if 8; > L, we have

(5.13) Plls; + 7l = L] > &
This is the analogue of (3.4) and the rest of the proof is similar to steps (ii) and
(iii) in the proof of Theorem 3.1.

THEOREM 5.5. Let u' = (u™’, u®") with u'V' and u® independent. Partition a,
accordingly. If {a,V} satisfies Assumption (b) and aV'u'V has positive probability on
both sides of 0, then N’ is exponentially bounded (and so is N).

Proof. Proceeding as in the proof of Theorem 5.2, analoguously to (5.6) and

(5.7), we get for j e J, a set of positive integers (corresponding to the set of in-
tegers of which (5.6) and (5.7) hold),

(5.14) Pls;® = L] > ¢, and
P[s;" < —L] > ¢
wheres;® = Yr_a® . u® ... Lets;® =5, — 5,0, s5;defined in (2.3). Then

by assumption s, and s;® are independent. Now for any sequence {r,},
lIs; + 7,0 = L] = [Is, + 5, + 1, = L]
(5.15) > [sgn s, = sgn (5, + 7;) and |5, = L]
= F, say.
Note that
P[F] = P[s;® + r; =2 0]P[s; = 0; |s;¥] = L|s;® + 7, = 0]
+ PLs;® + 73 <OJP[s;” <05 [s;%] = L], +7; < 0]
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By independence, we may drop the conditioning and, by (5.14), we get for je J

(5-16)  P[F] = P[s;” + r; 2 0]P[s;¥ = L] + P[s;* + r; < O]P[5;® < —L]
=€,
By (5.15) and (5.16), we have for jeJ
Plls; + 715l > L]z <.
The rest of the proof is similar to that of Theorem 5.2.

THEOREM 5.6. Let u' = (uV', u®") with u® and u® independent. Partition a,
accordingly. If {a,} satisfies Assumption (c) and for every ¢ # 0, c'u™ has positive
probability on both sides of 0, then N' is exponentially bounded (and so is N).

The proof is a combination of those of Theorems 5.5 and 3.1.

6. Applications. We now consider three examples as applications of results
in previous sections. Examples 6.3 is rather abstract. It provides only hints of
the connection between the results in this paper and how they can be applied.
The detail is too lengthy to be included and will be discussed elsewhere along
with other similar problems.

ExaMPLE 6.1. Consider the sequential model
(6.1) y; = aa; + u; , i=1,2,...,
where {a;} is a sequence of real numbers, u, u,, u,, - - - are i.i.d. N(0, 1) random
variables and « is an unknown parameter. Suppose that we are interested in
testing sequentially H,: « = @, vs. H,: « = a,, with a, + a,. If, under the true
distribution P, « is the true value of the parameter, the logarithm of probability
ratio at stage n can be written as
L,=—(a,—ay) 3t au +C,,
where
C = Dl — &) — a(a, — a))] 1 a’.
Thus, if {a,} satisfies Assumption (c) and if P[u > 0] > 0 and P[u < 0] > 0 (by
Theeorem 3.1) or if 4 is nondegenerate and has finite mean (by Corollary 3.1.2),
the stopping time of the SPRT is exponentially bounded.

EXAMPLE 6.2. Suppose that u,, u,, - - - are independent and that u, has N(0, ¢,?)
distribution, i = 1, 2, - ... Suppose that we are interested in discriminating se-
quentially between H,: {s,} = {o,;} vs. H,: {0,} = {0,}. Consider the SPRT test.
At stage n, the logarithm of probability ratio is given by

L,= 2tg.u’+ Xt b,
where g; = —4(1/o};, — 1/0},) and b, = logo, /oy, i = 1,2, ..., n. Now if, under
the true distribution, #; has distribution (not necessarily normal) with ¢, as (true)
scale parameter, i = 1, 2, ..., letting v, = (u,/c,)?, we can write

Ln = ZIL aivi + ZIL bl,
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where v, v, ... are i.i.d. and a, = g;¢*>. Thus, by Theorem 3.1 (or Corollary
3.1.2), the stopping time of the SPRT is exponentially bounded provided that
P[v < 0] > 0 and P[v > 0] > 0 (or v has finite expectation) and {a,} satisfies
Assumption (c). It is noted that similar technique can be applied to test of pa-
rameter in other distributions such as negative exponential (one or two tail),
Weibull and gamma distributions. Examples of this kind in the real world could
be: to determine sequentially whether the variance of weighting errors (assume
normal distributions) is proportional to the volume of container or its square
root (see [2]); or to determine whether or not the expected life of a radiative
substance depends on its volume.

EXAMPLE 6.3. Under the framework (6.1), suppose that u, u,, - .. are i.i.d.
N(, ¢%) and a and ¢* are unknown parameters. Let 2 = a/o and consider the
sequential test of H,: 2 = 4, vs. H,: 2 = 4, with 4, # 2,. The problem is invari-
ant under the linear transformation: yi— ey, i=1,2, ..., where ¢ > 0. At
stage n, (s,%, z,) is a sufficient statistic and T,, = z,/s, is maximal invariant, where
z, = Rt ayyfk,, s = xry’ — z,'lk, and k, = Yt a?. Therefore {T,} is an
invariantly sufficient sequence and the logarithm L, of the probability ratio of
the invariant SPRT for H, vs. H, depends only on T, at stage n (see [3]). Now
if « and ¢ are the true values of the parameters (under the true distribution),
by (6.1), T, = (ak, + X1 au/k)(X3u? — (Xra,u/k,)?)t. It can be shown
that, for the purpose of proving the exponential boundedness of the stopping
time of the test, L, can be locally and uniformly approximated by a linear func-
tion of ¥ru? and ¥ ¥ a,u,. When y,y, --- are i.i.d. (i.e., a; = 1 for all i),
Wijsman used the technique that L, can be locally and uniformly approximated
by linear function of 37y, and Y7 y,?and applied Stein’s original result to prove
the exponential boundedness of the stopping time for sequential r-test [6]. A
similar idea can be used to prove the same result of the test in this example with
the results in previous sections playing the role of Stein’s result.

Acknowledgment. I wish to thank Professor Robert A. Wijsman for his helpful
suggestions and guidance during the preparation of the author’s thesis on which
this paper is based; and the referees and the editor for helpful comments.

REFERENCES

[1] Berk, R. H. (1970). Stopping times of SPRT’s based on exchangeable models. Ann. Math.
Statist. 41 979-990.

[2] BoHRER, R. and PorTHOFF, R. F. (1975). An exercise in analysis of variance theory. Amer.
Statist. 29 166-168.

[3] HaLL, W.J., WusMAN, R. A. and GHosH, J. K. (1965). The relationship between sufficiency
and invariance with applications in sequential analysis. Ann. Math. Statist. 36 575-
614.

[4] SETHURAMAN, J. (1970). Stopping time of a rank order SPRT based on Lehmann alterna-
tives—II. Ann. Math. Statist. 41 1322-1333.

[5] STEIN, C. (1946). A note on cumulative sums. Ann. Math. Statist. 17 498-499.

[6] WusmAN, R. A. (1970). Examples of exponentially bounded stopping time of invariant



EXTENSIONS OF A THEOREM OF STEIN 109

SPRT’s when the model may be false. Proc. Sixth Berkeley Symp. Math. Statist. Prob.
1 109-128, Univ. of California Press.

[71 WusMAN, R. A. (1971). Exponentially bounded stopping time of SPRT’s for composite
hypotheses. Ann. Math. Statist. 42 1859-1869.

[8] WusMAN, R. A. (1973). Stopping time on sequential samples from multivariant exponential
families. Multivariate Analysis II1. Proc. Third Internat. Symp. on Multivariate Analysis
(P. R. Krishnaiah, ed.). Academic Press, New York.

DEPARTMENT OF MATHEMATICS
HowARD UNIVERSITY
WASHINGTON, D. C. 20001



