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Bayes factors against various hypotheses of independence are proposed
for contingency tables and for multidimensional contingency tables. The
priors assumed for the nonnull hypothesis are linear combinations of sym-
metric Dirichlet distributions as in some work of 1965 and later. The re-
sults can be used also for probability estimation. The evidence concerning
independence, provided by the marginal totals alone, is evaluated, and
preliminary numerical calculations suggest it is small. The possibility of
applying the Bayes/non-Bayes synthesis is proposed because it was found
useful for an analogous problem for multinomial distributions. Asa spin-
off, approximate formulae are suggested for enumerating “‘arrays” in two
and more dimensions. :
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1. Introduction. Consider an r X s cont}hgéncy table (n;) i=1,2, ---,1;
J=1,2,...,5) where n,; denotes the frequéncy in cell (i, j) and let p,; denote
the corresponding physical probability in that cell. We write n,, = >}, n;; and
n.; = 3, n;; for the marginal totals, and p,. and p_; for the corresponding mar-
ginal probabilities. The hypothesis .

Hipy=pup; i=12-,rj=12 s

is called the null hypothesis of independence of rows and columns, and its nega-
tion, the nonnull hypothesis, is denoted by A.

This paper is concerned primarily with a Bayesian approach to testing the
hypothesis H, with extensions to multidimensional tables. Non-Bayesian methods
also receive some attention. Apart from questions of the foundations of statis-
tics, Bayesian methods for testing null hypotheses concerning multinomial dis-
tributions and contingency tables have the practical merit that they are apt to
be applicable even when many cell expectations are small. Cell expectations
are often small in large two-dimensional tables and in multidimensional tables.
The theory also estimates how much evidence concernmg H is contained in the
(one-dimensional) marginal totals alone.

The hypotheses H and H will be fully specified, so that if either of them is
accepted they can be used for estimating the cell probabilities, p,;. Moreover
this is especially convenient for the hypotheses entertained here (see Good (1967),
page 407). Thus, although the main thrust of the work concerns significance
tests, it also sheds light on probability estimation. Nevertheless, if H is rejected,
the statistician would be well advised to look for deeper structure in the con-
tingency table (for example, Woolf (1955); Good (1956), (1963), (1965a), page
61; Birch (1963); Bishop, Fienberg and Holland (1975)).

To test independence by Bayesian methods, it is necessary to assume prior
densities for the physical probabilities (p,;), both on the null hypothesis H of
independence and on the rival (much more composite) hypothesis H. These
priors are made to depend on mixtures of symmetric Dirichlet distributions be-
cause such priors were previously found to be logical and useful for the analo-
gous problem of testing equiprobability of multinomials (Good (1965), (1967),
(1974); Good and Crook (1974)). Once the priors are chosen it is possible to
compute P((n;;)| H) and P((n,;)| H) and the ratio of these probabilities is the
Bayes factor against H, that is, the factor by which the initial odds of H are
- multiplied in the light of the evidence. This factor is not a Neyman-Pearson
likelihood ratio when either H or H is composite, but it can be regarded as a
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simple likelihood ratio under a suitable physical model. The reason for this is
that any prior can represent a physical distribution, in a superpopulation, given
an appropriate non-Bayesian model. That is, composite hypotheses with associ-
ated priors can be converted into simple hypotheses at the level of superpopula-
tions. In fact all Bayesian models can be given a non-Bayesian interpretation
in this manner.

The three models for sampling. Regardless of the Bayesian approach, there are
three familiar methods for sampling a contingency table, which we call Models
1,2 and 3. In Model 1, the total N is alone fixed, in Model 2 the row (or col-
umn) totals are fixed, and in Model 3, both the row and column totals are fixed.
We therefore discuss three Bayesian factors F,, F, and F;, corresponding to these
three cases. Of these, the most difficult one to evaluate numerically is F, and
much of our discussion is concerned with this problem. "

Although Model 3 is less common than Models 1 and 2, it does occur in a
variety of circumstances, usually for 2 x 2 tables; for example, in psycho-
physical experiments such as Fisher’s famous tea-tasting experiment (Fisher
(1949), Chapter 2), or in matching experiments for detecting extra-sensory per-
ception (for example, Soal and Bateman (1954), pages 40, 41, 50), and in the
experiment relating to weevil larvae and species of bean described by Sokal and
Rohlf (1969), page 588. These examples can be easily generalized, at least con-
ceptually, to r X s tables with rs > 4.

It is often judged by statisticians that the marginal totals by themselves convey
little evidence about whether H is true. For example, it seems that Fisher never
accepted the need to distinguish between models 1, 2 and 3 (see Fisher (1956),
pages 87-88). Again Sokal and Rohlf ((1969), page 589), judge that the X* test,
which is based on Model 3, and the likelihood-ratio test, which is based on
Model 1, “provide rather similar results even when applied to the inappropriate
model,” so we should not expect F,, F, and F; to be very unequal in ratio for
most ordinary sets of marginal totals. We investigate this question by asking
whether the Bayes factor against H, arising from the marginal totals alone, is
close to unity. This factor is equal to F,/F,.

Tocher (1950) showed, with a slight gloss, that Fisher’s exact test for the
2 X 2 table is uniformly most powerful and unbiased even for Models 2 and 3,
and S. N. Roy and Mitra (1956) showed that X* for the general r X s table is
asymptotically distributed as y* with (r — 1)(s — 1) degrees of freedom for all
three models. But the power functions are not the same for Models 1, 2 and 3
(see, for example, Kendall and Stuart (1973), Section 33.25, for references) so
one should not expect the Bayes factors F,, F,-and F; to be precisely equal.
Our assumptions imply that they are in fact unequal but that they do not seem
to differ very greatly in normal circumstances.

The Bayes[non-Bayes synthesis. In accordance with a synthesis or compromise
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between Bayesian and non-Bayesian methods, any Bayes factor can be reinter-
preted as a “Fisherian” (non-Bayesian) statistic, and its distribution examined
under the null hypothesis when the null hypothesis is simple. Under Model 3,
H has been known for forty years to be a simple statistical hypothesis, as we
shall explain, so this “synthesis” can be applied to F;. The main numerical
investigation of this matter, together with many other numerical details, is
delayed to Part II of the present work, which will be jointly authored with
Dr. J. F. Crook, but some preliminary results will be reported herein, especially
in Section 13. For the multinomial distribution the corresponding results were
reported by Good and Crook (1974).

The enumeration of arrays and allied problems. The problems in this work lead
to a generalization of the classical combinatorial problem of enumerating rectan-
gular arrays of nonnegative integers, having given marginal totals, a problem
that is closely connected with the theory of symmetric polynomials. Some of
the methods for attacking this generalization of the array problem also shed
some light on the ordinary array problem. Some new exact and asymptotic
results are given in the appendices, but the solution is incomplete. An approxi-
mate formula for the number of arrays is related to a conjecture that approxi-
mates F, in terms of the other Bayes factors.

We shall discuss two-dimensional and three-dimensional tables in turn, and
the extension to higher dimensions will then be obvious.

2. Dirichlet distributions andtheir mixtures. All the work in this paper is
based on Dirichlet distributions and their mixtures, so it will be convenient to
introduce some relevant notation and terminology.

A Dirichlet density with say ¢ categories is of the form

' INOIND) k1 X .
2.1 Y1 i 74 t_ v k,, 0, =1’2,""t9 v=1 ’
@1 Ty Tm g™ (k>0 Zg.=1
where the g,’s are physical probabilities. The k,’s may be called hyperparameters
(that is, parameters in a prior distribution). They may also be called flattening
constants in the sense that the posterior expectation of g, given (n,) = (m,) is

(2‘2) (mv + kv)/Zv (mu + kv) ’

and conversely, if (2.2) is the Bayesian expectation whatever the m,’s may be,
then the only possible prior density is (2.1); see, for example, Good (1965a),
page 23. Hence, if cells are lumped together in any way, the prior for the re-
duced collection of new cells is still Dirichletian with the corresponding addition
of the flattening constants. Another proof of this result is given by Wilks (1962),

page 181.
We denote the above-mentioned Dirichlet distribution by D(¢; ki, k,, - - -, k,)
and, if k, = k, = ... = k, = k, by D(¢, k) which we call the symmetric Dirichlet

distribution with flattening constant (or hyperparameter) k.
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In the earlier multinomial researches we used a mixture of D(¢, k)’s

(2.3) i DA, k)p(k) dk
where ¢ is the specific log-Cauchy density

1
(2.4 p(k)

~ H# + (log, k]
Previous to 1965, various writers had used fixed values of k, especially k = 1
and k = 4, but I believe it is necessary to assume a distribution for k. The
history and related matters are discussed by Good (1965a), (1967).

We shall later need to generalize (2.3) to

§& D(t, t'k)p(k) dk ,

and we shall denote this mixture of symmetric Dirichlet priors by D*(z, ¢’), the
arguments g, being again taken for granted. The prior density (2.3) is D*(z, 1).

Mixtures of the more general Dirichlet density D(z; k,, - - -, k,) could be used
if any specific real-world problem seemed to require it, but the more special
density D*(z, 1) appeared to be adequate in the multinomial work for various
values of ¢ from 2 to 100. There is no point in choosing a more complicated
prior if the simpler one is adequate. A more complicated model would be re-
quired if some of the g,’s had larger (subjective) prior variances than others.

The log-Cauchy “hyperprior” (2.4) was chosen because it is noncommittal or
“uniformative” in the sense, for example, of giving low prior density only to
very large values of k and because it approximates the improper Jeffreys—Haldane
density 1/k which was proposed for “representing ignorance” of the value of a
positive variable. This Jeffreys—-Haldane density has an interesting interpretation
for our present problem, which will be mentioned soon. But an improper hy-
perprior cannot be strictly used in this work because it would lead to the total
annihilation of the evidence as indicated by Good (1965a), page 38. The choice
of the parameters (or hyper-hyperparameters) of the log-Cauchy distribution was
made by Good (1967) by considering six different sets of these parameters and
finding (2.4) to have a slight advantage over the others in the sense of being
more consistent with non-Bayesian procedures. Moreover a graph of (2.4) looks
like a rectangular hyperbola, whereas with some other values of the parameters,
the graph has a kink in it.

In the present work we shall assume the density D*(¢, 1) as a prior, with ¢
taking the values 7, s and rs, and with ¢, the values p,., p.; and p,;.

We shall require the following formula (for example, Good (1965a), page 36)

LN TI T k

ORI m B (5m, = m)
L'k)'T(N + tk) T[ m,!
where I'(k)* means [I'(k)]. (This formula reduces to 1 when N = 0 and to 1/¢
when N = 1 as it should.) Consequently

(2.6) P((m,)| D*(1, 1)) = @((m,), 1, 1) ,

(2.5) P((m,) | D(t, k)) =
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where

~ N T(@rk) I T(m, 4 t'k)
@7 Om)s 1 ) = 1T W Ty TN 4 10k) P(k) dk
_ N T II T(m, + k) <k >a’k
T Im! * Tk)TWN k) NS

Since ¢(k) is roughly proportional to 1/k, when k is not very large, we can ex-
pect that ®((m,), ¢, ') will not be very different from ®((m,), ¢, 1). Although
this is intuitively to be expected from the form of the integral, we cannot replace
¢(k) by 1/k (nor any other improper density) for it would make the integral in
(2.7) diverge. .

There is a much more general principle involved in the above argument than
we have stated. Suppose for the moment that k is a positive hyperparameter
with any hyperprior. Then if k is replaced by 'k and the result is multiplied by
1/k and integrated the result is formally independent of #'.

3. The choice of priors. When the row totals (n,.) are not fixed in advance, .
then given H we shall need to assume a prior for (p,.). This prior should not
involve s because the row categories could usually be combined with various
numbers of column categories in different experiments. We shall adopt D*(r, 1)
and D*(s, 1) for the prior densities of (p;.) and (p.,), given H, when the cor-
responding marginal totals are not fixed in advance. For Model 1 we need both
these priors, and we assume them to be independent. Similarly, when H is
given, we assume D*(rs, 1) for the prior density of (p,;). In other words, wher-
ever we need to assume a prior we assume the multinomial prior that was found
useful by Good (1967) and by Good and Crook (1974).

In virtue of the “lumping” property of Dirichlet distributions, which was men-
tioned in Section 2, the priors for (p,.) and (p.;), given H, do not need to be
assumed for they must be D*(r, s) and D*(s, r) respectively.

4. The probabilities of the marginal totals and of the interior of the table.
It was pointed out independently by Fisher (1934) and Yates (1934) that

(4.1) Pl(n)] (1), (), H) = LLrel IL2sE

a formula that does not depend on any priors because (p;.) and (p.;) have con-
veniently been eliminated. We denote this Fisher—Yates probability by F.Y. It
shows, that, under Model 3, H is a simple statistical hypothesis.

For calculating the Bayes factors F,, F, and F,, we need some formulae for
further probabilities resembling the left side of (4.1).

In virtue of the priors assumed in Section 3, we have

4.2) P((n;.)|H) = ®((n;.), r, 1) when row totals are not fixed;
(4.3) P((n.;)| H) = ®((n.;), 5, 1) when column totals are not fixed;
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and
(4.4) P((n;) | H) = ®((n,;), rs, 1) -
From (4.1), (4.2) and (4.3) we have
(4.5) P((n;) | H) = ®((n,.), r, )P((n.;), s, ) F.Y.

Again, if the column totals are not fixed, we have

P((n))] (n2.), H) = P((n5), (n.5) | (n..), H) (trivially)
(4.6) = P((n;)| (n..), (n.;), H)P((n.;) | H)
= ®((n.;), s, ) F.Y.,"
and N
4.7) P((n;) | (n..), H) = P((n;;) | H)[P((n.) | H)
= O((ny5), 7, D/ D((n,.), 7, 5) -

Further, since (n,;) implies (n,.) and (n.;), we have
(4.8) P((ni)) | (mi.), (n.5), H) = P((n) | D)[P((n,.), (n.;)| H)
= ®((n;), rs, )/P((n..), (n.;) | H)
where, finally, .
(4.9) P((n.), (n.;)| H) = X* P((my;)| H)
= 2 *D((my), rs, 1),

and Y}* denotes a summation over all tables (m,;) having the “right” marginal
totals, that is, for which m;. = n;. and m.; = n.; (in a self-explanatory notation).

5. The Bayes factors F,, F, and F,. Using the formulae of Section 4 we see
that

(5.1) F, = P((n)) | H)/P((n))| H)
| = (), s, DIR((), 7, DO((ny), 5, DE.Y.Y;
(5.2) F, = P((n)| (), B)/P((n5) | (n..), H)

= (), 7, DAR((m), 7, H(n), 5, ) F.Y.} 5
(5.3) Foy, = ®((n5), 75, D{@((n,.), 1, )O((n.,), 5, NF.Y.},

by symmetry, where F,, denotes the Bayes factor against H when the column
totals are fixed. In view of the penultimate paragraph in Section 2, we can ex-
pect F,, F, and F,, to be not very different.

Finally,

(5-4) Fy = P((n;) | (n..)s (n.;)s H)[P((ni5) | (n..)s (n.;), H)
= O((n,;), rs, 1)/{F.Y. 5* ®((my;), s, 1)} .
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As pointed out in Good ((1965a), page 52), 31* can here be written
T'(rsk)

(5.5) NP TV & rok) A(k)g(k) dk

where

(5.6)  A(k) = Ak, (n..), (n.5)) = S(ILes %"y 9) ey (1 = x2y5)7

where &(-- ) denotes “the coefficient of ... in.” (It is convenient to define

A(k) as 1 when N = 0.) Methods for calculating or approximating A(k) are dis-
cussed in Appendix B.

The integrals that occur in the formulae for F,, F, and F, are all of the form
that was used in Good (1967) and in Good and Crook (1974) and can therefore
be handled by similar computer programs. But the summation that occurs in the
denominator of F; is troublesome if handled directly, unless N is small, because
the number of terms in it is equal to the number A((n,.), (n.;)) of “arrays” having
the assigned marginal totals. This number is in fact A(1, (n,.), (n.;)), and it is
useful to know this number when programming the calculation of F;. The
enumeration of arrays is a classical combinatorial problem and some of the
literature is referenced in Appendix A.

6. The Bayes postulate. It isinteresting to consider what happens to the Bayes
factors F,, F, and F, if ¢(k) is the Dirac delta function d(k — 1). In this case
the prior for (p,;), under H, is given by the uniform multidimensional “Bayes
postulate.” We denote the factors in this case by F’, F,’ and Fy’. We have

Fr— L(rs)I'(N + r)I'(N + ) IT n;;!

@D PTT(N + ) T(OTE) T ! T 0y
(6.2) F) = L(s)'T(N + ) IT 7! ,

* T T + 9 I
(6.3) F, = N!'TI n,;! 1

I et ITn st A((ne.), (n.5))

The Bayes factors F,’ and F,’ agree with the values given by Good ((1950), pages
99 and 100) for Models 1 and 2 so we have obtained a verification of formulae
(5.1) and (5.2). Moreover, F,/, the factor against the null hypothesis under
Model 3, assuming the Bayes postulate, can be obtained directly. We need only
invoke the Fisher-Yates formula (4.1), combined with the remark that, given
H combined with the Bayes postulate, all contingency tables with assigned mar-
ginal totals have equal probability (which is therefore the reciprocal of the
number of arrays). We have here made use of (2.5) with k = 1.

A conjecture was made by Good ((1950), page 100) that for Model 3 the fac-
tor against the null hypothesis “may reasonably be taken” as F,'F, [F,’, where
F, is F,' with “rows and columns interchanged.” Doubt was expressed in Good
((1965a), page 51), but we are going to see by calculations that the conjecture
appears to be confirmed. The conjecture implies the following approximation
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to the number of arrays:

(6.4) A((n.), (n.5)) = B((n..)s (n.;))
where
I (ni, +ns — 1) H(n,j +r— 1)
_ i n.;
(6.5) B((n..), (n.;)) = <N e 1)
N

which is equal to the product of the numbers of ways of distributing the row
totals in the rows and the column totals in the columns, divided by the number
of arrays of total N. (For an intuitive interpretation of (6.5) see Section A2;
and for another asymptotic formula for the number of arrays, for further justi-
fication, and for a generalization, see Appendix B.)

The ratios of B/A for various marginal totals are shown in Table 1. We have
taken row totals equal in each example because a simple general formula for
A((n..), (n.;)), is not known even for r = s = 3. We also assume that no row
or column total vanishes since this would effectively reduce the size of the array.
The ratios 4/B are fairly close to 1 except when the n.;’s are very rough, and
even for the table (10, 10, 10; 1, 1, 28) we have B/4 < 2.6. The approximation
can be improved still further by introducing a correction for ‘“‘roughness,”
namely by writing
(6.6) A=C, where C = 1.3N*B/(r ), n?}),

TABLE 1

The numbers of arrays for various marginal totals, the approximations
B and C, and the ratios A/B and A|C

Row totals Column totals A B A/B (o A/C
1, 1, 1 1, 1, 1 [ 4.42 1.35 5.7 1.05

2, 2, 2 2, 2, 2 21 15.54 1.35 20 1.05

2, 2, 2 1, 1, 4 9 9.71 0.93 8.4 1.07

3, 3 3 3, 3 3 55 41.14  1.33 53 1.04

4, 4, 4 4, 4, 4 120 90.4 1.33 118 1.02

4, 4, 4 2, 2, 8 36 43.4 0.83 38 0.95

4, 4, 4 1, 1,10 9 15.91 0.56 9.7 0.93

6, 6, 6 6, 6, 6 406 308.5 1.32 401 1.01

10, 10, 10 10, 10, 10 2211 1690.1 1.32 2197 1.01

10, 10, 10 2, 6,22 168 272.6  0.62 203 0.83

10, 10, 10 1, 10, 19 195 244.4  0.80 206  0.95

10, 10, 10 5, 5,20 441 598.9 0.74 519 0.85

10, 10, 10 2, 2,26 36 80.0 0.45 46 0.78

10, 10, 10 1, 1,28 9 23.0 0.39 11.4 0.79

20, 20, 20 20, 20, 20 26796 20555 1.30 26722 1.00

20, 20, 20 10, 10, 40 4356 6254  0.69 5420  0.80

4, 4, 4, 4 4, 4, 4, 4 10147 7493 1.35 9741 1.04
6, 6, 6, 6, 6 6, 6, 6, 6, 6 1.642(8) 1.189(8) 1.38 1.546(8) 1.06




1168 1. J. GOOD

in fact
6.7) 0.75 < A/IC < 1.1

in all the examples tried (with n,. mathematically independent of 7). If the row
and column totals are both “rough,” then perhaps

(6.8) A= D where D = 1.3N*B/(rs }; n}. n%;)

but this is only a guess. In any case the approximation 4 =~ B is likely to be
quite good except for very rough marginal totals. Thus the statistical conjecture
of Good ((1950), page 100) leads to an approximate solution to the purely com-
binatorial problem of enumeration of arrays, and conversely the approximation
A =~ B tends to corroborate the conjecture. See also Tables 2 and 3.

TABLE 2
Comparison of A(k), Ao(k) and B(k) (k = 1, 2) for some square tables having flat margins
k r N A(k) Aok) B(k) Ao(k)/Ak) B(k)|A(k) Ao(k)/Bik) D|A
1 3 3 6 7.268 4.418 - 1.21 0.74 1.65 .957
1 3 21 666 605.4 507.2 0.91 0.76 1.19 .989
1 3 60 26796 24118 20556 0.90 0.77 1.17 1.00
1 3 300 13268976 11924803 10192241 0.90 0.77 1.17 1.00
1 4 4 - 24 32.71 16.91 1.36 0.71 1.93 0.92
1 4 16 10147 9540 7493 0.94 0.74 1.27 0.96
1 4 32 981541 882107 730929 0.90 0.75 1.21 0.97
1 5 5 120 187 82 1.56 0.68 1.21 0.89
2 3 3 48 65.476 40.926 1.36 0.85 1.60 1.11
2 3 21 — 9569627 8575176 — —_ 1.12 —
2 3 300 — 1.4648(20)  1.3536(20) — — 1.08 —
2 4 8 53784 64193 45854 1.19 0.85 1.40 1.11
0.5 4 8 2.022 1.647 1.020 ~ 0.82 0.50 1.61 0.65
TABLE 3
Values of A, Av/A, B/A and D|A for some tables with flat column totals

(ns.) (n.3) A Ao/A B/A DA

15, 15 10, 10, 10 91 0.68 0.84 1.09

5, 25 10, 10, 10 21 1.25 1.44 1.30

5 5 20 10, 10, 10 441 1.17 1.36 1.18

5 5,

40 10, 10, 10, 10, 10 15876 1.42 3.55 2.33

In connection with these “corrections for roughness” it is interesting to recall
the following judgment made by Yates (1934) in relation to the accuracy of the
x* approximation to the distribution of X* for contingency tables: “Cases where
some of the marginal totals are large and others are small...may be expected
to give much more unfavourable results.”

7. A conjectured approximation for F,. Since F, is much more troublesome
to compute than F, and F, it would be useful if we could extend the conjectures
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of the previous section to the models of the present paper, for example, with
the conjecture

(7.1) Fy= F,F,)[F, .
This conjecture will be tested numerically and the results reported in Part II.

(See also Section 13.) It may be possible to improve the approximation by al-
lowing for the roughness of the row and column totals as in (6.6) and (6.8).

8. The evidence from the row and column totals. Let us denote by FRACT
the Bayes factor against H provided by the row and column totals alone. Then

(8.1 FRACT = P((n.), (v )| H) _ Fy
P((n.), (n.;)|[H)  Fy

In Part IT we shall investigate the conjecture that FRACT is not very far from
1 except for very rough marginal totals. When combined with (7.1), this con-
jecture asserts that F, and F, are of the same order of magnitude as the geometric
mean of F, and F,; and it would not be surprising to find that F,, F,, F,, and
F, are usually all of much the same magnitude. This would be consistent with
the judgment made in the introduction related to some opinions of Fisher and
of Sokal and Rohif.

9. An interpretaticn of F, in terms of multinomials. It is known (Good
(1965a), (1967)), or easily deducible from (2.5), that the factor against the null
hypothesis of equiprobability provided by a multinomial sample (m,, m,, - - -, m,) is

« L(tk) TI T'(m, 4 k) I m,!
9.1 v k)ydk = —— 2L ®((m,), t, 1) .
O R PO LI @((m,), 1, 1)

Let Hy,, H,. and H,,denote the null hypotheses of equiprobability for the whole
table, and for the row and column totals, respectively. For example: H,, means
that p,; = 1/rs (i=1,2, ---,r; j=1,2,...,5). Then from (5.1) and (9.1)
we have
(9.2) F, = F(Hy,: (n;)) ,

: F(H,.: (n))F(H.,: (n.5))

where the colons are read “provided by.” A direct proof of (9.2) can be given
that does not depend on the Dirichlet priors, so that it could be used under other
assumptions. For we have
P((n) | ) = P((n.) | Ho P((n.5) | HLo) F.Y.
P((ng;)| H) = P((n..) | H,.)P((n.;)| H)F.Y.
Hence
P((ny) | ) _ P((n) | H) | P((n)| Ho) | P((n.5) |H.0)
P((n;)|H)  P((ni;)|He) P((n;.) | Hy.) P((n.;)|H.o)

and this expresses equation (9.2).
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10. The Bayes/non-Bayes compromise or synthesis. The Bayes/non-Bayes
compromise for significance testing is a technique that is illustrated especially by
Good and Crook (1974) for purely multinomial problems. The main idea is to
treat a Bayes factor as a non-Bayesian criterion and to seek its distribution given
the null hypothesis. We consider this approach first for Model 3 because, for
this model, H is a simple statistical hypothesis. It might be difficult to find the
asymptotic distribution of F; so we proceed by analogy with the multinomial
case. We define the factor F,(k) by taking ¢(k) as a Dirac delta function in the
expression for F; so that
(10.1) Fyk) = N TT T (ny; + K)/T(K)}

AK) T n ! T 5!
(Of course F, is not obtained from F,(k) by multiplying it by the actual ¢(k) and
integrating from 0 to co.) Then max, Fy(k) is a Type II Likelihood Ratio in
the terminology of Good (1965a) and Good and Crook (1974): perhaps it should
be called a hyperlikelihood ratio. Hence the asymptotic distribution of
(10.2) G = (2 log, max, Fy(k))
will be proportional to a standardized normal distribution as in these two refer-
ences. The corresponding result for the multinomial case was surprisingly ac-
curate into the extreme tail. (See also Section 13.) It may be conjectured that
Fy(k) is unimodal, both on the basis of numerical examples and by analogy with
the multinomial problem [see Good (1974) and some unpublished work of Bruce
Levin and James Reeds].

It is not clear whether a hyperlikelihood ratio can be conveniently defined for
Models 1 and 2.

11. Measures of association. It may be conjectured that when any of the
hypotheses of independence is false, then (log F)/N tends in probability to a limit,
where F is the Bayes factor against the hypothesis. If this is so, the limit would
be a natural measure of association which could be called “the weight of evi-
dence per item against independence.” 1Tt is intuitively obvious, when F is F,
F, or F,, that this limit is what was called W, by Good ((1969), page 572), in
other words ‘“‘the expected mutual information between rows and columns,”

(1L.1) W, = 3 pylog L.
‘ PiP.j
The corresponding three-dimensional measure of association is
(11.2) 2 Piis 108 (Pues/ (P PosP-.5)) -

12. Extensions to three or more dimensions. Multidimensional contingency
tables are important in sociology and in medical diagnosis, up to dimensionalities
as high as a hundred or so. But readers interested only in two-dimensional
tables could jump to Section 13.

When using a Bayesian approach to significance testing, for multidimensional
tables, a succession of decisions must be made: (i) whether to test only for
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independence (rather than for the vanishing of second or higher-order interac-
tions); (ii) if so, which hypotheses of independence to test; (iii) which sampling
model to be used; (iv) what priors to assume for the null and nonnull hypotheses.
We have agreed to test only for independence in this paper. If a table can be
broken up into (approximately) independent parts, its analysis is greatly simpli-
fied, so much so that tables are often broken up even if the parts are dependent.
We must now consider decisions (ii), (iii) and (iv).

If the dimensionality of a table is m, then the number of ways of breaking
the table down, by grouping the dimensions, is b,, — 1, where b,, is the number
of ways of partitioning a set of m objects into one or more subsets. The num-
bers b,, (m =0, 1, 2, ...) are known as exponential or Bell numbers; see, for
example, Gould (1971). The sequence begins 1, 1, 2, 5, 15, 52, 203, 877, 4140,
21127, 115975, - - ., and has been tabulated up to m = 74 by Levine and Dalton
(1962). The number 7, of hypotheses of independence is even greater if allow-
ance is made also for conditional independence, such as p,,.p,.; = pui;ps.. for
all k, i and j (in a self-explanatory notation); in fact the sequence 7,, (m = 0, 1,
2, ...) begins 0, 0, 1, 10, 70, 431, 2534, 14820, 88267, 542912, 3475978, . - -.
The exponential generating function (Good (1975)) is

(12.1) Do T2 = exp(er 4 22— 1) — ev.
m:

These large numbers should be taken into account when judging prior prob-
abilities of the various hypotheses or when setting thresholds on significance
criteria. For example, when m = §, if the only one of the 431 null hypotheses
that appeared to be rejectable (or acceptable) was say

PevigeigPeigeigis = PoigigigigPerovsy  (forall iy, ig, i, and i),

then perhaps we should “pay a factor” of 431 for “special selection,” either on
the prior probability of dependence or on the tail-area probability. (A fairly
early published example of allowing for special selection, and the way it leads
to the need to consider very small tail-area probabilities, is given by Fisher
(1949), page 58; and it would be surprising if this phenomenon did not date back
at least to the nineteenth century.) Thus, we might insist on a tail-area prob-
ability as small as say 1/10,000. (For m = 10, the corresponding tail-area would
be say 10~°.) When there are many apparent cases of dependence some theory
of “substantialism” must be invoked, as defined by Good (1965b), page 124. In
accordance with that idea one might test the hypothesis of complete independence
of all m dimensions by using as a criterion the harmonic mean of the tail-area
probabilities corresponding to all the y,, null hypotheses described above. In a
Bayesian analysis one might average the ,, Bayes factors but a weighted average
might be judged more appropriate for a specific problem. This Bayes criterion
can in principle again be reinterpreted as a non-Bayesian significance criterion:
another example of the Bayes/non-Bayes synthesis.
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The difficulty in determining a significance test, when there is a hypothesis
corresponding to each subset of some set of arguments, is especially well known
in connection with multiple regression: see, for example, Aitkin (1974). The
difficulty is even more acute for our problem of multidimensional contingency
tables, and no attempt will be made here to settle the matter.

The remainder of this section is concerned with the generalization of formulae
from the case m = 2 to larger values of m. Let us take m = 3 at first, and con-
sider a ¢ X r X s table, having ¢ Queen’s highways, r rows or roads, and s
shafts, streets or columns.

Consider the hypothesis H(1, 23) of the independence of the Queen’s highways
on the one hand and the roads and streets on the other. (A sufficiently self-
explanatory notation for the hypotheses is here introdu‘ced.) By treating the
roads and streets combined as a single ‘“‘vector” we might hope to treat the prob-
lem as being only two-dimensional. This requires that the prior assumed for
roads and streets combined is a weighted combination of symmetric Dirichlets,
the weight function being ¢. This assumption will be consistent with our pro-
cedure provided that the hypothesis H(2, 3) that roads and streets are independent
has already been decisively rejected. Thus the hypothesis H(1, 23) can be tested
by two applications of the two-dimensional theory already discussed.

Next consider the hypothesis H(-, 2, 3) that roads and streets are independent
conditional on each Queen’s highway 4. This is mainly a matter of performing
g separate “two-dimensional” tests. This may not always be accurate enough for
a strictly Bayesian interpretation because the priors can change as successive
values of # are considered, a phenomenon called “learning from experience” in
Good (1965a), page 51. I believe this criticism is much less serious when the
present priors are used (linear combinations of symmetric Dirichlet’s) than when
straight symmetric Dirichlet priors are used. Let us assume for the present that
this specific example of “learning from experience” is unimportant, at least if
each of the g Bayes factors is interpreted as a non-Bayesian criterion, in accord-
ance with the Bayes/non-Bayes synthesis. We should still need to apply some
theory of “simultaneous inference,” but to consider this intricate matter in
detail would take us too far afield.

Then of the ten null hypotheses, H(1,23), H(2, 31), H(3, 12), H(., 2, 3),
H(.,3,1), H(-, 1,2), HZ2, 3), H3, 1), H(1, 2) and H(1, 2, 3), only the last one
requires a genuine three-dimensional analysis.

The above argument for the case m = 3 extends to all higher dimensionalities,
so that apparently, of the y, null hypotheses, only one really requires an m-
dimensional analysis, namely the hypothesis that all m dimensions are statisti-
edlly independent, the hypothesis H(1, 2, 3, - .., m). But the analysis of this
hypothesis itself splits into several “models,” just as the consideration of the
Hypothesis H(1, 2) or H splits into three models leading to the Bayes factors F,,
F,and F,.

For m-dimensional tables with m > 3 an example where all one-dimensional
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marginal totals are fixed in advance occurs in the “matching” of d decks of
cards, where each deck has a known number of cards of each suit. For discus-
sions of the matching problem see Wilks (1946), page 212, Barton (1958), and
David and Barton (1962). But, as in the two-dimensional case, the main interest
in the corresponding Bayes factor is in the light it can shed on whether the mar-
ginal totals contain much evidence about the hypothesis H of independence.
This will have repercussions on the use of X?, defined for m = 3 by

(12.2) X = i X X N <”m‘j - ——nh“n.ia.n“j )2

TR (O (A N
whose y* theory is based. primarily on the assumption that the marginal totals

are fixed.
We shall concentrate on the case m = 3.

Complete independence in three-dimensional tables. Let us redefine H to mean
independence of Queen’s highways, roads and streets ina ¢ X r X s contingency
table, and we consider the following models. We call the first model number 4
to avoid confusion with the models for two-dimensional tables.

MopEeL 4. Multinomial sampling with grs categories, cell probabilities p,;;,
and sample size N.

MobpEL 5. Deciding the totals n.. (or n,,, or n, ;) in advance, and taking ¢
independent multinomial samples, each with rs categories, and with cell prob-

abilities p,;/p,...

MobEeL 6. Deciding the totals n,,; (or n,.; or n,,.) in advance, and taking rs
independent multinomial samples, each with g categories, and with cell prob-
abilities p,;/p. ;-

MopkeL 7. Deciding the totals n.,. and n..; in advance.

MobpEkL 8. Deciding the totals n,.. and n_; in advance.

MopEeL 9. Deciding the totals n,.., n.,., and n,.; in advance.

Thus, for m = 3, there are six kinds of models for H, or fourteen in all if we
allow comprehensively for permutations of the subscripts. [For m =1, 2, 3,
4, ..., the numbers of models are 1,73, 6, 11, 18, ..., which are 1 less than the
“numbers of partitions into parts of two kinds” (Sloane (1973), page 59), and
are b,,, — 1 if the comprehensive count is used, where the b,’s are again the
exponential numbers.] We have ignored models in which there is “overlapping”
of the subscripts, for example, where n.,;, n,.; and n,,. are all given in advance.
For such models, if they arise, it is perhaps more appropriate to consider the
hypotheses of maximum entropy subject to the given marginal totals (for ex-
ample, Good (1963)) rather than hypotheses of ordinary independence.

As in Section 3, given H, we assume the priors D*(q, 1), D*(r, 1) and D*(s, 1)
for the respective one-dimensional marginal totals, when they are not fixed; and,
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given H, we assume the prior D*(grs, 1) for (n,;). It follows that, given H, the
priors for the one-dimensional marginal totals are respectively D*(q, rs), D*(r,
sq) and D*(s, gr).

We introduce the notation

(12.3) W((m,), t, ') = (N)'®((m,), t, t') [ m,! .
Then

(12.4) P(n,..)|H) = ®((n,..), 4, 1)

and

(12.5) P((ny..) | H) = ®((n,..), 4, 75) .

(12.6) P((n..)| ) = ©((n..;), 75, 9)

(12.7) P((t,) | H) = ®((1y.,), 975, 1) -

An analogue of the Fisher-Yates formula (4.1), readily proved, is

! R .
(12.8)  P((my) | (m4.)s (n.0)s (.. ), H) = 1L (N,?H T,I GHL

From (12.4) and (12.7) we infer that

(1290  F, = W((ns35), grs, 1)
Y((n,..), g, H¥((n.;.), r, DE((n..;), 5, 1)

which gives the Bayes factor against independence of Queen’s highways, roads
and streets, when sampling N objects at random, without constraints. An ob-
vious analogue of (9.2) could be jotted down.

By using (12.8) and arguments resembling those for (4.6) and (4.7) we obtain

(12.10) F, = Y((nis), grs, 1) .
¥((m..)s 4> rs)¥((n...), r, DE((n..5), 5, 1)

By means of the relation (compare (4.1)),
n,. ! TI n.;;!
(2.11) P | (., (., ) = TG Tt
we can prove that
(12.12) F,= W((ni5), grs, 1) .
((ms..), ¢ D¥((n.55), 75, 9)

Again, by using (12.8) and arguments similar to those for F;, we obtain
_ N! ) Y((n,;), qrs, 1)

|| PR | R oas] F((m.i5), 18, q)

W), g, 1) 2 ———1:[—;”—”,—‘

where Y ***denotes a summation over all m,;; for whichm, ;, =n,,m, ;=n.;
(for all 7 and j).

(12.13)  F,
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By using (12.11) we can prove that
N! ) Y ((r415), grs, 1) ,
M r. T ngt ZVR[Y((m5), grs, D/TT myst]
where Y% denotes a summation over all m,,; for whichm,., = n,..andm_; =

n..; (for all &, i and j).
By using (12.8) we can prove that

(12.14)  F, =

(12.15) F, = (NY)? ) Y ((r415), grs, 1) ,

M AT e T et 282 (¥ (), grss D/TT mai;!]
where Y 1**denotes a summation over all m,;; for whichm,.. =n,..,m.,. =n,.,
m,.; = n,,; (for all &, i and j).

The factors F, to F, all reduce to 1 when N = 0 or 1, as they should.
The summations >;**3, 3% and };»*® can all be expressed in a form similar
to (5.5). For example,

L8 _ (o L(qrsk) Nhes " Muuj
(12.16) 2 = {3 m E(11 wa IT ;" IT y;"+9)

(1 — wyx, ;) "o (k) dk ,

while the expressions for };~*® and };** can be directly inferred from (5.5)
because they are also “‘two-dimensional.” The number of terms in };%%3, if
computed directly instead of by complex integration, is equal to the number
A((m,..), (n.;), (n..;)) of three-dimensional arrays having the assigned one-dimen-
sional marginal totals. Apart from the obvious generating function JJ (1 —
w,x,y;)"%, there is perhaps little known about the enumeration of such arrays.
As clarified at the beginning of Section A2, a conjecture analogous to (6.4)
would be

(12.17) A((my..)s (n...), (n..5) = B((n..), (n.;.), (n..;)) »
where

(12.18)  B((n,..), (n...), (n..;))
H(nh.. 4+ rs — 1) I (nz + sq — 1) il <”~-i + qr — 1)

n,.. n.;. n.;

S

There is the possibility of improving the conjecture along the lines of (6.6) to
(6.8), perhaps by multiplying B by a quantity resembling
(12.19) 1.3°N%/(grs >, n.. X n?,. Yo nk)),

which reduces to 1.69 wheng = r = s =2,n,.. = n,;, = n,.; = 1 (forall 4, i, j)
so that N = 2; and in this case 4/B = 1.75.
Likewise an analogue of conjecture (7.1) would be, in a sufficiently
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self-explanatory notation,
(12.20) F, = FOF®F®|(F,)?
_ V((1,15), 975, 1) ,
¥((mh..), grs, )¥((n...), grs, 1)¥((n..;), grs, 1)

I hope we shall test these conjectures numerically in due course.

Unider Model 9, H, could in principle be used as an “orthodox” (non-Bayesian
or “Fisherian”) statistic, by the Bayes/non-Bayes synthesis. Moreover Fy(k)
could be defined in a manner similar to that of Fy(k) in (10.1), and the asymp-
totic distribution, given H, of

(12.21) (2 log, max, Fy(k))t,

under Model 9, will be proportional to a standardized normal distribution. This
distribution may be more accurately attained than that of X?, especially when
many cell entries are small.

Extensions of the results to more than three dimensions can now easily be
made, apart from computational difficulties. -

13. Some provisional numerical examples on the distribution of G, etc. and
the values of the Bayes factors. Since Part II of this work will involve many
distinct calculations and may be delayed for some time, I give here some pro-
visional results, programmed by Dr. J. F. Crook and reported here with his
permission.

Let
(ny; — ni.n /N

(13.1) x =yt i
Y

and the ordinary likelihood-ratio statistic
(13.2) A=23%n;logn; —2> n.logn, —23% n;logn.;,

which both have asymptotically the y* distribution with (r — 1)(s — 1) degrees
of freedom when H is true. Let ¢t — 1 = (r — 1)(s — 1), and let ¢, be the prob-
ability that y* with t+ — 1 degrees of freedom exceeds + — 1 (as in Good and Crook
(1974), or in Good (1967) where ¢, is tabulated). Let Fy(k) and G be defined by
(10.1) and (10.2).

Then, asymptotically, as in the two papers just mentioned,

P(G > x) = ¢, x double tail of the normal “sigmage” x .

We have examined the complete exact distributions of G, X* and A, assuming

independence, for the eleven contingency tables with row and column totals:
[8, 16;8,8,8] [5,5,20;5,5,20] [4,6;2,3,5] [5,10,15;5,5,20]
[4,8,18;5,9,16] [6,6,6;6,6,6] [4,5,9;5,6,7] [5,6,7;5,6,7]
[5,6,7;1,2,15] [2,3,13;1,2,15] and [1,2,2,3;1,1,3,3].
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These totals are small enough so that all possible interiors (n,;) could be examined.

Let P denote an exact tail probability and Q the corresponding asymptotic tail
probability. Let the larger of P/Q and Q/P be called an “error ratio.” A sum-
mary of cases where the error ratio was less than 2 was compiled in the follow-
ing manner. Choose a range [10-*~*, 10~*) of values of Q (v =0,1,2,...)and
record for each of the eleven sets of contingency tables the proportion of times
that the error ratio is less than 2 among the cases where Q is in the chosen range
(for a specific statistic such as A). For the statistic A, and the range 10~° <
Q < 107* we obtained, for the eleven contingency tables, the ratios:

0.33,1,0.50,1, 1, 0.33,0.20,0, —, 1, —.

We crudely summed these figures to get the entry 5.‘36/9 of the summary, Table
4. This table is itself crudely summarized by adding up the results for v = 0,
1, ..., 8. The theoretical asymptotic distribution of G, allowing for c,, thus
appears to approximate its exact distribution better than those for X* and A,
although the number of experiments needs to be increased.

TABLE 4
Fraction of cases where 101 < Q0 < 10~ and < P/|Q <2
v 0 1 2 3 4 5 6 7 8  Total
G 22 9.67/11 7/10 6/8 5/6 4.59/5 2.37/6 1.53 1/4 39.1/55
X> 2.67/3 8.25/11 6.21)8 4.76/8 3.33/6 1.85/5 1.5/5 0.67/3 1/2 30.2/51
A 12 4.4211 5.36/9 4.72/6  4.8/7 3.36/6 2.14/5 1.67/4 0/1 27.5/51

In the output of another program we computed various statistics for all pos-
sible tables with eleven sets of row and column totals, such as[15, 15; 10, 10, 10].
Here is the output for the 2 X 3 table with n,, = 8, n,, = 7, n;; = 0; n,, = 2,
n,, = 3 and n,, = 10:

F, =47, F, =139, F, =41, F, = 17.5 (see Section 5) .
F/ = 1360, F =110, Fj,, = 669, FJ = 316 (see Section 6) .
BJA = F/|F) = 0.833  where F/ = F/F!,|F’ (see Section 6).
F, = F,F,|F, =338, F/F, =0517,
X*=152 (2 d.f.),  Q(X* = 1/2000,
A=194 (2 d.f), Q(A) = 1/16000 .
Total of F.Y. probabilities for tables at least as extreme = 1/1700 = P, say.
FRACT = 2.71 (see Section 8) .

Thus F,, F,, F,,, are very close, and F; is of the same order of magnitude; and
F, and F, are within a factor of 2 of each other. We have further F,PNt =
0.056, which is the kind of relationship that occurred in the earlier research on
multinomial significance tests (Good (1967); Good and Crook (1974)).

The big discrepancy between Q(A) and P is consistent with the dubious
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asymptotic y? approximation for A in many cases for small P-values, where the
x* approximation for X? is more often still satisfactory.

The factors F,’ etc. are bad overestimates, and show the need to use mixtures
of Dirichlet distribution, as advocated in Good (1965a), and as were used in the
more comprehensive work on multinomial significance tests.

Note that, as we expected, FRACT (or rather the absolute value of its loga-
rithm) is not large, i.e., the row and column totals do not give much evidence

against H.

14. New literature on the Dirichlet approach. After this paper was sub-
mitted, a paper on the “Dirichlet” approach to two-dimensional contingency
tables was published by Ganel and Dickey (1974). It generalized the model of
Good (1950, 1965) by using general(but unmixed) Dirichlet distributions instead
of symmetric ones. My reason for using symmetric Dirichlets, for the most part,
is the same as was mentioned in the analogous work on the multinomial distri-
bution (Good (1967), page 430), namely that “my aim was to use the simplest
model that makes reasonable sense.” The use of mixtures of general Dirichlet
distributions would be somewhat complex. This is not by any means to deny
that the general Dirichlet distributions (and their mixtures) are of use, so that
Ganel and Dickey’s paper may be regarded as complementary to the present one.

Acknowledgment. I am indebted to James F. Crook for interaction and fel-
lowship which kept these problems in continual focus during a critical phase of
the work.

APPENDIX A
The enumeration of arrays

Al. Brief review of the literature. The problem of enumerating arrays with
given marginal totals, that is, of evaluating A((n,.), (n.;)), in the notation of
Section 5, has been attacked in the literature of combinatorics. The generating
function (5.6) with k = 1 is easily seen, but simple “explicit” formulae for the
number of arrays are known only in a few special cases. We shall discuss (5.6)
again in Appendix B.

It may be noted that A((n,.), (n.;)) is equal to the number of ways that r types
of objects can be distributed in s boxes, so that there are altogether n, objects
of type i, and there are n,; objects in box j. This interpretation is mentioned,
for example, for the case where r = s and all marginal totals equal n, by Nath
and Iyer (1972).

When r = s and all the marginal totals are equal to n, we write A(n,r X r)
for A((n;.), (n.;)). Obviously
(AL.1) An,1 x 1) =1, An,2 X 2)=n+1
and it was proved by MacMahon ((1915-1960), 2 161) that

(A1.2) A(m, 3 X 3) = (") + 3("HY) .
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These numbers were tabulated in 1856 (see Sloan (1973), page 142) and were
called “doubly triangular numbers,” because they happen to be equal to the
triangular numbers of triangular numbers. The interpretation in terms of arrays
was not then known.

Gupta, in Anand, Dumir and Gupta (1966), conjectured that

(A1.3) A(n, rx r) — 2527;1)(’_2)/2 Cu(r)(”::ﬁ.lzty)
where the coefficients ¢, are independent of n. This conjecture was proved by

Stanley (1973). Based on this conjecture, Anand, Dumir and Gupta obtained
the formula

(A1.4) A(n, 4 X 4) = (*F3) 4+ 20("F*) + 152(*F% + 352(%°) .

Stein and Stein (1970) also assumed Gupta’s conjecture, and used a branching
algorithm, the idea of which they attribute to MacMahon, to evaluate A(n,
r X r) for enough values of n to obtain the coefficients for the cases r = 5 and
6, namely:

(AL5) I, 115, 5390, 101275, 858650, 3309025 and 4718075

and
1, 714, 196677, 18941310, 809451144, 17914693608,
(Al.6) 223688514048, 1633645276848, 6907466271384,
15642484909560 and 1466561365176 .

In addition, Stein and Stein give tables of the exact values of A(n, r X r) for
r =4,5and 6 withn = 1(1)11; and for n = 2, 3, 4 and 5 with r = 1(1)15. For
example, A(5, 15 x 15) = 1.9208... x 10%.

Anand, Dumir and Gupta (1966), give the formula

(A1.7) 2, A, 2, 7 X Ax[(rl) = e*i(1 — x)H,

which is of the form called a “double exponential generating function” by
Stanley (1975).

Some other results can be inferred from Abramson and Moser (1973). For
example, the number of X 3 arrays with all row totals equal to n, and column
totals p, v, rn — p—v(n= p,n=v,r=2).

A2. Approximations to the number of arrays. Approximations to A((n,.),
(n.;)) have already been mentioned or suggested in (6.5), (6.6) and (6.8). An
intuitive interpretation of (6.5) can be given: Imagine each row total to be
partitioned into the s cells in its row giving a table T,, and each column total
partitioned into the r cells in its column giving a table T,. From the point of
view of someone who did not know the marginal totals, each table T, and T,
could be regarded as more or less a random table of sample size N. Thus the
“probability” that T, and T, are identical might be roughly equal to the reciprocal
of the number of ordered partitions of N into all s cells.



1180 I. J. GOOD

If we know that the row totals are rough this intuitive argument is somewhat
undermined, so a “correction for roughness” appears to be indicated.

A similar argument explains the approximation (12.17) for the number of
three-dimensional arrays.

A further discussion of approximations is delayed to Appendix B where a more
general problem is discussed.

APPENDIX B
The calculation of A(k, (n,.), (n.;))

B1l. Some exact formulae. It will be recalled that to calculate F,(k) and F,
we need to compute A(k) = A(k, (n.), (n.;)), as defined by (5.6), for positive
values of the real number k, unless we succeed in satisfying ourselves that (7.1)
or (B2.1), below, give adequate approximations.

I here mention some formulae for A(k) the proofs of which I hope to publish
in Good and Crook (1976). We write m = (n,.), n = (n.;). Let

(BL.1) hn(k) = Z(x™) ITi-1 (1 — xp;)7",
so that 4,,(k) is a generalization of the “homogeneous product sum” #,(1). Then
(B1.2) Ak, m, m) = Z(y*) R (K) by (K) - - - by (K))

and this is a generalization of a formula for 4(m, n) given by MacMahon (1915-
1960 1, 234). It can be proved that
(BL.3) thi(k) = k[h;_(k)s, + hy_o(k)s; + - -+ + hu(k)s, s + 5]
where s, =y, + y,+ -+ + Yo S =y +yi+ -+ +y2 ..., of which the
case k = 1 gives the Newton-Crocchi formulae (see Vahlen (1898-1904), page
465). (B1.3) can be used recursively to express the 4,(k)’s in terms of the power
sums s;, S, - --. Then (B1.2) can be used to evaluate A(k, m, n), a method used
with k = 1 by Stein and Stein (1970) for some of their results.

One of the main formulae in Good and Crook (1976) is

(B1.4) A(k, m, n) = Hlt 5, 0 T[1, C(k, (%), m,) ,
. ] J

where

(BL.5) Clk, (@), m) = F(x™) [T (1 — x0;4)7*

t;isany integer exceedingn; (j = 1, 2, - - -, 5), ; = exp(2z(—1)#/t;), @ denotes

O @22 ooy W = (Y, by, ey y),andy; = 0,1, .-, — 1 (j=1,2,--4,9).
Also

(B1‘6) C(k’ (wjvf)’ mz) - Za k“1+“2+'--sla1 Szaz e

alatagl - .. 12933 ...

where a,, a,, a;, - - - run through all nonnegative integer solutions of

ay + 20, + 3oy + -+ - =m,,
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and
Slzzja)j”f, Szzzja)jm’j,....
For example,

1
(B1.7) Ak, n,r X r) = ———— 31, o”[C(k, (w*5), n]"
31y @I @) n)
where w = exp[2n(—1)/(n + 1)], each of v, v,, - - -, v, runs from 0 to n, and

¥ =v;, + v, + -+ + v,. For example,
(B1.8) Ak, 3,r X r) = _2’% 3, (= 1)EH(kES,E + 3KS,S, + 28)"

with the appropriate definitions of $,, S, and S,, and where each of v;, v,, -« -, v,
runs from 0 to 3. Note that, given k and n, C(k, (#*s), n) depends only on the
frequency count of (v;) (the numbers of zeros, ones, etc., among its components),
a fact that leads to a big reduction in computer time.

We have used (B1.7) for computing A(1, n, r X r) to 13 significant figures for
n = 3(1)8, r = 5(1)8 and the results agree with those of Stein and Stein where
they overlap. (B1.7) has also been used for values of k = 1. The branching
method used by Stein and Stein to count arrays can be generalized to provide
another method for calculating A(k, n, r X r) but it is much more difficult to
program and we believe it is slower.

Some corresponding formulae for three-dimensional arrays are given in Good
and Crook (1976). In addition a few more special results are proved there,
such as ‘

(B1.9) Ak, 1,2 X 2) = JIn_, (e (noyrE-ty
(B1.10) Ak, 2,1 X 1) = (r)(kj2)" ZLOQ’{—Q—( T f”)

of which the case k = 1 is given by Stein and Stein (1970). Further
(B1.11) = Ak, 2(,r;)z>< nx _ o ikz//;x)% ’

of which the case k = 1 is (A1.7).
Very explicit formulae for A(k, n, 3 X 3) (n = 1, 2, 3 and 4) are given in Good
and Crook (1976), for example, A(k, 1,3 X 3) = 6k®and

(B1.12) A(k, 3,3 x 3) = 6(*+%)® + 12(*3")%k® + 18(*F*)(*5")*k*
+ l8(k;—1)2k5 + k9 .
B2. Approximations to A(k). We now discuss approximations to A(k) from
which F; can be approximated via equations (5.4) and (5.5). One of these ap-
proximations arises from an asymptotic expansion for large k, but the first term

of the expression appears to be a good approximation even when k is as small as
1, that is, for the enumeration of arrays. Unfortunately when k = 1, unlike
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I

Stirling’s formula for the factorial, the approximation is less good when the
second term is taken into account. If Fy(k) takes its maximum value when
k < 1 this asymptotic expression will not be useful, and then one may need to
rely on the approximation (7.1), or, if practicable, to use one of the accurate
methods described in Section B1.

Just as Fy(k) was defined in Section 10 by taking ¢ as a Dirac delta function
in the expression for F,, we define F,(k), F,(k) and F, (k) in the obvious analo-
gous manner, so that F,(1) = F/, Fy(1) = F,, and F,(1) = F},,, where F,’ etc.
are defined in Section 6. The obvious generalization of the approximation for
Fy' (for which special case we have mentioned numerical support) is

(B2.1) Fy(k) = Fy(k)F o (k)|Fy(k) (k=1).
This implies, after some straightforward manipulations, that

(B2.1A) A(k) =~ B(k) (k=1),
where

l_—[ni,-}-sk—lHn,j—i-rk——l
(B22)  B(k) = B(k|(n.), (n.,) = | ni(zu Zsk E Y o
N

9

which generalizes (6.4) and (6.5). For example, for square tables with flat
marginal totals n, we see from (B1.10) and (B1.12) that the ratio B(k)/A(k) for
(k, n,r)=(2, 2, 4) is 0.853, for (4, 2, 4)is 0.923, for (2, 3, 3) is 0.876, for (4, 3, 3)
is 0.938, but for (%, 2, 4) is 0.504, and for (1, 2, 4) is 0.231. See also Table 2.

Some of this appendix is concerned with a partial justification of (B2.2) along
mathematical lines. To this end we consider a different way of approximating
A(k) (defined by (5.6)) based on a multivariate saddlepoint theorem. The solu-
tion is given in compact form in formula (B2.13) which requires the evaluation
of a determinant and, for terms after the first, the inversion of a matrix. The
determinant and inverse take simple forms when the column totals are equal,
and we give a more explicit solution for this case in formula (B2.20).

Note first that 4(k) is unchanged if we replace y, by 1. This is because in
each term in the expansion of ] (1 — x,y;)7*, the sum of the powers of the y’s
must be equal to that of the x’s. For this reason A(k) can be expressed as a
contour integral in r + s — 1 dimensions rather than r + s dimensions.

We now invoke a theorem for approximating coefficients in a power of
f(z) = fz1, 23, - - -, 2,4,.,), Where f(z) is a power series having nonnegative co-
efficients: see, for example, Good (1957, 1961). For the present application

(B2.3) f(@) = T IT5=0 (1 — xi9)7
where y, =1, and z,=x, 1 Zh<7r), z, =y, r+1<h<r+s— 1).

Similarly, letm, =n,, (1 <h<r),m,=n., . r+1<h<r+s— 1). The
theorem gives an approximation for A(k), officially when k is large, but its first
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term appears to give good results in the present application even when k is as
small as 1, that is, it appears to lead to a good approximation to the number of
arrays, judging by numerical results for a limited class of tables for which the
results could be calculated without using a large-scale computer. Further nu-
merical results will be reported in Part II.

To apply the theorem we first write down equations satisfied by the saddle-
point o = (o;, Py, - - *» 0,1,—1)- It Will be convenient to write p,,; = 7; (j = 1,
2, ---,5). We may assume, without real loss of generality, that n,, > n;, for
all j. We have

(B2.4) "o = pologfe) = Dy 2T (1=i=h),
k dp; 1 — p7;

Bimr, Dlogflp) = Diw g2 (15jss-1)
T 1 — p;7;

(this is also true when j = s, but is not then an independent equation), and, as
can be seen, .

0<sp, <1l (i=1L,2,--.,r); 027,51 (j=1,2,--4,8, r,=1.
Owing to the convexity of a function called f* by Good ((1957), page 874),
these equations must be uniquely solvable by a method of steepest ascent, but
the following iterative method has been found to work. When p,, p,, - - -, p,
have assigned values, then eack of z,, ---, 7, , can be obtained by Newton’s
iterative method, because the right sides of equations (B2.4) are increasing in

all variables. We can then solve for p,, p,, - - -, p, again; and so on, in a higher-
level iteration. It can be seen that, at every stage of the iteration, we have

(i) o, < ppifn, < my., (i) 75 < 70 if ey < mg, (i) po/ny. > pyfng. if n, < my,
@iv) ti/n.; > tpfn. o if n;, < ngy (V) o < nyf(n. + k).

Let B = (B1s By + - +» Br4s—1) be @ vector of nonnegative integers, where |8| =
Bi+ By+ -y Brrscs = 2, and let

(B2.5) Ky = { prat (ph a—f};)”’} log f(p) ,

where the p’s are regarded as variables until after the differentiations have been
performed. Let v,’s be defined by the identity

iBlz0 Y g8 _ 1lz3 Kp
(B2.6) Sk = exp {k = g &}
where the multivariate notations used, for example, by Good (1957) are adopted.
In particular
(B2.7) vo =1, v,=0 if |[B|=1 or 2,
’ ve = ke, if |B|=3,4 or 5.

Let K denote the symmetric matrix formed from the x,’s having |8| = 2,
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that is,

0 0 '
(B2.8) K = o2 (0 -2 ) log fio)}

9o oo
(h,W=1,2,3,...,r + s —1). In our application K can be expressed as a
block matrix,

(B2.9) K — [Ku Ku],
KZI K22
where
(B2.10) K, = diag { s, PiT } .
(1 —_ pirj)z 1=1,2,00,7 9
B2.11 K, = di N J17 }
( ) 23 1ag { i=1 (1 — pifj)z T

— K. — 0:%74
(B2.12) K, =Kj = {(1 — ,01 Tj)z}‘i=1,2,--~,r; P
where the prime denotes transposition. (K would be singular if we had allowed
Jj to range from 1 to s. This would have prevented the application of the
saddlepoint theorem.) Let A denote the determinant of K. Then, leaving aside
finer points of rigor, the saddlepoint theorem gives the asymptotic formula (in
which || = 2 contributes nothing):

even v 1 élﬂl N —1.
(B2.13)  A(k) ~ Ak) S @TﬁW(_ﬁ) Z(w)(WK-u)iA |

where the m,/k and k/m, are bounded and k is “large,” and

_ _ /()]
(B2.14) Afk) = Afk|(n..), (n.;)) = G E

Stirling’s formula for factorials is a special case of the one-dimensional form of
(B2.13) (e.g., Good (1957), page 869), and the first and second Stirling approxi-
mations to 1! are 0.922 and 1.0060, so it is worth considering (B2.13) even when
k is as small as 1. It may be difficult to obtain useful bounds on the errors, so
that it may be necessary to generalize from numerical examples for the time

* being. : _
We recall that A can be expressed as
(B2.15) A = K| [K, — K KK

(for example, Aitken (1956), page 67), and this is helpful because K, and K,,
are diagonal matrices.

We now consider the evaluation of Ay(k) for the case where the column totals are
equal (“flar”). (Of course the case of equal row totals is similar.) For this case
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it is readily verified that the solution of equations (B2.4) is given by

B2.16 = e i=1,2,---,r
( ) i
1

Tj:

j=1,2,...,s.
K can now be written in the form

(B2.17) K = |: 50 Ger(s—l):|

GJ(S—I)Xr Is—l tr @

where ® = diag[p,/(1 — p;)*] and J is an all-ones matrix. The inverse turns out
to be

(B2.18) K= _ 1 [@“tr@ + (s = DI L - ]
str@® . [ s STy 4 8Ty xiemn

as may be verified by multiplying it by K. The determinant of K, by (B2.15)
combined with the evaluation of a circulant (e.g., Muir (1933-1960), pages 442
and 445), is

(B2.19) A = s7(tr @)1 det ©

=Sl Tty

It now follows from (B2.13) and (B2.7) that

(B2.20)  A(k|n.;’s equal) ~ Ay(k) {1 + §112 Tipims 5 E (WK U) 4 .. } ,

where K~ is given by (B2.18), &, by (B2.5), and
(B2.21) 1/Ayk) = TT oo+ TT (1 — p;)e='(2ak)rte-D/astr=0r

where p, is given by (B2.16). (When we write A(k), A,(k), etc., we often leave
it to the context to determine whether there is any constraint on the marginal

totals.)
In the more special case of a table with both row totals equal and column

totals equal (“flat margins”) we have

12g3/2g(N + rsk) rsk (rs=1)/2
B2.22 Ay = 0579 [ ]
( ) o(k) g(N)g(rsk) 2zN(N + rsk)
where g is the function defined by g(x) = x*. In this case
(B2.23) K- = _rSk2 [rlf + (s - I)err ’ "“Ser(s—l) :|
N(N + rsk) — 83 o1yxr ) S S P

Let us define By, as the “Stirling approximation” to B(k), obtained by re-
placing all the gamma functions and factorials in (B2.2) by the first terms of
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the Stirling formula. Then

Bsu(k) = Bsy(k|(n..), (n.5))
(B2.24) _ 9(N) 1T 9(n.. + sk) T 9(n.; + rk)
kretg(N + rsk) T1 g(m..) IT 9(n. ;)
{ N(N + rsk)kr+s—tps—1sr=1 }5
@ay+e=t 11 ng(ng. + sk) I n.4(n.; + rk)
and it can be seen from (B2.21) that when the column totals are flat,

, i . k —(s—1)/2
(B2.25)  Ayk|n.;’s equal) = By, (k) [r 2 ”ﬁ : nN—J_tri—k] :

By the Cauchy-Schwarz inequality it follows that
(B2.26) A(k) = Bya(k) »

equality holding if and only if the row totals are also flat. If the column totals
are flat and the row totals are not very rough, and if s is small, we can see from
(B2.25) that Bg,(k), and hence B(k), is not very different from A4,(k). We there-
fore have a theoretical explanation of why B(k) should often be a fair approxi-
mation to A(k), in other words why Fy(k) ~ Fy(k)F ,(k)/F(k), if k is not too
small. We also have partly explained why the approximation can be improved
by allowing for the roughness of the row totals and of the column totals, but
the occurrence of the power (s — 1)/2 suggests that a better approximation than
D might be found.

Even when k is as small as 1 the first term A4, of the asymptotic expression
gives a reasonable approximation to A4, the number of arrays, for the square
tables with flat margins mention in Table 2. Apart from the sparsest tables,
the errors are of the order of 109, which for many purposes is negligible when
estimating a Bayes factor, this being the application we have in mind.

Table 3 gives the values of 4, 4,/4, B/A and D/A for a few tables having flat
column totals but not flat row totals.

The asymptotic formula (B2.20) is based on regarding k as large, combined
with the condition following (B2.13), so it is not surprising that the proportional
errors do not tend to zero when k is fixed and N — co. But the following results
indicate that the approximation remains good for large N. When r = s, and
when the tables have flat margins, we have

(B2.27) Ay(1) ~ e Nr-DY=r=DEr-D(Qr)=rti
so that, from (Al.1) to (A1.6) when N — oo,

(B2.28) Ay(1)/A— 0.867 (r =2), 0.899(r=3), 0.878(r=4),
0.857(r=15), 0.840(r =6),
from which incidentally we can estimate the final coefficients in the Gupta-

Stanley formula (A1.3) as 1.77 x 10*% for r =7, 1.28 x 10* for r = 8, and
7.6 x 10® for r = 9.
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Under the same circumstances, from (B2.2), we have
(B2.29) B(1) ~ (r* — 1)l Nr=D2p=2r42r((p _ 1)1]%,
so that
(B2.30) B(1)/A—%(r=2), 0.768(r=3), 0.747(r = 4),

0.728(r =5), 0.693(r =6).

On the evidence so far, A,(1) appears to be a somewhat better approximation
to A than is B(1), as well as having better theoretical support.

The second term of the asymptotic expansion. Think of formula (B2.13) as
Ay(k) + A(k) + ---, where |8] = 4in A,(k). We shall give a formula for 4,(k),
but with most of the proof omitted. Let )

(B2.31) Ty = Nk al F9(0,t,)*(1 — p,r;)~"
i=rnj=ssl=12,...)
where we have used the notation of Abramowitz and Stegun ((1964), page 835)
for Stirling numbers of the second kind. Then
kg = 2521 Ti g a if B, =18 forsome i=<r
= 2= Tijm if B,.;=|B| forsome j
(B2.32) =Tisim if B+ Bi=1B8l, B:i>0, B,,;>0
forsome i and ; (i<7r)
=0 otherwise ,
and
Al(k) — __1_ r B T.. kii 2ki,r+j kr+j,r+j 2
Ao(k) - 8k Zt=1 Zg=1 1,14( + + )

where K=t = (k*) (v = 1,2, -+, r 4+ 5 — 1).
When the column totals are flat, this reduces to

@234y Ak _ 15 s T =y = l[z;=1 —P_]}

(B2.33)

Ak) 8k o, . T
For r X r tables with all row and column totals equal to n we have
(B2.35) A(k) _ (2r — 1)(6n" + 6nrk + r*k?)
. Ay(k) 8r’n(n + rk)k :

We cannot let k — oo while keeping n constant because of the condition follow-
ing (B2.13). Itappears that k needs to exceed 10 for the second term of (B2.13)
to be useful.

B3. Approximation to A(k) for multidimensional tables. The approximation
(B2.1) can be extended in a natural way to m-dimensional tables. For m — 3
we would assume by analogy with (B2.1) and (12.20) that, if k is not too small,

(B3.1) Fok) = F (k) (k) F© (k) [[Fy(k) ],
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where the notation is self-explanatory; and by analogy with (B2.2) and (12.18)
that

(B3.2) S (IL wie TL x5 TLyy™ ) TL(L — wyx )" = B(k)
where k > 1 and

m <nh,, + krs — 1> I (n,i_ + ksq — 1) I <n,,j + kqr — 1)

B3.3 B(k) = . . n.;. n,.;
( ) “ (N+ kqrs — 1)2
N

The power in the denominator is m — 1.
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