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COHERENT PREFERENCES!

By ROBERT J. BUEHLER
University of Minnesota

De Finetti has defined coherent previsions and coherent probabilities,
and others have described concepts of coherent actions or coherent decisions.
Here we consider a related concept of coherent preferences. Willingness
to accept one side of a bet is an example of a preference. A set of prefer-
ences is called incoherent if reversal of some subset yields a uniform increase
in utility, as with a sure win for a collection of bets. In both probability
and statistical models (where preferences are conditional on data) separating
hyperplane theorems show that coherence implies existence of a probability
measure from which the preferences could have been inferred. Relation-
ships to confidence intervals and to decision theory are indicated. No single
definition of coherence is given which covers all cases of interest. The vari-
ous cases distinguish between probability and statistical models and between
finite and infinite spaces. No satisfactory theory is given for continuous
statistical models.

1. Introduction. In thissection we will indicate the relationship of the present
paper to earlier theories of coherence.

1.1. Coherence in the sense of de Finetti. In de Finetti’s (1974) notation X
denotes a “random quantity.” (The term “random variable” would wrongly
imply satisfaction of the Kolmogorov axioms.) The prevision of X, denoted by
P(X) or %, is a value such that the subject prefers a constant reward x + atoa
random reward X for any a > 0, and prefers X to x — b for any b > 0. Thus
a prevision is essentially a subjective expectation (whose definition however does
not depend on probability). Previsions %,, - - -, %, of random quantities X, - - -, X,
are called coherent if there exist no constants ¢, - - -, ¢, such that Y = ¥ ¢,(X,; — %)
is uniformly negative, that is sup ¥ < 0, where the supremum is taken over all
possible outcomes. Here we can regard c, as a stake, ¢, (X, — %,) as the payoff
of a gamble on the random X;, and sup ¥ < 0 as a sure loss. (Since c, can be
positive or negative, the condition inf ¥ > 0 is of course equivalent.) De Finetti
establishes an equivalent condition: For given k, > 0, .-, k, > 0, there do
not exist x,*, - . -, x,* such that sup (L* — L) < 0 where L = )] [(X; — %,)/k,]%,
L* = 2 [(Xy — x*)/[k ]

For example suppose there are two possible outcomes and three random quan-
tities with X, = (1, 4), X, = (2, 3), X; = (5, 1). Then it can be shown that x,,
X,, X, are coherent if and only if (X, X,, X)) = (1 + 3p, 2 + p, 5 — 4p) for some
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0 < p < 1, that is the vector of previsions lies on the line segment joining (1,2, 5)
and (4, 3, 1).

When X takes only values 0, 1, then X is called a “random event,” the prevision
of X becomes the probability of X (with X denoting interchangeably a set and
its indicator function), and coherent previsions become coherent probabilities.
Manipulative rules become consequences of coherence rather than axioms as in
Kolmogorov’s theory. It is an easy exercise to prove that to be coherent, the
probability of the union of two (or finitely many) disjoint events must be the
sum of the separate probabilities.

Earlier but less complete accounts of this theory are given in de Finetti (1937;
1949; 1964; 1972, Section 5.9). Similar theories are given by Shimony (1955)
and Kemeny (1955).

The present paper shifts the focus from the previsions, defined in terms of
preferences, to preferences themselves. A set of previsions will be coherent in
de Finetti’s sense if and only if the preferences they imply are coherent as defined
below. On the other hand it does not seem to be possible to define coherent
preferences in terms of coherent previsions.

1.2. Coherence in statistical models. By a statistical model we mean one having
a parameter space and observations whose distribution depends on the parameter.

Cornfield (1969) refers to coherence of probabilities assigned to parameter
values ¢ after observing data x, where coherence means nonexistence of stakes
giving negative expectation for every §. Cornfield notes that this is analogous
to'de Finetti’s sure loss, but fails to observe that it is in fact weaker since the
loss is only guaranteed in the long run, not on every individual trial. It is shown
by Cornfield and independently by Freedman and Purves (1969) that coherence
of posterior “probabilities” assigned to all possible outcomes implies their agree-
ment with values calculated by Bayes’ theorem for some prior distribution.
Similar results of Quiring (1972) pertain to cases where probabilities are assigned
only to some subsets of ¢ values. Infinite models are treated by Quiring (1972),
Dawid and Stone (1972, 1973) and Pierce (1973). In Section 6 below we give
results analogous to those of Cornfield, Freedman and Purves, showing that
preferences (rather than probabilities) conditional on data x are coherent if and
only if they correspond to posterior preferences calculated according to some
prior distribution, not necessarily unique.

Lindley (1971, page 6) speaks of coherent decision making or coherent actions:

A decision maker whose actions agree with these axioms
has variously been described as rational, consistent, or co-
herent. We shall use the last term because it effectively
captures the idea that the basic principle behind the axioms
is that our judgements should fit together or cohere.

Later in the same section (pages 13-16) Lindley gives examples of decision pro-
cedures which he calls incoherent.
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2. A simple example. Let X denote the event that a horse called Xantippe
wins a certain race. In de Finetti’s theory every subject can attach a unique
subjective value X for the prevision or probability P(X) whether or not he knows
anything about horse racing in general or Xantippe in particular. Suppose we
attempt a less extreme theory (as Smith (1961) and Dempster (1968) have) in
which partial knowledge is represented by upper and lower probabilities. Suppose
our subject, Peter, believes P(X) lies in the range < P(X) < £, but doesn’t
know where. Let (a, 8) denote a bet which pays a if X occurs and 8 otherwise.
Peter would presumably accept bets (4, —1), (—1, 4) but would reject bets (2,
—1), (—1, 2), since the former have positive expectation for all } < P(X) < $
but the latter do not. From our present point of view Peter would not be faulted
for any of the individual choices mentioned above. But if the bets (2, —1),
(—1, 2) were offered simultaneously we would say his preferences for (0, 0) (that
is, no bet) over (2, —1) and for (0, 0) over (—1, 2) are incoherent because by
reversing both choices he has a sure win of 41 no matter who wins the race.

The above example illustrates the key idea of “preference reversal (PR) in-
coherence:” a set of preferences will be called PR-incoherent if there exists a
subset whose simultaneous reversal guarantees a higher utility. Typical results
establish that PR-coherence is equivalent to an ordering calculated from some

probability measure.

3. Relationships between bets and preferences. To further clarify the rela-
tionship between this paper and certain earlier work it is helpful to understand
how bets and preferences are related. Let (a, 8) denote a prospect which pays
a > 0 if event X occurs and 8 < 0 otherwise, and let ¢ be a positive scalar. A
preference (ca, ¢8) > (0, 0) corresponds to willingness of our subject, Peter, to
bet on X with odds corresponding to probability P(X) = B/(a + ). Willingness
to accept either side of this bet corresponds to preferences (ca, c8) > (0, 0) for
positive or negative ¢, or to indifference between (a, 8) and (0, 0).

For three rather than two possible events, say X, X;, X;, exclusive and exhaus-
tive, a preference might be expressed as (a,, a,, a;) > (0, 0, 0). This preference
is equivalent to willingness to accept a “compound bet” which pays «, if X;
occurs, but it is not equivalent to willingness to accept any combination of
“simple bets” (bets on or against X, X, X; separately).

This can be seen geometrically. A preference (a,, a,, a;) > 0 is consistent
with probabilities p, = P(X,) satisfying 3] a;p, > 0, in other words with prob-
ability vectors lying on or to one side of an arbitrary straight line in the simplex
p: >0, > p, = 1. For simple bets the boundary line is parallel to one side of
the simplex.

A collection of preferences will be coherent in the sense of Section 5 iff the
intersection of the sets to which the probability vectors are restricted is not
empty.

The results in Section 6 below would not follow from those of Cornfield (1969),
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Freedman and Purves (1969), or Quiring (1972) for two reasons: the earlier work
(i) relates only to simple bets, and (ii) assumes Peter’s willingness to bet either
for or against.

4. Mathematical preliminaries. Our main tools are familiar “separating
hyperplane” theorems of linear algebra and their extensions. This type of argu-
ment has often been used on similar problems [1, page 119; 6; 12, page 90; 16;
19; 23; 25; 26].

DerFINITION 1. For any vector w = (w,, - -+, w,)’ we will write

w = 0 if w is nonnegative, that is w, > 0 all i,
w > 0 if w is positive, that is w; > 0 all i,
w > 0 if w is semipositive, that is w = 0 and w = 0.

The first lemma is given for example by Gale (1960), Theorem 2.10. The
bracketed part is a variation used only incidentally in the present paper.

LeMMA 1. Let M be an m-by-n matrix. Exactly one of the following alternatives
holds: (i) there exists an n-by-1 vector v > 0 such that Mv > 0 [Mv > 0], or (ii)
there exists an m-by-1 vector w > 0 [w > 0] such that —w'M = 0.

In applications of Lemma 1, the columns of M correspond to de Finetti’s
random quantities (we may also call them utility vectors or prospects); w is a
probability vector in R™ corresponding to a sample space of m outcomes; v gives
a weighted combination of the n columns of M. Lets =1, ..., mlabel the rows
and t = 1, - .., n the columns. In generalizations either s or ¢ take infinitely
many values. Lemma 2 is a variant of the lemma of the same number in Pierce
(1973). Our proof is more elementary in not requiring the theory of duality of
L, spaces.

LemMA 2. Let (T, B, 2) be a o-finite measure space and let L, and L, denote
respectively A-integrable and bounded functionson T. If M(t) e L, fors =1, ..., m,
then exactly one of the following alternatives holds: (i) there existsv(t) € L., v(f) >0
for all t, such that
(4.1) §v()M(1)d2 >0  forall s=1,..-,m,
or (ii) there exists a vector w = (wy, « -+, w,)" > 0 such that 33 w,M,(f) < 0 a.e. (4).

ProoF. We define a convex cone in m-space by C = {(a,, ---,a,)|a, =
§ v(M(t) dA, v(r) > 0, v(f) e L,}. Let Q denote the positive orthant of vectors
> 0. If (i) holds, then C n Q # @. Assume (i) is false sothat C n Q0 = .
Then there exists a separating hyperplane, whose normal direction we call w,

such that w'g > 0 for all g € Q (implying w € Q) and w'c < O for allce C. The
last inequality is equivalent to

(4.2) o) X w,M(t)da <0 forall wv(r)elL,, v(t) > 0.
Define S,* = {t| 33 w,M,(?) > ¢}, S,° = lim,_,S,°, and v,(¢) = indicator function
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of S,¢. Then
(4.3) 0> (v,(f) X w,M(t) d2 > €A(S,°) »

so that A(S,) = 0and A(S,°) = lim 2(S,) = 0. Thus when (i) is false (ii) is true,
and it is straightforward to show that (i) and (ii) cannot both be true.

Pierce’s (1973) Lemma 2 is not-(ii)’ implies (i)', where (i)’ is obtained from
(i) by deleting v(r) > 0, and (ii)’ is obtained from (ii) by changing < 0 a.e. ()
to = 0 a.e. (2). The equivalent result that not-(i)’ implies (ii)’ can be obtained
from Lemma 2 above since nonexistence of v of either sign satisfying (4.1) im-
plies nonexistence of either v > 0 or v < 0 satisfying (4.1), which implies both
< 0and > 0 a.e. (4) in (ii).

In Lemma 3 both s and ¢ range over arbitrary spaces Lemma 3 is a restate-
ment in the present notation of Theorem 1’ of Heath and Sudderth (1973).
(Theorem 1’ is a strengthening of Theorem 1 of Heath and Sudderth (1972) in
which “331, ¢, f,.(s) > 0 for all se$” is replaced by “inf,.s 27, ¢; f, (s) > 0”
and “‘or both” is replaced by “but not both.” The proof is essentlally unchanged.)

LEMMA 3. Let S and T be sets and let {M (s) : t € T} be a family of bounded, real-
valued functions defined on S. Exactly one of the following alternatives holds: (i) there
exist t,, ---,t,eTand v, >0, ---, v, > 0 such that

(4.4) inf,es 2710 M, (8) > 0,
or (ii) there exists a finitely additive probability w on S such that
4.5) E M, = M(s)dw(s) <0  forall teT.

In applications w plays the role of a subjective probability. In connection
with Lemma 3 we note that de Finetti (1974), page 119, has clearly expressed a
preference for finitely additive probabilities, as they seem to arise more naturally
in subjective theory than do countable additive probabilities. For an axiomatic
system implying existence of a unique finitely additive probability measure see
Fishburn (1969). Lemma 3 differs in that w need not be unique.

5. Probability models. We begin with a space S of points s to be thought of
as a space of simple (or elementary) outcomes, postponing the assumption of
any probability measure until needed in Definition 5.

DEFINITION 2. A prospect g(s) is a bounded real valued function defined on
S. It is to be considered as reward of g(s) given to our sub]ect Peter, when
outcome s is observed.

It will be seen that as with de Finetti’s random quantities, and as with losses
in decision theory, the values of g are handled linearly like utilities. As usual
the reader has a choice of viewpoints: (i) utilities exist and g is measured in
utility units; (ii) g is measured in dollars and the subject’s utility function is
linear (or nearly so over the range of interest).

DEFINITION 3. ¢’ > g means Peter prefers g’ to g or is indifferent. More
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precisely “>" is a preference relation on some specified set with the usual con-
ventions including transitivity and definitions of <, > and <.

5.1. Finite models.

DEFINITION 4. Let g,/ > g, be a set of preferences for t =1, ..., n. For a
finite space S = {1, ---, m} this set is called preference-reversal-(or PR-) in-
coherent if there exist v; > 0, - .-, v, > 0 such that

(5.1) 2 v(9/(s) — 9.(5)) < O for s=1,...,m.

Here and in the sequel preferences which are not PR-incoherent are called
PR-coherent. )

It is clear that the ¢ values for which v, # 0 single out a subset of preferences
such that a weighted combination violates the preferences uniformly in the out-
come s. The weights v, can variously be regarded as stakes for bets or (when
normed) as probabilities (v, is the probability that Peter is granted his choice of
g,/ over g,). The term “preference reversal” is intended to suggest that the subject
can do uniformly better by reversing preferences on the subset where v, # 0.

DEFINITION 5. A set of preferences g, > ¢,, ¢t = 1, - . -, n, is called w-coherent
if there exists a probability vector w,, - - -, w,, such that
(5.2) S weg/(s) > N wg(s)  for t=1,.--,n.

THEOREM 1. Preferences are PR-coherent if and only if they are w-coherent for
some w.

Proor. Apply Lemma 1 with M,, = g,(s) — g,/(5).

Since Definitions 4 and 5 are equivalent we can drop the prefixes PR and w
and speak simply of coherent preferences.

Alternatives to the formulation using Definition 4 (which seems to us forceful
and enlightening) are certain axiomatic treatments, as we now indicate.

Axiom L,. ¢'(s) > g(s) for all s implies g’ > g.

Axiom Ly. g’ > g implies ¢’ + h > g + h for all A.

Axiom L,. ¢’ > g implies vg’ > vg for any constant v > 0.
Axiom Ly, g’ > gand b’ > himply ¢’ + /' > g + h.

In this approach we think of initially being given a finite (or larger) set of
preferences, and then of extending by the axioms to some larger set.

COROLLARY 1. Preferences are w-coherent iff they satisfy L,, L,, Lj.

Proor. Clearly w-coherence implies all four axioms. Assume w-incoherence.
By Theorem 1 this implies existence of v, > 0, ..., v, > 0, such that (5.1) holds.
But the summation in (5.1) represents a compounding of L, and L;, and the in-
equality itself represents a violation of L,. Thus w-incoherence implies L,, L,, L,
cannot all hold.
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Theorem 4.3.1 of Blackwell and Girshick (1954) establishes that for a prefer-
ence relation defined on all m-dimensional vectors, L,, L, imply w-coherence (an
axiom L, is also assumed, but is not used in their proof). Since L,, L; clearly
imply L,, we see that L,, L,, L; imply L,, L,. The converse is true but less evi-
dent, and in this sense the Blackwell-Girshick result is stronger than Corollary 1.

ExampLE 1. Let g/ —9g,=h, h=(1,-2,0), h =(—2,1,0). Then
—h, —h, = (1, 1, 0) so that a reversal of preferences improves Peter’s lot for
s = 1,2 and leaves it unchanged for s = 3. The improvement is not uniform
in s, and the preferences are in fact coherent. A unique w gives a consisteni
ordering: w = (0, 0, 1). An alternative theory is pgssible in which the above
h, and h, might be called weakly incoherent, the negation, say strict coherence,
would correspond to the existence of w > 0 (i.e., w, > 0, all 5) giving a consistent
ordering. The bracketed version of Lemma 1 is then relevant. The distinction
is essentially the same as that between “fair” and “strictly fair” in the sense of
Shimony (1955) and Kemeny (1955), and between “strict” and “weak” coherence
of Quiring (1972, Chapter II). The philosophical choice between the two criteria
is clearly linked to one’s attitude toward the acceptability of subjective prob-
abilities which equal zero. De Finetti (1972, page 91; 1974, page 87) favors the
analog of the (weak) coherence of our Definitions 4 and 5, and gives his reason-
ing in detail (1974, Section 3.11). See also Kyburg and Smokler (1964), page 11.

5.2. Infinite models. Suppose s =1, ..., m, te T, where (T, B, A) is a measure
space. Then g, > g, represents an infinity of preferences involving a finite num-
ber of alternatives. Assume that 4,(s) = g,'(s) — g,(s) is 2 integrable (but not nec-
essarily bounded). PR-incoherence can be defined as the existence of a bounded
A-measurable function v(f) > 0 such that § v(f)h,(s)d2 < O for all s, and w-
coherence can be defined as existence of a probability vector w such that
2 why(s) > 0 a.e. (1). Lemma 2 shows that PR-coherence is equivalent to w-
coherence for some w. _

Finally, we may let s and ¢ range over arbitrary spaces S and 7. Define
preferences g, > g,, te T, to be PR-incoherent if there exist ¢, -.-,t, €T,
>0, -..,v, >0, such that

(5.3) SUP,es 2171 Uik (5) < O, where  h,(s) = g,/(s) — g,(5)
and define them to be w-coherent if there exists a finitely additive probability

measure w such that § A,(s)dw > O for all e T. Then Lemma 3 implies equi-
valence of PR-coherence and w-coherence for some w.

ExampPLe 2. Ifw=(4, 4,34, -+), by = (=1, +3,0, ..), B, = (0, —1, +3,
0, ---), etc., then Eh; > 0, so that each £ is strictly preferred to 0. Nevertheless
h, + 4h, + 4°h; 4 - .. is strictly negative. Thus an infinite combination of fair
bets can be unfair (at least when stakes are unbounded), so that any theory of
coherence seems to need a condition like the boundedness of stakes in Lemma 2
or the finiteness of number of stakes in Lemma 3.
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ExamPLE 3. Let S=T={1,2, ...}, (1) =1,H1(1)=0for t =2,3, ....
No matter what the values of &,(s) for s > 2, the preferences A, > 0 are coherent
because no positive combination gives a negative reward when s = 1. A prob-
ability vector consistent with these preferences is (1, 0,0, --.).

ExamrLE 4. A, = (—1,2,0,.-+), b, = (0, —1,2,0, ...), etc. For a com-
bination ¢, 4, + c,h, + - - - to be strictly negative we would need ¢, > 0, —2¢, +
¢, >0, —2¢, + ¢; > 0, etc. No finite number of strictly positive ¢; will suffice
so that the preferences 4, > 0 are PR-coherent. Any probability vector with
Pi+1 = p; gives preferences which agree.

EXAMPLE §. A, = (—2,1,0,---), , = (0, —2,1,0, - . .), etc. The same argu-
ment shows the preferences 4, > 0 are coherent. Here, however, the probability
measure must attach zero probability to each individual outcome and so be only
finitely, not countably, additive.

6. Statistical models. In the statistical model the set S of outcomes s is re-
placed by a set © of parameter values #. A new ingredient is the sample space
£ having points x. In the present section we restrict &2° to be countable. The
function p(x; 6) denotes the likelihood, that is a probability law: P(X = x|6) =
p(x; 0); X3, p(x; 0) = 1 for each 6. A prospect now is a reward to Peter of g(f)
when @ is the true parameter value. Preferences are expressed conditional on
observed data x, and we write k(x; ) for g’(8) — g(6) when ¢’ > g given x. A
set of preferences then indexed by ¢ € T defines a set of functions #,(x, 6) depend-
ing on x and ¢ according to

(6.1) hy(x, 0) = g,/(0) — g.(6) when x = x,
=0 otherwise.
For fixed ¢ the expectation of &,(x, f) with respect to x is
(6.2) Eyh(x, 0) = hy(x,, O)p(x,, 0) = f,(9) , say.
6.1. Finite T and ©®. Suppose 0 =1, ---,m,t =1, ..., n.

DEFINITION 6. A set of preferences g,/ > g, given x = x,, t =1, .-+, n, is
called PR-incoherent if there exist v; > 0, ..., v, > 0 such that for A, defined

by (6.1)
(6.3) E, >, vh(x,0)=>,v,£0)<0 for 6=1,...,m.

The interpretation is that preference reversal, with suitable weights, would
increase the expected reward to Peter for every parameter value.

For prior probability vector w = (w,, - - -, w,,)’, denote expectation with respect
to w by

(6.4) E,0(0) = L5 wop(0) -

Then the marginal distribution of x is

(6.5) Pu(X) = E, p(x, 0) = 25 wo pl(x, 0) .
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If we define

(6.6) 8,0 = {x|p,(x) =0},

then the posterior density is

6.7) w(0|x) = wy p(x, 0)[p,(x) if xe¢$,,

= undefined if xes$,,.

If x, ¢ S,, then the posterior expectation of &,(x, 6) given x = x, is

(6.8) E i, hi(x, 0) = (pu(X))™ Lo Wo p(X:s O)hy(x,, 0)

= (Pu(x))TE, f0) -
If x,e S,, then in a strict sense according to (6.7) conditional expectation is
undefined for x = x,. But from the point of view of the subject, Peter, whose
prior distribution is w,, x, has probability zero of occurring, so that preferences
when x = x, are irrelevant to him. In keeping with the choice of the “weak
coherence” option mentioned at the end of Section 5.1, it seems appropriate to
adopt the convention
(6.9) E, . h(x,0) =0 if x,e8,,
for use with the following definition.

DeriNITION 7. In the statistical model a set of preferences {g,’ > g, given

x=x,t=1,...,n}is called w-coherent if there exists a (prior) probability

vector w such that

(6.10) E,p.h(x,0) >0 for t=1,...,n.
THEOREM 2. A set of preferences {g, > g, given x = x,, t = 1, - .., n}, is PR-

coherent if and only if it is w-coherent for some w.

ProOF. Assume w-coherence for some w. For Case 1, x,¢S,,, we see that
(6.8)and (6.10) give E,, f,(6) > 0. For Case2, x, € S,,, we have 3, w,p(x,,0) =0,
which implies w, p(x,, 8) = 0 for all . It follows that E,, f, = 0. Thus for either
case E, f,(0) > 0, and Lemma 1 applies with M,, = —f,(s). Contrariwise, PR-
coherence, or nonexistence of the v vector, implies existence of w such that
E, f(6) > 0 for all ¢. In Case 1 we appeal to (6.8) and in Case 2 to the conven-
tion (6.9) to deduce (6.10).

If all x, were the same, say x, = x, for all ¢, then one could alternatively ap-
peal to Theorem 1 to argue that PR-coherence implies existence of a conditional
probability, given x,, consistent with the preferences. Dividing this by the like-
lihood p(x,, ) and normalizing gives prior measure known to exist by Theorem 2.
We emphasize that in Theorem 2 we may have multiple preferences for some x
values while for others there may be none at all.

The case studied by Cornfield (1969) and Freedman and Purves (1969), wherein
Peter states odds for every subset of @ values given every x, corresponds to pref-
erences h,(x,, §) > 0 and —#h,(x,, #) > 0 where for each 1, ,(x,, ) takes only
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two values (whose ratio is determined by the odds) as a function of §. The above
authors show that this large set of preferences makes the prior measure unique.

6.2. Some cases where T and © are not both finite. In extending the model of
Section 6.1 we continue to restrict 227 to be a countable space to avoid difficulties
in defining conditional distributions.

Lemma 2 is relevant to the case where © remains finite but 7' does not. Rather
than take (7, B, 2) to be an arbitrary measure space for simplicity we take T =
{1,2, ...} and 2 = counting measure. Then Lemma 2 asserts that either there
exist w, > 0, ..., w,, > 0 such that

(6.11) IrawM() <0 . for t=1,2,...,
or there exist v, v,, - .-, such that 0 < v, < R < oo for all ¢, and
(6.12) I v M(H) >0 for s=1,...,m.

Definitions 6 and 7 can be extended by taking n = oo (with the restriction v, <
R < o), and Theorem 2 continues to hold by the same argument.

Finally Lemma 3 applies to the case where the space © is arbitrary. Let w
be a finitely additive measure on © and let E,, denote expectation with respect
to w. We define the posterior measure on © by

(6.13) w(dld | x) = (p(x, 0)/p.,(x))w(d6) when p,(x) = E, p(x,0) +0,

and denote posterior expectation by E,,,. Definition 7 is changed to allow w to
be finitely additive and (6.10) holds for all ¢ in an arbitrary set 7. Definition 6
of PR-incoherence is altered to read: there exist tyy oyt eT,v,>0,...,v,>0
such that

(6.14) SuPa;e 20 f,(0) <0
(the definition (6.2) of f,(f) is still used). Lemma 3 then shows that PR-coherence
is equivalent to w-coherence for some finitely additive w.

EXAMPLE 6. © = {0, +1, +2, ...}, px;0) =% if x—6=+1and =0
otherwise. For a given x, the structural probability distribution has mass } at
each of the two points x, + 1 (Fraser, 1971). Therefore when x, is observed
the structural probabilist is indifferent between by =(---0,—-1,0,+1,0, ---)
(where the middle zero is in the x, position) and the zero vector. The betting
scheme proposed by Buehler (1971) corresponds to the infinite linear combina-
tion H, = h, + h, + ... for which E,H, = —} for § = 0 or 1 and E,H, = 0
otherwise. The analog of the betting scheme proposed by Rubin (1971) is an
infinite combination H, = 3=, v;h; where by choosing 0 < v,_, < v; < 1 for
J=0,+1, ..., wehave E,H, = v,_, — v,,, < O for all §. Both H, and H, fail
to demonstrate incoherence in the sense of the previous paragraph for two reasons:
(i) The linear combination is infinite rather than finite, and (ii) sup, E,H, =
sup, E, H, = 0 rather than < 0. The set of structural probability preferences
{h,>=0, —h, >0, x=0, +1, +2, .. -} are in fact coherent in the sense of the



COHERENT PREFERENCES 1061

previous paragraph. This is, however, not a consequence of their derivation but
rather of the degeneracy of the model. Any set of preferences 4, > 0, is w-
coherent, when w assigns probability zero to each 6 value, by convention (6.9),
because p,(x) = 0 for all x. Examples in which the likelihood has infinite support
would not necessarily have this degeneracy.

The difficulties with Example 6 indicate that we have yet to arrive at a suitable
theory of coherence for statistical models having arbitrary parameter spaces.

6.3. Replacing the probability law of x by preferences. Let ® and 22”7 be finite
spaces. We now replace the probability law p(x, §) by a set of preferences con-
ditional on §. For example g,/(x) > gy(x) could mean that given § = 6, Peter
prefers a reward of g,/'(x) to g,(x). A given probability function »(+, 8,) would
of course determine all such (conditional on 6,) preferences. A set of conditional
preferences could be incoherent, or could determine a unique conditional prob-
ability law, or could be consistent with a number of probability laws. The pref-
erence g,/ > g, can be written £ > 0 where

(6.15) b= h(x, 0) = g/(x) — go(x)  if 6 =8,
=0 otherwise.

Certain beliefs concerning the conditional probability law of x given # can be
represented by, a set of preferences k, > 0, e T,, where each &, = h,(x, 0) is
nonzero only when 6 = 4,.

Similarly as in the previous sections Peter can have conditional preferences
given particular x values, for example, k,'(6) > k() given x = x,. Putting

(6.16) h = h(x, 0) = ko (0) — k0) if x=x,
=0 otherwise,

a set of preferences conditional of x is represented by 4, > 0, t ¢ T,, where each
h, is nonzero only when x = x,.

DerFINITION 8. The conditional preferences {h, > 0, t € T, U T,} are called PR-
incoherent if there exist v, >0, -..,v,>0,1¢, ..., ¢,eT, U T, such that

(6.17) 5 vk, (x, 0) < O for all x,0.

We remark that if there exist (x,, 6,) such that 6, = 6, for all teT,, x, # x,
for all teT,, then (6.17) fails for (x, #) = (x,, 6,) so that the preferences are
necessarily PR-coherent.

DEFINITION 9. Sets T, and T, of preferences k, > 0 conditional on ¢ and x
respectively are called m-p-coherent if there exists a prior measure 7(f) and a
likelihood p(x, #) such that
(6.18) E,;h(x,0) >0 forall teT,, and

Ey hy(x,0) >0 forall teT,.
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Zero values of 7 and p are not precluded, and in (6.18) the following conven-
tions are to be understood: when #(6,) = 0 and 6, = 6, then E,,k,(x, ) = 0;
when Y}, 7(0)p(x,, ) = 0 and x, = x, then E, k,(x, §) = 0.

THEOREM 3. Conditional preferences are PR-coherent if and only if they are n-p-
coherent for some prior n(0) and some likelihood p(x, 6).

Proor. If the preferences are PR-coherent then Lemma 1 implies the existence
of w(x, #) > 0 (not identically zero) such that

(6.19) 2 2o w(x, O)hy(x, 0) >0 forall teT,UT,.

We may assume w to be normalized to a probability ngee{sure on 27 x O, and
define #(0) = 3, w(x, 6), p(x, 0) = w(x, 6)/x(9) when =(f) # 0, and p(x, 0) is
arbitrary when n(#) = 0. ForteT,, E,,h,(x, 0) = Ounless§ = ¢,. When 6 =4,
and 7(f,) = 0, then E,,h,(x, ) = 0 by convention. When § = 6, and z(6,) + 0
then
Eoh(x,0) = (2(0))™ X, h(x, O)w(x, 0)
= (2(0))7 2z Lo bul(x, O)w(x, 6)
>0, by(6.19).

The proof for t € T, is similar, as is the converse.

7. Some relationships to theory of confidence intervals. Cornfield (1969)
stressed connections between coherence and confidence intervals, but the rela-
tionship was slightly strained because of the restriction to finite parameter spaces
and the requirement that confidence levels be assigned to every point in the
parameter space (rather than fixing a confidence level and choosing a confidence
set).

In a typical continuous model let 4 denote a subset of 2”7 x O, and let 4, =
{60|(x,0) € A}. Then A4, are confidence sets with confidence level 7 if P,{0 € A,} =71
for all . The confidence statement corresponds to an infinite set of pairs of
conditional preferences:

(7.1) (1 —ypy if 6ed,, —y otherwise) =0, and
(—(1 —y) if 6eAd,, r otherwise) > 0.

(To represent “conservative” confidence sets, write P,{f € 4,} > r and delete the
second line of (7.1).) It is by no means clear how best to extend the preceding
theory. To restrict to finite sets of preferences as in Lemma 3 would seem in-
adequate because any finite set occurs with probability zero.

If we do allow reversal of a continuum of preferences, then we can relate to
known conditional properties of confidence intervals. A subset C of 27 is a
positively biased relevant subset in the sense of Buehler (1959) if for some ¢ > 0,
Py(A|C) > 1 + e forall . If we choose the second preference of (7.1) and
reverse it, but only in C (ignoring the complement C’), then the expected payoff
after reversalis (1 — y)Py(AC) — yPy(A'C) = [Py(A|C) — 7]Py(C) = ePy(C). If
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P,(C) > ¢ > 0 for all 6, then we have (informally speaking) a very strong inco-
herence with a uniformly positive increase in the exptected payoff by preference
reversal. A weaker form results if P,(C) is not bounded away from zero as in
fact happens in the Student # example of Buehler and Feddersen (1963). More
generally of course we might consider preference reversals incorporating suitable
weight functions v(x). There is no question that v(x) must be restricted (recall
Example 2), but it is not at all clear what restrictions are most suitable, or
precisely how coherence should be defined.

8. Some relationships to decision theory. Let L(f, d) be a loss function and
d be a decision function. Finite models will serve for the present discussion with
risk function R4, 6) = ¥, L(4, 6(x))p(x, #). Let L* = —L, R* = —R so that
the preference is for the larger L* or R*. The difference of risk functions is

8.1) R*(6, 0") — R*(0, 0) = X3, h(0)p(x, 0)
where
(8.2) h(0) = L*(, 6'(x)) — L*(8, é(x)) .

A preference k,, > 0 corresponds to a preference for 4" over d conditional on
x = x,. This type of conditional preference does not arise in non-Bayesian de-
cision theory where only average like (8.1) over the sample space are considered.

Suppose that 3, is a Bayes solution corresponding to prior measure w, and 9
is any other decision function. Then for each x € 27

(8.3) S0 (L0, 8.(x)) — L*(, 3(x))}p(x, O)w(0) = 0.

This set of inequalities tells us that the set of preferences {#, > 0, x € 27}, where
h, is defined by (8.2) with 6’ = §,,, is w-coherent. By Theorem 2 we see that if
8, is Bayes, the conditional preferences for d,, over any other § are PR-coherent.

Next suppose that ¢’ dominates d, that is, R*(#, é") > R*(@, 9) for all 4, or
equivalently 33, k,(9)p(x, §) > 0 for all §. It does not follow that the preferences
{h, = 0, xe 27} are coherent. To see this let x=1,2, 6 = 1,2, f,(f) =
h,(6)p(x, 6). We could arrange fy(1) = f(2) = —1, f,(1) = fi(2) = 2. The evi-
dent incoherence suggests defining 6”(1) = d(1), 8”(2) = §'(2), thereby obtaining
a 8" which dominates &'.

A referee has called attention to similarity between the expectation in (6.2)
and the quantities p{? defined by Lindley (1953). These p{? represent the prob-
ability of making decision i using decision function d when ¢ = j. It is assumed
that decision i is the only correct one when 6 = i. Let L(d, d) be the correspond-
ing zero-one loss function and define f,°(0) = L(0, d(x))p(x, 6). We then find for
i % j, p2 = Yeeafs'(j), where 4 = {x|3(x) = i}, but we have been unable to
use this relationship to establish further links with Lindley’s theory.

9. Acknowledgment. We wish to thank the referees for several helpful
suggestions.
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