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CHARACTERIZATION OF PRIOR DISTRIBUTIONS AND
SOLUTION TO A COMPOUND DECISION PROBLEM

By C. RADHAKRISHNA Rao
Indian Statistical Institute

Let y = 0 + e where 6 and e are independent random variables so that
the regression of y on 4 is linear and the conditional distribution of y given
6 is homoscedastic. We find prior distributions of § which induce a linear
regression of § on y. If in addition, the conditional distribution of § given
y is homoscedastic (or weakly so), then 6 has a normal distribution. The
result is generalized to the Gauss-Markoff model Y = X@ + ¢ where 6 and
¢ are independent vector random variables.

Suppose y; is the average of p observations drawn from the ith normal
population with mean 6; and variance ¢ 2 for i = 1, «++, k, and the problem
is the simultaneous estimation of 6y, + -+, x. An estimator alternative to
that of James and Stein is obtained and shown to have some advantage.

1. Introduction. The paper is concerned with the following type of problems.
There is an unobservable measurement § on an individual, but observations
Yu» -+ s ), (the value of p may be unity) may be obtained such that

(1.1) yi=ab + e, i=1,.p,

where e, are in the nature of errors which do not depend on #. The measure-
ment 6 (or af) may be the true value of a characteristic of an individual, and
e, may be measurement errors in repeated trials. How does one estimate (or
predict) ¢ given y,, -+, y,?

There are essentially three approaches. One is the pivotal statistic approach
of Fisher, where a statistic involving observed and unobserved variables

(1’2) T=f(0’.y1$ "'&.yp)

is found such that the distribution of T does not involve any unknown element.
Inferences on @ are drawn by using the known distribution of T and observed
values of y,, ..., y, without making any further assumptions. The procedure
is valid, although the inferential statements on § in terms of fiducial probability
advocated by Fisher was subject to some logical criticism.

The second is straight Bayes, where a proper or improper prior distribution is
imposed on ¢ and the conditional distribution of # given y,, - .., y, is computed
(see Lindley, 1971).

The third is empirical Bayes, where only a class of prior distributions (some-
times the class of all distributions) is assumed for # and the conditional distri-
bution (or just expectation) of ¢ given y,, ..., y, is estimated (by substituting
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824 C. RADHAKRISHNA RAO

estimates for any unknown parameters involved). The success of the method
depends on the information available in y,, - - -, y, on the unknown parameters.
See Fairfield Smith (1936), Rao (1952, page 329), Rao (1953) and Rao (1973,
page 337) for a discussion based on the setup (1.1), and Robbins (1955) for a
general theory and other examples.

In the present paper we examine the empirical Bayes approach a little further
in the problem mentioned as well as in more general problems. A number of
results on characterization of probability distributions which are of wider in-
terest are obtained.

More specifically, the class of prior distributions of ¢, which induce a linear
regression of 6 on y;, - - -, y, under the model (1.1) is obtained. If this happens,
under some additional conditions, it is necessary and sufficient that the prior
distribution of # is normal and also that y,, --., y, are normally distributed.
The results are extended to the Gauss-Markoff model, Y = X@ + e involving a
vector parameter §. These results establish the pivotal role of normal prior for
0 if the direct linear regression estimate of # on Y is claimed as optimum.

In the problem of simultaneous estimation of a number of unknowns @,, - - -, 6,
under a quadratic loss function, an estimator alternative to that of James and
Stein (1961) has been proposed, which is invariant for translations and which
seems to have certain advantages.

It has been suggested by a referee that some of the key results which are used
in proving the characterization theorems of the paper may be mentioned in the
introduction. These are the following:

THEOREM 1.1 (Darmois, 1953, Skitovic, 1954). Let X, - - -, X,, be independent
random variables (rv’s) taking values in R' and suppose that the linear combinations

L=aX 4+ . --- +a,X, and L=bX +  --- +b,X,
are independent. Then for each i =1, -.., n such that a, + 0, b, = 0, we have
that X, is normally distributed.

THEOREM 1.2 (Ghurye and Olkin, 1962). Let X, in Theorem 1.1 be rv’s in
R* and a,, b, be constant nonsingular matrices. Then X, is k-variate normal,
i=1,...,n

THEOREM 1.3 (Marcinkiewicz, 1938). If e”* is a characteristic function of an
rv, with P(f) as a polynomial, then the degtee of P(t) is utmost two.

THEOREM 1.4 (Cramér). If X and Y are independent tv’s such that X + Y is
normally distributed, then X and Y are each normally distributed.

A theorem of general interest relating to the solution of a functional equation
which is repeatedly used in the present paper is as follows.

THEOREM 1.5 (Khatri and Rao, 1972, also Kagan, Linnik and Rao, 1973,
page 471). Let ¢, be a continuous complex valued function of a real p-vector vari-
able and A, B, be matrices of orders p X p, and m X p; respectively, i = 1, ..., s,
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such that
e (At + Bly) = C(t) + D(u) .
(1) If R(A;) = RB,)) =p,, i =1, ---, s, then C(t) and D(t) are polynomials.
(if) If R(A)) = p;, i =1, ---, s, then C(t) is a polynomial and nothing can be

said about D(u) without any assumption on R(B,).

[In (i) and (ii), R(X) denotes the rank of X. For a more general version of
the theorem, see Khatri and Rao, 1972, and also Kagan, Linnik and Rao, 1973,
which will be referred to as KLR in the rest of the paper.]

2. Some theorems on characterizations and applications. Let (X, X,) be a
bivariate random variable. The conditional distribution of X, given X, is said
to be homoscedastic if it depends on X, only through the conditional expectation,
more precisely if the variables X, — E(X,|X;) and X, are independently dis-
tributed. In such a situation (X;, X,) has the structure

(2.1) X, =g) + e
,/Y1 = U

where u and e are independent random variables. The conditional distribution
of X, given X, is said to be weakly homoscedastic if the conditional variance is
independent of X;. Note that the existence of the second moments of (X;, Xj,)
is assumed in the definition of weak homoscedasticity but not for homoscedas-
ticity. We prove the following general theorem:

THEOREM 2.1. Let (X,, X,) be a bivariate random variable and let nonzero con-
stants « and B exist such that

(2.2) af # 1,

(2.3) X, — aX, and X, are independent,
and

(2.4) X, — BX, and X, are independent.

Then (X,, X,) has a bivariate normal distribution.

Proor. Let Y, = X, and Y, = X, — aX,. Then from (2.3), Y, and Y, are
independent, and from (2.4) '

Li=aY,+Y, and L,=(l—ap)Y,— pY,

are independent. Then by Theorem 1.1, under the conditions of Theorem 2.1,
Y, and Y, are normal and hence (X}, X,) has a bivariate normal distribution.

Note 1. If a = 0, 8 0, then we can only assert that X, and X, are inde-
pendent and the marginal distribution of X, is normal.

Note 2. If af = 1, then X, — aX, is degenerate, but nothing can be said
about the distribution of X,.
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CoROLLARY. IfE(X,| X)) = a, + aX,, E(X,|X;) = B, + BX, and the conditional
distribution of each variable given the other depends on the other only in the expres-
sion for the mean, then (X, X,) has a bivariate normal distribution.

THEOREM 2.2. Let (X, X,) be a bivariate vv such that E(X,) = E(X,) = 0,
E(X,| X)) = X, and the conditional distribution of X, given X, is homoscedastic.
Further let f(t,, t,) denote the ch.f. of (X,, X,). Then:

(i) E(X,|X,) = BX,, B+ 0or 1, iff
2.5) f6,0) = [ fl—t, 0]

for some a > 0, in any interval of t where f(t, 0) and f(—t, t) do not vanish simul-
taneously and the constant ¢ depends on the interval.

(i) E(X,|X,) = BX,, B+ 0or 1, and the conditional distribution of X, given X,
is homoscedastic or weakly homoscedastic iff (X,, X,) is bivariate normal.

PRrROOF OF (i). Let g and % be ch.f.’s of X, and X, — X,, respectively. By
hypothesis X, — X, and X, are independent. Then

ft, 1) = g(t + L)) .
Since E(X,|X;) = BX,, by applying Lemma 1.1.3 of KLR (page 11),

(I — B)g'h = gk’
where primes denote derivatives, which has the solution (2.5). This proves the
necessity of (2.5). Sufficiency is easily established.
The result (ii) under homoscedasticity is already established in Theorem 2.1.
We shall establish the result under weak homoscedasticity. Applying Lemma
1.1.3 of KLR (page 11), we obtain the conditions

9'h = p(gh) for linearity
g"h = —a’gh 4- p¥(gh)” for weak homoscedasticity
where ¢? is conditional variance. From these equations it follows that
(1 — B)(log g9)” = —a* near the origin.

If o* = 0, then log g is quadratic in ¢ near the origin, and hence g is the ch.f.
of a normal distribution. Then, so is 4 and hence (X,, X,) is bivariate normal.
If ¢* = 0, the distribution of (X;, X,) is degenerate. Thus the result (ii) is proved.
It may be seen that when 8 = 0 or 8 = 1, either g or 4 is degenerate.

Theorem 2.2 provides the answer to the question raised about the prior dis-
tribution of # in the model

y = 0+ e
where ¢ and e are independent, which induces a linear regression of  on y. In
particular we have the following results.

(a) If the regression of # on y is linear and e has a normal distribution, then
the distribution of ¢ is also normal by an application of the result (2.5).
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(b) If in addition to linear regression, the conditional distribution of ¢ given
y is homoscedastic or weakly so, then the distributions of both ¢ and e are
normal.

THEOREM 2.3. Let (X,, X;) be a bivariate rv such that E(X)) = E(X;) = 0 and
E(X;| X)) = X,. FurtherletY = X, + X, where X, is independent of (X,, X,). Then
E(X;|Y) = BY, B+ 0 or 1, iff the ch.f.’s ¢, and ¢, of X, and X, satisfy the
relationship

(2.6) eu(t) = c[oy(D]*

for some a > 0, in any interval of t where ¢, and ¢, do not vanish simultaneously,
where c is a constant depending on the interval.

The proof is omitted as the result can be obtained by a direct application of
the condition of linearity of regression given in Lemma 1.1.3 of KLR (page
11).

The result (2.6) is interesting since it shows that the nature of regression is
altered if the independent variable is subject to an independent error, unless the
ch.f.’s of the independent variable and the error satisfy a certain relationship.

In Theorems 2.2 and 2.3, the condition E(X,|X;) = X, can be replaced by
E(X,| X)) = aX;, a # 0. In such a case we can consider the variables X, and
Y = aX, and apply the results of the theorems.

3. The Gauss-Markoff model. Let us consider the Gauss-Markoff model
(3.1) EY|0)=X0
with the additional condition that the conditional distribution of Y given @ is
homoscedastic, i.e., Y has the structure
3.2) Y=X0 +¢
where 6 and e are independent. The problem is to find prior distributions of

6 which enable us to reverse the relationship (3.1) and make the following types
of statements:

(3.3) E@|Y) = BY .

3.9 E(6|Y) = BY and the conditional distribution of & given
Y is homoscedastic.

(3.5) E@@|Y) = BY and the conditional distribution of & given
Y is weakly homoscedastic.

In Section 2, we solved the problem when both @ and Y are one-dimensional
variables. The same kinds of results hold when @ and Y are vectors. We show
that for (3.4) and (3.5) to hold, @ (or more specifically X@) should have a multi-
variate normal distribution (m.n.d.) while for (3.3) a simple relationship between
the ch.f.’s of @ and e is sufficient. The following theorems are proved:
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THEOREM 3.1. Let Y = X0 + €, where @ and e are independent and 6 =
BY -+ %, where Y and 5 are independent, and X, B are given matrices. Then the
following hold:

(i) (X%, Be) (i.e., X9 and Be jointly) has an m.n.d.
(ii) If € has a nonsingular distribution, then (X6, BY) has an m.n.d. If rank X
is equal to the number of components of the vector 6, then (6, BY) has an m.n.d.

(A problem of the type mentioned in Theorem 3.1 was partially investigated
by Fisk (1970). Unfortunately, his results do not seem to be correct.)

Proor oF (i). By hypothesis
(3.6) E[exp (it,/(X0 — CY) + it,Y)] = E[expit/(X0 — CY)] - E[expit/Y],

where C = XB. Writing Y = X@ + ¢ in (3.6) and denoting the log ch.f. of X&
and e by fand g respectively, (3.6) becomes

(3.7) AT — C’)tl + t;) + g(—=C't, + t,) = A(ty) + Ay(ty),

where A4, and A, are suitably defined functions. Now applying Theorem 1.5,
we find that A4,(t)) is a polynomial of degree 2 utmost. (Note that the same
cannot be said about Ay(t,) since the ranks of C and I — C may not be full.)
But A,(t,) is the log ch.f. of X#, and hence X» = (I — C)X@ — Ce has an m.n.d.
Since @ and e are independent, by Theorem 1.4,

(3.8) I - oxe and Ce

have m.n.d.’s. Similarly Be has an m.n.d. Since # and e are independent,
(I — C)X@ and Be are independent. Then X» = (I — C)X@ — XBe and Be are
jointly m.n. which proves (i).

To prove (ii), let there exist a vector b such that (I — C)’b = O. Substituting
t, = bv and t, = C’bu in (3.7), we have the equation

(3.9) g(C'b(u — v)) = Dy(u) + Dy(v) .

Then g(C’bu) is linear in u. Since g(C’bu) is the log ch.f. of b’Ce, it follows
that b’Ce is degenerate contrary to assumption. Hence b’'C = O = b’ by the
choice of b, which implies that (I — C) has a full rank. Then from (3.8), Xé
has an m.n.d. Since X@ and Be are independent and have m.n.d.’s it follows

that X6 and BY (= BX@ + Be) are jointly m.n. The rest of the results in (ii)
of Theorem 3.1 follow easily.

THEOREM 3.2. Let Y = X0 + ¢ be the Gauss-Markoff model as in (3.2). Further
let
(3.10) E@|Y)=BY and  D(@|Y)=Z (independent of Y)

where D denotes the variance-covariance matrix. Then (6, BY) is m.n. if no linear
combination of e is degenerate and rank X is equal to the number of components of
6.
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To prove the theorem we need the following lemma which is a generalization
of Lemma 1.1.3 of KLR (page 11).

LemMaA 3.1. Let f(t, u) be the joint ch.f. of (X,, X,), where X, and X, are vector
random variables, which may be of different dimensions.

(i) If the first order moments exist (in which case the mean values may be taken
as zero), and E(X,|X,) = BX, then

(3.11) %f(t, “)Lo: Baitf(t, 0)

where the functions involved are vectors of derivatives (see Rao, 1973, pages T1-72).
(ii) If the second order moments exist, E(X,|X,) = BX, and D(X;|X,) = Z

independent of X,, then

a2

ou’

aZ

(3.12) 5 [t O}

fitw| =—f(tO)= +B

The results are established on the same lines as in Lemma 1.1.3 of KLR

(page 11).
To prove the main theorem, we observe that
(3.13) fit, u) = E[eY+wX0] = h(t + u)g(t)
where # and g are the ch.f.’s of X@ and e respectively. Observe that
(3.14) E@|Y) = BY — E(X0|Y) = CY
(3.15) D@|Y) =X =DX0|Y)=A (say).
Then an application of (3.11) and (3.12) gives the two equations
(3.16) g(t) I — C)H,(t) = A(t)CG(t)
(3.17) g(tH,y(t) = —g(t)a(t)A + CI(H)C’

where H,, G, are vectors of first derivatives of 4, g, and H,, J are the matrices
of second derivatives of &, hg. Differentiating (3.16) and eliminating J from
(3.17), we obtain the equation

o .

3.18 1-¢f Lo ht]:—A.
(3.18) (1 — 0 2 10gh(t)

If b is a vector such that b’(I — C) = O, then from (3.16)
(3.19) b'CG,(t) = O

which shows that a linear combination of ¢ is degenerate contrary to hypothesis.
Then b = O and I — C has full rank, and (3.18) gives

(3.20) _g% [log A(t)] = —(I — C)~'A .
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Solving, log A(t) = —t'(I — C)~*At which is quadratic in t. Since A(t) is the
ch.f. of X8, the required result is proved. Using the rank condition on X, we
find that @ itself is m.n. Substituting A(t) = exp (—t'Ft/2) in (3.16), we have
on writing t = C'u

(3.21) (I — C)FC'u = 53_ [log g(C'u)] ,
u
which shows that g(C'u) is quadratic in u or Ce has an m.n.d. Then using the

rank condition on X, Be has an m.n.d. Since @ and e are independent, (8, Be)
is m.n., which establishes Theorem 3.2.

CoROLLARY. LetY = X@ + & be the Gauss-Markoff model as in (3.2) and fur-
ther let € have a nonsingular m.n. distribution. If the regression of @ onY is linear
and rank X is equal to the number of components of 8, then it is necessary and suf-
ficient that the prior distribution of @ is m.n.

4. Solution to a compound decision problem.

4.1. Prediction of the unknown true value. Consider a vector random variable

4.1 O30 -5 7)
where the first component § is unobservable. However, it is known that y, =
6 + e, wheree,, - - -, e, are i.i.d. normal variables with mean zero and variance

o,2. If the marginal distribution of 6 is normal with mean x and variance o,
then it is easily seen that

4.2) EQ@|ys -« - 0) = (0 + 0,P)/(e? + 0,7)
4.3) VO |y -5 ye) = 00 (0, + 0,%),

where ¢, = o//p. If p, 0 and o,* are known, 6§ may be estimated or predicted
by the formula (4.2) which is denoted by f, with the mean square error of
prediction (4.3). It is seen that

ojlo,? < g2
o2+ao2 =
4.4) — g} as o,2—> o0,
—0 as 0,2—0.

Thus on the criterion of mean square error, 4, the direct regression estimator
of # on j, is better than the inverse regression estimator y. Now

(4.5) E@ — 0) = 020,%(s, + 0, ,
(4.6) E[(J — 0)*|0] = 0.2,
and

(4.7) E[( — 0)*|6] = [E@ — 0)")(0:* + Fa)/(0:* + 0.7)
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where 4 = (¢ — p)/o,. We have the following inequalities:

4.7) < (4.5) < (4.6) if 2<1,

@5) < @) < @6) if 1<2< [0, + o],
and

(4.5) < (4.6) < (47) if 2> [0, + 0.))[a)’]t.

The expressions (4.6) and (4.7) represent an individual’s loss (with a particular
value of §) in estimating the true value of 6 by  and § respectively. It appears
that for large values of 8, the individual’s loss in using § is larger than that for
7, which calls for some caution in estimating § by § in a routine way on a
population of individuals although the overall loss (4.5) which is statistician’s
loss, is minimized. For further comments on the distinction to be made between
statistician’s loss and individual’s loss and a possible way of obtaining a balance
between the two, the reader is referred to Rao (1975a, 1975b).

4.2. Simultaneous estimation when parameters are unknown. Suppose we have
observations on a sample of k individuals from a population described by the
model (4.1), with only the y,; observed:

(1) yus - s Vop
(4.8) .o

(0k)’ Yies =t v s Vo s

where the sample size may be different for each individual. The problem is to
estimate the unobserved values 6,, - - -, 8, of these individuals when 6, are con-
sidered as a random sample from a population with mean p and variance o,%
but the parameters y, ¢, and ¢, are unknown. Such a problem was considered
in the more general context of selection procedures in genetics by Fairfield Smith
(1936), Panse (1946) and the author (Rao, 1953).! These provide early examples
of compound decision problems. Interest in this area of research is revived after
James and Stein (1961) provided a solution under a model involving repeated
observations on a fixed set of individuals. We consider both the models in our
discussion.

4.2.1. Super population model. First, we consider the model (4.1) and assume
that the individuals come from a population where 6 has a distribution with
mean g and variance ¢,’. If the parameters are known, the prediction for the
ith individual is, using (4.2),

R 2
4.9 0,=7 _——‘—ﬁ—— - ) '=l""’k’
( ) 4 yot 0'02 + Ptﬂ'b, (yoi l“) 1

where §,, = (yi + -+ + )p)/p.- It is easily shown that these estimators

! These investigations were based on a suggestion made by R. A. Fisher. The author’s paper
(Rao, 1953) develops the theory and explains the computational aspects.
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provide the minimum expected loss with respect to the loss function
(4.10) E[(ty = 0)" + -+ + (8 — 00)"]
for given estimators ¢,, - - -, f,.

When the parameters are unknown we may estimate them from the observed
data (4.8) by analysis of variance. The following computations are well known.

Analysis of Variance

Degrees of

freedom Sums of squares Expectation

Between (k — 1) B = Z p(J.. — J..) <P. - —ZPP—12> o + (k — 1)og’
Within (p, — k) W (by subtraction) (p. — k)ao2.
Total p, — 1 PIDI TR L
pPo=2Ps Ju=u +\' Y T = 2 XL YulPe -
One method of estimating the parameters p, ¢,% ¢, is to equate y,,, Band W

to their expected values. However, there seems to be some advantage in obtain-
ing biased estimates of ¢, and ¢, through the following equations:

S . e !

W:(p.—k+2)002.

A

Denoting the estimates so obtained by 4,* and 4,°, and substituting in (4.9), we
obtain the empirical Bayes estimators

A

~ 2

(4.12) 0, = Jus — —o— (Jui — J2) i=1,-0,k.
p:0,* + 65’

The motivation for choosing estimators as in (4.11) comes from the investigation

in the case when p;, are all equal to p. In such a case we may write the estimators

in the form

(4.13) b= 5= 5 (=30, =1, .k,

where ¢ is suitably determined. The expected loss associated with the estimators
in (4.13) is

- W .
@18 ER[Gu—0)= (u=5.)]

2 2cW | 2cW - -
e + CB 2000 — J.0)

= E[X (5. — 0] +
pB

since B=p Y} (J.; — J..)®. Observing that W and B are independently dis-
tributed as chi-squares with s = k(p — 1) and (k — 1) d.f., with scale factors
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o, and po,? + o}, respectively, and that

(4.15) E Z 07«(-)7'1 —_)7--) — Pa'b2
2 (Ju—J.) pottoad
the expression (4.14) is found to be

(4.16) 0_°2|:k 4562 ooy 2es(l — 5)],
P (k —3)
where 6 = 6,}/(po,? + 0,’). The expression (4.16) attains the minimum value
(4.17) 3 [k — (k_—@]
p s 4+ 2

by choosing ¢ = (k — 3)/(s + 2). If we use unbiased estimators of ¢,? and g2
from B and W, the value of ¢ in (4.13) will be (k — 1)/s, and the loss will be
slightly more than (4.17).

It is of interest to compare the losses incurred by using the estimators y,, (the
traditional averages), b, (Bayes when population parameters are known) and 6,
(empirical Bayes), in the case where p; are all equal:

@.18) B[ (. — 0] = ’%

@19 EZEO - 0y)= K

a," + oy’
- : k — 3)s8
420) E ka._wz"_()[k_(—]
20 E5td - 0y1 =4[k - €=
(4.21) _ koo’ i) [k e 3)3]
po’ + o po? + ag s+ 2

It is seen that (4.19) < (4.21) < (4.18), so that the empirical Bayes is better
than the simple averages. The additional loss in using estimates instead of pa-
rameters in the Bayes solution is the second expression in (4.21),

4. o g k=31
(4.22) p(a,? + o) [ s+ 2 jl

4.2.2. Conditional loss (James-Stein problem). In Section 4.2.1, we computed
the overall loss for empirical Bayes estimators under a super population model.

We shall now compute the conditional loss, i.e., given the true valuesd,, - - -, 4,,
and compare with that of the James-Stein (1961) estimator
5 aW \ _ .
(4.23) b= (1 -2 )5, Pi=1, .k,
I

where a is a suitably chosen constant. In the James-Stein procedure the esti-
mators are scaled down towards the origin, whereas in the empirical Bayes, the
estimators are scaled towards the general observed average. James and Stein
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(1961) have shown

(4.24) E[Y (0, — 0.0, -, 0,]
:‘L"z[k— S (k—2r.E— L }
P s+ 2 k —2 + 2K,

where the variable K, has a Poisson distribution with mean equal to } pf# /20’
By using the arguments employed by James and Stein it is easily shown that

(4.25) E[T (6, — 0,05, -+, 0]
=2l 2 k—3p. B 1 -
p st 2 k=31 2K

where K, is a Poisson variable with mean equal to Ep(0, — 0)*/202, 0 = (3] 0,)/k.

The estimators (9: are translation invariant unlike those of James and Stein,
and the overall loss depends on the variance of the true values rather than on
the raw sum of squares, which gives some advantage to the former estimators
over the latter. There is, however, some difference in the minimum loss attained
in each case, being approximately 3 for empirical Bayes (4,) and 2 for James-
Stein estimators (4,). But the loss stays close to 3 in the case of g, so long as the
variance of the true values (¢,) is small however large their average may be.
But for §,, the loss increases with increase in the average value of 6,.

NoTk 1. In a recent paper, Efron and Morris (1973) considered a number of
alternatives to the James-Stein estimator and compared their relative efficiencies.
The main inspiration is through empirical Bayes approach as in the earlier work
of Fairfield Smith (1936) and Rao (1952, 1953, 1973). Efron and Morris consider
a modification of the James-Stein estimator (see equation (7.1) of their paper)
which brings the individual estimators closer to the overall average of individual
averages rather than to the origin, which comes out naturally when the expecta-
tion of # defined in (4.1) is different from zero. Section 4 of the present paper
provides the framework for deriving empirical Bayes estimators where the
parameters are unknown and examining their properties.

Notk 2. In a recent presidential address to the Royal Statistical Society,
Finney (1974) obtains the maximum likelihood estimators of 4,, - . ., , under
the super population model of Section 4.2.1, assuming normality for the obser-
vations y;; as well as for parameters #,. The estimators have the form (4.11)
but not the same expression as in (4.11).

Note 3. For further discussion of the compound estimation problem including
the computation of bias in 91, a reference may be made to a recent paper by
the author (Rao, 1976).

The results of Section 4 of this paper concerned with the computations (4.20),
(4.21) and (4.25) supplement the valuable investigations of Efron and Morris,
and the approach suggested by Finney to justify James-Stein type estimators
without consideration of a loss function.
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