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PROBABILITIES OF LARGE DEVIATIONS FOR
EMPIRICAL MEASURES!

By GERALD L. SIEVERS
Western Michigan University

Sanov’s theorem on the asymptotic behavior of probabilities of large
deviations for an empirical probability distribution is established under
different conditions than previously given by Sanov, Hoadley and Stone.
The new conditions are based on likelihood ratio approximations rather
than on multinomial approximations. It is shown that these conditions are
strictly more general than those of Stone. .

1. Introduction. Let 22~ be an arbitrary set and <% be a o-field of subsets of
& which contains all singletons. Let p be a probability measure on <. Let
X,, X,, - - - denote a sequence of i.i.d. random variables which take values in
& according to p. For each positive integer n, let (27, ™) be the sample
space of X, = (X;, - -+, X,) and p™ the corresponding product measure.

If g is a probability measure on <% and ¢ < p, let 2,(x) be a ZZ-measurable
function, 0 < 2,(x) < co, such that dg = 2 (x)dp and let I(q, p) = § . log 2,(x) dg.
If g is not absolutely continuous with respect to p let I(q, p) = co. For x =
(X1 =5 X,) €27, let 4,,(X) = []7oy 4,(x%)-

For each positive integer n, let p, = p,(- | X}, - - -, X,) be the empirical meas-
ure defined by p,(B) = n~' (the number of subscripts j such that X;e B, 1 <
j < n) for Be 7.

Let 4 denote a set of probability measures on <% such that P(p, € 4|p) is
well-defined for each n and I(4, p) = inf ., I(g, p) < oo. Let 4, = {xeZ7™:
Pl [ Xy oo ey x,) € A}.

" In Section 2 sufficient conditions are presented for the equation

(L.1) P(p A|p) = exp[—nI(4, p) + o(n)]

- These conditions were motivated by a consideration of likelihood ratio tests
of Hy: pvs. H,: q (or H,: q e A) which have exact slopes I(q, p). For (1.1) to
hold, it would be sufficient for 4,, viewed as a critical region of a test of H, vs.
H,, to be similar in some sense to the likelihood ratio tests for suitable g ¢ 4
“nearest” to p (I(q, p) near I(A, p)). Condition I (of Section 2) requires that the
power of this test be asymptotically bounded away from 0 at such alternatives.
Viewed another way, condition I requires for certain g € 4 with ¢ < p, that the
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discrete probability measures in 4 “near” g be sufficiently dense. This bears
some resemblance to Stone’s (1974) condition (C3).

Condition II, with B, = 4,, requires that some g ¢ 4, g £ p, nearly dominates
A in that for all points of 4,, 2,, is sufficiently large. Using B, c 4, covers
some cases where 4,, may not be sufficiently large over all of 4, but points in
A, — B, can be ignored in view of II(ii).

In Section 3, it is shown that conditions I and II are more general than Stone’s
(1974) conditions (C2) and (C3). In Section 4, a well-known example is con-
sidered which provides nontrivial cases where conditions I and II can hold but
Stone’s conditions do not hold directly. Stone indicates that his conditions can
be applied to this type of example by using a truncation argument.

2. Main results. Consider the following conditions:

(I) there exists a sequence of probability measures {g,)z_, such that ¢, ¢ 4
and ¢, < p for all m and

(i) lim,, .. /(¢n, p) = I(4, p)
(ii) liminf, . P(p,€ 4|q,) > 0 for all m,

(IT) for all ¢ > O, there exists g € 4, ¢ € p, and a sequence {B,}>_, such that
B, C A, and B, is <#‘™-measurable for each n and with

Cpg = infxeBn Ang(X)

(i) I(4, p) — ¢ < liminf, . n'logc,,
(ii) n~tlog§, _5 dp™ < —n7'logc,, + ¢
for all n sufficiently large.

Note that condition I holds if there exists g€ 4, g £ p, such that I(q, p) =
1(4, p) and I(ii) holds for ¢,, = ¢. Also, if B, = A, then II(ii) trivially holds.

TaEOREM 2.1. If I(A, p) < oo and conditions I and 11 hold, then (1.1) holds.
Proor. First show that condition I implies
(2.2) liminf,_, n='log P(p,e A|p) = —I(4, p) .

For each m, consider {p, € 4} = {X,,, € 4,} as a critical region for testing the
simple hypotheses H,: p vs. H,: q,. The significance level of the test is P(p, €
A| p) and the power is P(p, € 4|q,). Condition I(ii) implies that the power is
asymptotically bounded away from 0 and applying an argument like (6.10) of
Lemma 6.1 of Bahadur (1971), it follows that

lim inf, ., n='log P(p, € A|p) = —I(q,., P) -

Then I(i) implies (2.2).
Next it is shown that condition II implies

(2.3) limsup,_, n'log P(p, e A|p) < —I(4, p) .
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Let ¢ > 0. Then
§5,dp" = $5, Aa g™ = oy S cpe™
and
P(p,e A|p) = SA,,,'—B,,, dp™ + SB,, dp™
= 2max{{, 5 dp™, c,ze™}.

Then II(ii) implies

n~*log P(p,c A|p) < n~'log2 + ¢ — n~'logc,,
and II(i) implies

lim sup,,_, n='log P(p, € A|p) < —I(4, p) + 2¢.
Since ¢ is arbitrary, (2.3) follows.

3. Relation to Stone’s conditions. In this section it is shown that conditions
I and II are more general than Stone’s conditions (C2) and (C3).

Let D, denote a k-class partition Z27* U ... U Z5F of &2 such that 27" is
“-measurable and p(Z7*) > 0fori=1, ..., k. Let

1(q, D) = Xt 9(27%) log [¢(Z279) [p(Z739)]
I(4, D) = inf ., I(q, D}),
I(A, k) = supy, {I(4, D) |k},
I(A, sup) = sup, I(A4, k) and for 0 >0
Ny(q|Dy) = {q": max,g, |9(27%) — ¢'(Z7) < o}
Assume that Stone’s conditions hold. Then for any ¢ > 0 there exists ¢’ € A4,
an integer k, a partition D, and ¢ > 0 such that

(C2) I(4,D,) < I(¢', D) < I(A, D}) + ¢

(C3) Ni(¢'|Dy) C 4.

Next proceed to construct the ¢, {B,} and {q,,} required for conditions I and
II. Define a probability measure g € Ny(q' | D,) by

92 = 4(Z) and
q(B;) = p(B)q'(Z3)[p(Z7)
for &#-measurable B, C 27%, i=1,...,k. Then ge 4, g < p, I(q, D) =
I(¢', Dy), I(g, Di) = 1(g, p) and Ny(q| Di) = Ny(¢'| Dy).

To show condition I, note that for each positive integer m there is a proba-
bility measure ¢,, on &% (using ¢ = 1/m and ¢,, = ¢ in the previous discussion)
such that ¢, € 4, g9, < p,

I(qm> P) = 1(qm, D;) < I(A, D) + (1/m) (from C2)

= I(4, p) + (1/m)
and .
I(4, p) < 1(qm> P) -
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Hence I(i) follows. Also, since N,(q,,|D,) C A4 and
Ppa€ Ni(gn|De) | gn] — 1

as n — oo for each m, we have I(ii).

To show condition II, use g as previously defined and the following construc-
tion for {B,}. There exists N such that for each positive integer n = N there is
a probability measure g, which assigns probability 1/n to n points of 2% ¢, ¢
Ny(q|D,) < Aand
(3.1 | 23t1 4a(277) Log [9(2731) [p(274)] — 1(g, Dy)| < &

(Note if ¢(27*) = 0 take g, such that ¢,(27*) = 0 with 0log 0 = 0.) Now let
B, ={xeZ™: p,(s|% -+, X,) € N(q.| Dp)} .
Then B, c A, and

3.2) n-tlogc,, = n~'log (inf, .5 4,,(X))
= 2 9u(Z3") log [9(275)[p(275)]
since 4,(x) = ¢(Z7%)/p(Z7) if xe 2 fori=1, ..., k. From(3.1), (3.2)and
(C2) it follows that )
n~tloge,, < I(q, Dy) + ¢
< I(4, D) + 2¢.
Now II(i) follows, since from (3.1) and (3.2)
n-tlogc,, = I(q, D,) — ¢
=1(g,p) — ¢
=1(A4,p)— ¢
for all n = N.
To show II(ii), first note that from Stone’s Lemma 2.1
$ap-5,9p™ = (4, dp™ = P(p, € 4| p)
=< exp[—nl(A, k) + O(log n)]
where O depends only on k. Then for » sufficiently large
< —I(A, k) + ¢
< —I(A,D,) + ¢
< ntlogc,, + 3¢

nt log SA,,L—B,,L dp™

from (3.3). Since ¢ is arbitrary, II(ii) follows.

4. An example. Suppose Y = Y(x) is a real-valued, <#-measurable function
on 2 with m.g.f. #(¢) = §_, exp(¢Y(x))dp which satisfies the standard condi-
tions of Bahadur (1971), Chapter 2. Let 4 = {g: {, Y dq exists and is > 0}.
Then P[p,e A|p] = P[X7-, Y(X,) = 0|p]. Now Bahadur’s standard conditions
imply that there exists 7 > 0 such that ¢’(r) = 0. Then the probability measure
q = q. defined by dg = [§(z)]~* exp(r Y(x)) dp satisfies E(Y) = ¢'(r) = 0 and
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Var, (Y) > 0. Also I(g, p) = —log ¢(r) = I(4, p) follows from Theorem 4.2 of
Bahadur (1971).
It will be shown that conditions I and II are satisfied and hence (1.1) holds.
Note
A, ={xezZ™: 31, Y(x) = 0} and
Ang(X) = [$()]7" exp[z T7 Y(x;)] -
Now using B, = 4,
Cpg = infxeBn Ang(X) = [$(0)]" .
Then I(4, p) < I(q, p) = —log ¢(r) = +n~*logc,, for all n and condition II
holds. ’

If ¢,, = g for all m, then, since P[37_, Y(X;) = 0|q] — } as n — co by the
central limit theorem and I(4, p) = I(q, p), condition I follows.

REMARK. In this example, the application of Theorem 2.1 is simplified in that
the infimum of 4,, over the entire set 4, is large enough for condition II(i) to
hold. Then using B, = 4,, condition II(ii) trivially holds.

It is clear that (1.1) continues to hold if a single point is added to each 4,.
These points can be chosen so that c,, tends to 0 when B, = 4, and condition
IT would fail. However, with the option B, # A,, condition II would hold.
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