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BALANCED FRACTIONAL 2" FACTORIAL DESIGNS OF EVEN
RESOLUTION OBTAINED FROM BALANCED ARRAYS
OF STRENGTH 2/ WITH INDEX , = 0

By TERUHIRO SHIRAKURA

Hiroshima University

Consider a balanced array T of strength 2/, size N, m constraints and
index set {g, p, ++ -, pat} With 4 = 0. Under some conditions T yields a
design of even resolution (2/, say) with N assemblies such that all the effects
involving up to (! — 1)-factor interactions are estimable provided (I + 1)-
factor and higher order interactions are assumed negligible and that the
covarjance matrix of their estimates is invariant under any permutation
of m factors. The alias structure of the effects of /factor interactions is
explicitly given. Such an array T is called an S-type balanced fractional
2m factorial design of resolution 2/. Necessary conditions for the existence
of the design T are given. For any given N, there are in general a large
number of possible S-type balanced fractional 2= factorial designs of reso-
lution 2/. Finally a criterion for comparing these designs is given.

1. Introduction. As an important subclass of irregular fractional designs, the
concept of balanced designs was first introduced by Chakravarti (1956). Par-
ticularly balanced fractional 2™ factorial (briefly, 2-BFF) designs of resolution
V have been investigated by Srivastava (1970), Srivastava and Chopra (1971 a, b),
Chopra and Srivastava (1973 a, b) and others. It is well known from their results
that these designs have close relationships with balanced arrays (B-arrays) of
strength 4. A B-array of strength ¢ is defined as follows: A (0, 1) matrix T of size
m X N is called a B-array of strength 7, size N, m constraints and index set
{#0> 15 - -+ p} if for every t-rowed submatrix T of T, every vector with weight
(or number of nonzero elements) j occurs exactly x,; times (j = 0,1, .-, ) as
a column of 7. For the B-array defined above, it is easily shown that N =

t—o (Y)t;- Thus the term “size N will be omitted, if it is not necessary.

Recently, Yamamoto, Shirakura and Kuwada (1975) have established a general
connection between a 2™-BFF design of resolution 2/ + 1 and a B-array of
strength 2/, m constraints and index set {s, y, ---, ¢t;}. These authors have
discussed some properties of a triangular type multidimensional partially balanced
(TMDPB) association scheme which is defined among the effects up to I-factor
interactions. Furthermore using the decomposition of the TMDPB association
algebra into its two-sided ideals, Yamamoto, Shirakura and Kuwada (1974) have
succeeded in obtaining an explicit formula for the characteristic polynomial of
the information matrix M, of a 2™-BFF design T of resolution 2/ + 1. This
polynomial is useful for comparing designs by the popular criteria such as the
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trace, the determinant and the largest root of M,~*. (For well-known studies on
optimal designs using various criteria, see for example, Kiefer (1959).) Shirakura
(1975D) has given optimal (w.r.t. the trace criterion) 2"-BFF designs of resolu-
tion VII for m = 6, 7 and 8.

However those investigations have been restricted only to designs of odd reso-
lution. The term “resolution” of a design was introduced by Box and Hunter
(1961), as one means of classifying fractional factorial designs. In general it is
difficult to obtain a design of even resolution. For work on designs of resolu-
tion IV, see for example, Anderson and Srivastava (1972), Margolin (1969),
Srivastava and Anderson (1970), Webb (1968). It is shown here that under
some conditions, a B-array T of strength 2/, m constraints and index set {sx,,
s - My} With g, = 0 yields a fractional 2™ factorial design of resolution 2/
such that all the effects involving up to (/ — 1)-factor interactions are estimable
and the covariance matrix of their estimates is invariant under any permutation
of m factors. At the same time it is shown that the mean of the effects of [-
factor interactions and {(,”) — 1} independent contrasts between these effects
are made estimable by the B-array T. Such a B-array T shall be called an S-
type balanced fractional 2™ factorial (briefly, 2"-SBFF) design of resolution 2.
However the design T is no more of resolution 2/ 4 1, since a necessary condi-
tion for a 2™-BFF design to be of resolution 2/ 4 1 is that y, + 0 (see Shirakura
and Kuwada (1975)). Also necessary conditions for the existence of the design
T are given. For B-arrays of strength 2/ with ¢, = 0, their combinational prop-
erties have been already studied by Shirakura (1975a). There are, in general,
a large number of possible 2"-SBFF designs of resolution 2/ with N assemblies.
Finally a criterion for comparing these designs is given.

2. Preliminaries. Consider a 2™ factorial design with m factors F,, F,, - - -, F,,.
An assembly or treatment combination will be represented by (ji, jus =« * 5 jm)s
where j,, the level of F,, equals 0 or 1. Consider the situation where (/ + 1)-
factor and higher order interactions are assumed negligible for any fixed integer
I(1 £1 < m/2) throughout this paper. Then the total number of unknown
parameters is v, = 1 4+ (7) + --- + (7). The vector of unknown parameters
(v, X 1) will be written as

0" = (04501, -3 0m5 010,015 -+ Opgecms =5 0iaets ++ s O gyaiim)
= ({04} {0, }; {0t,t2}; s {0 )
where 6, denotes the general mean, ¢, denotes the main effect of the factor F, and,
in general, 6, , ..., denotes the k-factor interaction of the factors £, , F, , - - -, F, .

Let T be a fraction with N assemblies, then T can be expressed as a (0, 1)
matrix of size m X N whose columns denote assemblies. Consider the N x 1
observation vector y(7”) of T with the covariance matrix ¢/, (¢? is the unknown
variance and I, denotes the identity matrix of size N). Then y(7”) can be ex-
pressed as

2.1) &(y(T")) = E, 0,
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where & stands for the expected value and E, is the N X v, design matrix of T
whose elements are —1 or 1 (see, e.g., Yamamoto, Shirakura and Kuwada
1975)). The normal equations for estimating @ are

2.2) M, 0 = E/y(T")

where M, (= E,'E,) is the information matrix of 7. A fractional design T is
of resolution 2/ + 1 if and only if M, is nonsingular. For any design 7 of resolu-
tion 2/ + 1, the best linear unbiased estimate (BLUE) of # and the covariance
matrix of its estimate are given by 6=v, E,'y(T") and Var (5) = o*V, respec-
tively, where V, = M,

When V', is invariant under any permutation of m factors, T is called a 2™-
BFF design of resolution 2/ + 1. In other words, V. is such that the covariance
Cov (0 > Oer..r,) Of any two estimates 0 e, and ﬁt rogy 10D 6 is a function of
u, v and |{tl, et o{y, -0, 1/}, and the variance Var (0 ..t,) is a function
of u only. Here, |.| denotes the cardinality of a set. For a de51gn T of resolu-
tion 2/ 4- 1, it has been shown in Yamamoto, Shirakura and Kuwada (1975)
that a necessary and sufficient condition for 7' to be a 2™-BFF design is that T
is a B-array of strength 2/, m constraints and index set {z, ty, - -+ 3}

Consider [ 4+ 1 sets {0,}, {0t1}, {0,1t2}, ..., and {0t1t2,__tl} of effects, the cardi-
nalities of these sets being 1, m, (%), ---, and (%), respectively. Among these
sets, an [ 4 1 sets TMDPB association scheme is defined in a way such that
0,,...., and 0,,...t,» are the ath associates if

l{tv ) tu} n {tll’ ) tv,}l = min (u’ ’U) -,

where min (1, v) denotes the minimum of the integers # and v. For this associa-
tion scheme, we shall use the same matrix notations A%, D, D% and
B,*" as in Yamamoto, Shirakura and Kuwada (1974, 1975). Therefore the
reader is referred to those papers for properties of these matrices used here.

Now consider the information matrix M, of a B-array T of strength 2[, m
constraints and index set {g,, ¢y, - - -, #t5,}. Then it is easily shown that M, can
be expressed as

(2:3) My = Fhoo T8 Do ,hiDerita
wherefor0 <i< ;<! —8;8=0,1,.--,1,

(2.4) . lcﬂi’j — Icﬁj'i — Z';if) Tj—i+2az,(9'4’;+i"g+j) .
Here

Zp =0 (_l)p(p)(auz:p)luj for i= 0, 1, tty 21 s
25z — 3 (—1yes CEOEDCT(a D)
- (v—lll;+b)

for 0Za, Bsu=svl.

We assume throughout this paper that (§) = O ifand only if 56 > a = 0or b < 0.
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Let % be the [ + 1 sets TMDPB association algebra generated by all (*4%)
association matrices B,*. It is known that T is a 2"-BFF design of resolution
2l + 1 if and only if V, (= M, ") e 2. Algebraic details of 9 will be stated in
Appendix. It follows from (2.3) and Appendix that the irreducible representa-
tions of M, are given by the (! — 8 + 1) x (! — g + 1) matrices K, such that

0,0 01 L, ,00-8

L7
(2.6) K, =| ! : g for B=0,1,---,1.

s =
1=5.0 L 1-B1 ., p l—B,l-p
kg Ky kg

kg

3. 2™-SBFF designs of resolution 2/. Consider the vector of unknown pa-
rameters @ in the following partitioned form: )

= (0,5 6,),
where ,(v,_, X 1) is the vector whose elements are effects involving up to
(I — 1)-factor interactions and @,((%) X 1) is the vector whose elements are
eﬂ‘ects of I-factor interactions only, i.e. o 0= ({0,}, {0}, - -5 {0,,....,_ ) and
0, = ({0,y...o.})-

DEFINITION. A design T is said to be a 2"-BFF design of resolution 2/ if all
the parametersin 6, = ({6, }, {0%}, -+ 3 {0,,....,_}) are estimable and the covari-
ance matrix Var (00) of its BLUE @, is invariant under any permutation of m
factors.

2"-BFF designs of resolution 2/ 4 1, of course, are also of resolution 2/. We
are interested in 2™-BFF designs of resolution 2/ which are not of resolution
2] + 1. In the following we shall obtain a 2"-BFF design of resolution 2/ such
that all the parameters in @, are estimable and the covariance matrix Var CA
of its BLUE 6, is invariant under any permutation of m factors.

In (2.6) consider a B-array T of strength 2/ and m constraints with index set
{#0> t1s + + -, pyy} such that the following condition is satisfied:

(3.1) K, #0 forall 8§=0,1,...,1—1,
K,=0.

This condition implies that the matrices K, (8 =0, 1, --., [ — 1) are positive
definite, since M, is positive semidefinite.

ExaMpLE 1. The following is a B-array withm = 8, t = 6 (i.e., [ = 3), index
set {3,3,1,0,1, 2,2} and N = 65;

Q(1; 8)?9(2; 8)%9(6; 8)1 ,

where Q(j; m) is the (0, 1) matrix of size m X (*) whose columns are all the
distinct vectors of weight j (0 < j < m). Then it can be easily checked that
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this array satisfies Condition (3.1). (An explicit expression of K, (8 = 0, 1, 2, 3)
for the case /| = 3 has been given by Shirakura (1975b).)
Let C be a v, X v, matrix such that

C = diag[l,,_, H],

-1
where H = hy A"V + b AWV 4 .o 4 By AWD# (R, is any real number). Then
the matrix C is also expressed as

C = 220 Dhao D™ 4 To by D001
— qu;% {ZZ—:%—I Dﬂ(u+ﬁ:“+ﬁ)# -+ hﬂDﬂ(l,l)#} .
LemMA 3.1. For a B-array T satisfying Condition (3.1), there exists a v, X v,
matrix X such that XM, = C.
Proor. It follows from Appendix that the irreducible representations of C
are given by the (/ — g + 1) x (I — g + 1) matrices I, such that
I, = diag[/,_,, k] for =0,1,...,1—1.
From Condition (3.1), we have the (/ — 8 + 1) X (I —  + 1) matrix y, = [',- K,
foreach $=0,1, ...,/ — 1. Let
(3.2) | X = Zhoo Dizf Zih x, D, e,
where y,"7 are (i, j) elements of x,, then X satisfies XM, = C clearly.

THEOREM 3.1. Let T be a B-array satisfying Condition (3.1). Then a parametric
function

(3.3) ¢ = Co = [Zﬂ,

where ¢, = H@, is an estimable function of 8. The BLUE 52' of ¢ is given by
¢ = XE;/y(T),
where X is the matrix in (3.2).

Proor. From (2.1) and Lemma 3.1, &(¢) = XE/E(y(T")) = XE,'E,0 =
XM,0 = C8 = ¢. Hence ¢ is an estimable function of #. On the other hand,
from Gauss-Markov theorem it follows that the BLUE ;l; of ¢ is uniquely given
by ¢’; = CO where 6 is a solution of the normal equations in (2.2). Hence we
have ¢ = XM, 6 = XE,'y(T").

The estimability of ¢, implies that 4,140, are estimable forall 3 = 0,1, - - -,
[ — 1. From the properties of 4,%"%, it follows that (i) every element of the
vector 4,10, represents the mean of effects of /-factor interactions, (ii) the
elements of A,"#@, (8 + 0) represent contrasts between these effects, (iii) any
two contrasts, one belonging to 4,"#0, and the other to 4,"V%0, (a + B), are
orthogonal, and (iv) there are ¢, independent parametric functions of @, in
A,0P%0, where ¢, = (5) — (,™)-
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THEOREM 3.2. For a B-array T satisfying Condition (3.1), the covariance matrix
Var (¢) of¢ is given by
Var (¢) = XCo?
(3.4) = [Zﬁ_o Zl B-1 Zl £-1 ,Cﬂ D (Bt | Zl— h "fl ﬁDﬁ(ﬁ+i,l)#
Zl ﬁh ICI: 5. ~D(lﬁ+])#+hzl€l —pi— ﬁD(ll)#}]o-Z,
where «{ ; are (i, j) elements of K, for each f = 0,1, ..., 1 — 1.
Proor. Clearly,

Var (gl;) = Var (XE,'y(T")) = XE,' Var (y(T"))E; X' = XM, X's* = XCo®.
From Lemma 3.1 and. Appendix, we have the irreducible representations of XC,
iie.,, for =0,1, ..., — 1.

"oﬂ,o ce "g,t—,e—l hﬂ’f'g,t—ﬁ

¥4 ' =T,K -, = . .
e e -"f—p—l,z—p—l h,a"'g—p—l,l—p
(Sym.) Rl
Clearly, this leads to (3.4).

From Theorem 3.2, we have

(3.5) X, = diag [X,,, 0(7)] = Nizh St okt D eristan

where X, is the v,_, X v,_; submatrix of X and 0, denotes the k X k matrix
whose elements are all 0. Furthermore

(3.6) Var (¢2) = [ DL hil_, A0

Since X, e 2, it follows that Var (01) = X, ¢%is invariant under any permutation
of m factors. Thus we have

THEOREM 3.3. B-arrays satisfying Condition t (3.1) yield 2"-BFF designs of resolu-
tion 2l such that the covariance matrices Var (01) are invariant under any permuta-
tion of m factors and that the vectors A,»"*@, (8 = 0,1, - .., [ — 1) are estimable.

Such designs can be regarded as a subclass of 2™-BFF designs of resolution
2I. Thus we make the following definition:

DEFINITION. B-arrays satisfying Condition (3.1) are called S-type balanced
fractional 2™ factorial (2"-SBFF) designs of resolution 2I.

It is easily seen that the covariance matrix Var (51) has at most (*4?) distinct
elements. We shall express these elements explicitly, using elements «f; of in-
verse matrices K,~ (8 =0, 1, , L —1).

THEOREM 3.4. For a 2™-SBFF design of resolution 21, let ¢, be the element
of Xy, corresponding to 0t1,,,tu and 0t1,.,,tv, which are the ath associates (i.e., ¢, “"o?
is the covariance of their BLUEs and, particularly, ¢, *o* is the variance of Ost)
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Then
3.7) MY = K2l for 0<agu=svsIi-—1,

where
e = ———Mﬁzﬂ,w .
(GG
Proor. It has been shown in Shirakura and Kuwada (1976) that D, "% =
(DY = ey zbe,, D, hold forall § = 0,1, --.,u;0 < u < v < [. Hence
the matrix X, in (3.5) can be also expressed as

_ S'i-1 Yi-1 S'min(u,v) (w938
X, = v=0 Zp:lcrrl “e ’CZ—ﬂ,v—pr v

u=0
= 2T 2N Do { Do g p 2l )} BT
This leads to (3.7).

4. Constructions of 2™-SBFF designs of resolution 2/. In this section, we
make certain investigations on B-arrays satisfying Condition (3.1).

THEOREM 4.1. The rank of the information matrix My, of a 2"-SBFF design T
of resolution 2l is v* = v, — ¢,.

Proor. The proof of this theorem follows from (2.3), (2.6) and Appendix.

Theorem 4.1 implies that the number of distinct columns in 7 must be at
least v,*. For example, we have v,* = 65 for m = 8 and / = 3. The B-array
in Example 1 is just a 2°-SBFF design of resolution VI with the smallest number
of N assemblies.

It has been shown in Shirakura and Kuwada (1975) that K, = 2%4,. Thus we
have

THEOREM 4.2. For a B-array of strength 2l with index set {pg, tty, « - -5 i},
u, = 0 is equivalent to K, = 0.

This theorem indicates that in order to construct 2™-SBFF designs of resolu-
tion 2/, we need to investigate B-arrays of strength 2/ with index pg, = 0. We
now consider an array obtained by juxtaposing each Q(j; m) (j =0, 1, ..., m)
a; (= 0) times, where Q(j; m) are illustrated in Example 1. Such an array is
called a simple array with para'mcters (m; agy @y, + -+, @,). For example, the B-
array given in Example 1 is a simple array with parameters (m = 8; @, = 0,
a=1a,=1,a,=0,a,=0,0, =0,a,=1,a, =0, ¢y = 1). The following
theorem has been given by Shirakura (1975a):

THEOREM 4.3. T is a B-array of strength 2l, m constraints and index set {p,,
Ly + s My} With g, = O if and only if T is a simple array with parameters (m; a,
Ay oy &30, o, 0, Wpyyrs > @), A connection between the indices p, and
the parameters «; is given as follows: Forj=0,1,...,1 —1,

a; = LS (=D ) s @y = DS (DTN T ) g
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orfori=0,1,...,1—1,

—_— -1 (m=-2] — -1 (m-2]
= 255 (e Hrres = 20520 (i) 1 S

This theorem makes the construction of 2"-SBFF designs of resolution 2/ much
easier. Moreover, as a by-product, we can obtain an important result that a
necessary and sufficient condition for the existence of a B-array of strength 2/, m
constraints and index set {s, s, - -+, g} With g, = 0 is that Y !zi(—1)"7 x
(mTi=d)u, > O0and YIzh(—1)Hi(m-2=24i=0y, > Ohold forallj = 0,1, .- -,
I—1.

THEOREM 4.4. If there exists a 2™-SBFF design T of resolution 21 with N (= v,*)
assemblies, then for every N > N, there exist 2"-SBFF designs of resolution 2.

Proor. Let T be an array obtained from T by adding (N — N) columns,
each being (0,0, ---,0) or (1,1, -.., 1)". Then it is clear that T is a B-array
of strength 2/ with y;, = 0. Also from Theorem 4.1 and (2.1), we have v * =
rank M; = rank E, < rank E; = rank M;. LetK,(8=0,1,...,1 — 1)bethe
matrices corresponding to 7. Now assume- that K, for some § is singular. Then
from (2.3), (2.6) and Appendix, we have rank M; < v,*. This implies a con-
tradiction. Thus T satisfies Condition (3.1). This completes the proof.

From Theorem 4.4 and Example 1, we can obtain 2°-SBFF designs of resolu-
tion VI for any N = 65. Particularly for designs of resolutionIV (i.e., | = 2), we
find that there exist 2™-SBFF designs for any m (= 4) and any N = v,* (= 2m + 1).
In fact consider a simple array T with parameters (m; ¢, = 1,a, = 1,0, ---, 0,
@y = 1, a,, = 0), which is equivalent to a B-array of strength 4, size N = v,*, m
constraints and index set {¢y = (m — 3), pt; = 1, 1, = 0, pry = 1, p, = (m — 4)}.
Then it can be easily checked that T satisfies Condition (3.1).

THEOREM 4.5. Let T be a B-array of strength 2l, m constraints and index set
{tto> 115 - > pto,} with p, = 0. Then a necessary condition for T to be a 2™-SBFF
design of resolution 2l is that p,_, + 0 and p, ., + 0 hold.

Proor. From (2.4) and (2.5), we have &2% = 2%-%(p,_, + p,.,), &3 =
R0 = 283 (m — 21 4 h(pyy — gy and kR = 29-Ym — 2 + 2)(py + pp)
(see Shirakura and Kuwada (1975)). Since K,_, is positive definite, it follows
that |K,_,| = 24~*m — 2! + 2)¢,_, 11,4, > 0. This completes the proof.

This theorem is very useful for constructing 2™-SBFF designs of resolution 21.
In the same way, we can obtain a result similar to Theorem 4.5 from conditions
for K, (8 =0,1,...,1— 2) to be positive definite. However it is very com-
plicated and will make this paper unduly lengthy.

5. The optimality of 2"-SBFF designs of resolution 2/. For any two B-arrays
T, and T,, T, is said to be isomorphic to T, if there exist permutation matrices
P and Q of appropriate size such that T, = PT,Q. In general, for a fixed number
of N assemblies, there are more than one nonisomorphic 2”-SBFF designs of
resolution 2/. (For example, it follows from Theorem 4.4 that for N > 65, we
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can obtain (N — 64) nonisomorphic 25-SBFF designs of resolution VI from the
B-array of Example 1.) Among these, we must choose one which maximizes
information in some sense. For this purpose, we shall consider the sum of the
variances of the estimates in &, and the estimates of (;™) normalized independent
parameters in 4,%1#6, (8 = 0, 1, - - -, I — 1) corresponding to the trace criterion.

Consider ¢, = (2§ ,))"14,"1*@, corresponding to ¢, in (3.3) when 2, = (28 )~}
andlzozhl: cee = hﬂ_lzhﬂ_,_l = ... :hl—l =Of0reach,6:0,l, --~,l— 1.
Then from the properties of 4,V%, it is easily seen that all elements of ¢,? are
normalized parametric flinctions of @,. Also it follows from (3.6) that every
estimate in the BLUE ¢, of ¢, has the same variance «/_,, ,¢*. Since the
number of independent parameters in 4,V%@, is ¢,, the sum of the variances
of the BLUE:s of (,»,) normalized independent parametric functions of 8, is given

by
K, + Puki—iima + oo + DioikiT)or.

On the other hand, from Theorem 3.4 it follows that the sum of the variances
of the estimates in @, is

tr Var (51) = DL (M)ey ot
= Db Gulrbe + Kby 4+ o+ Ky iopm)0®

Thus we have

THEOREM 5.1. For a 2™-SBFF design T of resolution 21, the sum of the vari-
ances of the v,* BLUEs of the parameters in @, and normalized independent parameters
ingf(B=0,1,--.,1 — 1) is given as follows:.

(5.1) Spo® = Z,le;{) ,9(’5'3,0 + ,Cq,l + - 4+ 'Clz—,s—l,l—ﬁ—l + ”'?—,9,1—,9)‘72
= Zé;}) ¢ﬂ tr Kﬂ_102 .

From (2.3), (2.6), (5.1) and Appendix, we find that S, denotes the trace of
the generalized inverse matrix of M;. Thus we define

DEerFINITION. Let T, and T, be two 2™-SBFF designs of resolution 2/. Then
T, is said to be better than T, if S, < Sr. Such a criterion is said to be the
generalized trace (GT) criterion.

ExamPLE 2. For a 2™-SBFF design T of resolution VI, we have S, = trK;* +
(m — DtrK,=* + m(m — 3)/2 - trK,~*. Now, for N = 65 and m = 8, let us com-
pare the design T of Example 1 and another B-array T, (as a 2"-SBFF design of
resolution VI) with index set {4, 3, 1, 0, 1, 2, 1}, using the GT criterion. Then
we have S, = 2.10130 and S, = 4.26375. Thus the design T is better than T,
with respect to the GT criterion.

In Table 1, an optimal (w.r.t. the GT criterion) 25-SBFF design of resolution
VI for each N with 65 < N < 93 (= v,) is given with the distinct elements ¢,
of Var (6,) and the parameters a, of the corresponding simple array. It may be
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remarked here that since there exist always 2%-BFF designs of resolution VII
with N (= v,) assemblies (see Shirakura (1975b)), we need not consider 2°-SBFF
designs of resolution VI for larger N assemblies. Note that for a 2™-SBFF design
T of resolution 2/, we have S, = Sz (see Shirakura and Kuwada (1975)), where
T is the complementary design obtained from 7 by an interchange of 0 and 1.
This means that so far as optimal (w.r.t. the GT criterion) 2°-SBFF designs of
resolution VI are concerned, we may restrict to B-arrays such that u, > g, if
ta # o t > 5 i gty = pyand py, £ pry, Or prg = pr if py = pyand p = py.

6. Remark. B-arrays of strength ¢ reduce to orthogonal arrays of strength ¢
when py = p, = --- = p,. Itis well known that orthogonal fractional 2™ fac-
torial designs of resolution 2/ are obtained from orthogonal arrays of strength
2] — 1. However it is, in general, unknown whether a 2™-BFF design of resolu-
tion 2/ can be obtained from a B-array of strength 2/ — 1 which is not an or-
thogonal array of strength 2/ — 1. In fact, for such an array T (as a design),
the information matrix M, cannot be expressed in terms of association matrices
B, ™ of an | + 1 sets TMDPB association schemes (i.e., M, ¢ 2). Therefore
it is very difficult to know whether there exists a matrix X of size v, X v, (or
v, X N) such that XM, (or XE,) = diag[0,7,,0,], where p =v,_, — 1 and ¢ = (7).
Moreover, even if it exists, it is very difficult to show that the design T has the
property of balanced designs. This problem has been partly solved for designs
of resolution IV. Srivastava and Anderson (1970) have shown that some 2™-BFF
designs of resolution IV are obtained from B-arrays of strength 3, m constraints
and index set {1, ,, pt, 5} With pg = pg and g, = p,. However, in comparison
with B-arrays of strength 4 with y, = 0, they are unavailable for an odd number
of N and cannot explicitly express the alias structure of the effects of two-factor
interactions.

Acknowledgment. I wish to thank Professor Sumiyasu Yamamoto for his
guidance and his helpful suggestions. I also wish to thank the associate editor
and the referee for their many helpful suggestions which have greatly improved
the presentation of this paper.

APPENDIX
It has been shown in Yamamoto, Shirakura and Kuwada (1974) that the ! + 1
sets TMDPB association algebra 2 is represented by the linear closure of all
(I 4+1)(1+ 2)(2! + 3)/6 matrices D, **, i.e., A =[D,"*| =0, 1, - - -, min (u, v);
u,v=0,1, ...,[]. The matrices D,“”* have the following properties:

(u,0)8) — (v,%) W —
(A1) (D% = D4, rank D% = ¢,
Da(u,s)ﬂDﬂ(w,v)# — 0. 0 Dﬂ(u,v)# s

swap

where ¢, = (3) — (,™) and d; is equal to 1 or 0 according as i = j or not.

THEOREM. For every B (= 3}, 21!z 21428 A,27D#*16+9% ) say) belonging to 2,
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there exists a v, X v, orthogonal matrix P such that

(A.2) P'BP = diag [Agp Ay -y Ay o3 Ay ey AT,
¢ ¢
1 1

where A, are the (I — B + 1) X (I — B + 1) matrices with (i, j) elements 2,>7.

Proor. The matrices D, ** are idempotent, so that their characteristic roots
are 1 and 0. For any fixed (0 < 8 < /) and some u (8 < u < [), consider ¢,
characteristic vectors di} (i = 1, 2, - - -, ¢,) of D,**#such that D, "*dg") = dg¥)
and (d)'df; = 0,;. Let df?) = D,»»*d{ for any v with 8§ < v < [. Now we
shall show that d{”} (i = 0, 1, - - -, ¢,) are those of Dy such that D, ") =
d{) and (d{1)'dy; = 0,,0,;. From (A.1), we have D, ""#dy) = D" #D %%
Dyedg) = D, iD,mwdy = Dwidyy = dg). Also (dys)ydp) = (d) X
D,“:D i) = §,,(dg))d) = d,,0,;,. Of course, (dP)'df; =0 for a #+ .
Let

— 0 1 e @ 2 l 1
P = [d( ) d((),i’ DR} dt(),{’ d“9 d;,i, DR} d§1)9 R di,:sl’

0,1°
A, e dil s d;g;, cedi ]
Then the above statement shows that P is a v, X v, orthogonal matrix satisfying
(A.2).
The matrices A, (8 =0, 1, - - -, [) in (A.2) are called the irreducible represen-
tations of B.
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