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SELECTION OF LARGEST MULTIPLE CORRELATION
COEFFICIENTS: EXACT SAMPLE SIZE CASE!
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Consider k (= 2) independent p-variate (p = 2) normal distributions
N(pi, 24), i = 1,2, -+, k, where the mean vectors g; and the covariance
‘matrices X; are all unknown. Let 6; denote for the ith distribution the
squared population multiple correlation coefficient between the first variate
and the set of (p — 1) variates remaining. A procedure based on the natural
ordering of the k& sample squared multiple correlation coefficients, each
computed from a random sample of size n(= p + 2), is considered for the
problem of selection of the 7 (< k) largest 6;’s. Given (1 — Ox-¢1) = o(1 —
Ot—t+17) and Orx_s41] = 700k—¢1, Where 61 denotes the ith smallest ¢ and
d > 1and y > 1 are preassigned constants, it is shown that the probability
of a correct selection is minimized for 01 = (8 — )/(6y — 1), i=1, -+,
k—t and 6iy=70—1)/@Gr—1), i=k—t+1,---,k. For a given
P*(< 1), the exact common sample size » is then determined so that the
infimum of the probability of a correct selection is not smaller than P*.
For p = 2, the problem reduces to selecting ¢ largest correlation coeflicients
from the k bivariate normal distributions.

1. Introduction and formulation of the problem. In a recent article, Rizvi
and Solomon [5] consider the problem of selection of ¢ largest from among &
multiple correlation coefficients, each arising from one of k independent p-variate
normal distributions with unknown mean vectors and unknown covariance
matrices. The problem there is formulated as a ranking problem with a par-
ticular choice of an indifference zone in the product parameter space; the main
result concerns the minimization of the asymptotic probability of a correct
selection for large common sample sizes when the natural selection procedure
based on sample multiple correlation coefficients is used for ranking. The present
article offers an exact (not asymptotic) solution to the above problem for a slightly
different specification of the indifference zone.

Consider k (= 2) independent p-variate (p = 2) normal distributions N(g;, 2),
i=1, ..., k, where the mean vectors g, and the covariance matrices X, are all
unknown. For the ith distribution, let @, be the squared multiple correlation
coefficient between the first variate and the set of (p — 1) variates remaining.
Let0 < 0y < 0 < -+ < 0,y < 1 denote the ordered values of the components
of @ = (0, ---,0,)eQ. For 1 <t < k, the problem of interest is the selection
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of ¢ distributions with 6, > 6;,_,,,; by some procedure R on the basis of random
samples of common size n from each of the k distributions. Denote by CS the
correct selection of all distributions with 6;;, j = k — ¢t + 1, - -+, k and let P(6)
denote Pr{CS|R}. For some preassigned P*, 1/(¥) < P < 1, it is specifically
required to determine the smallest n for which P(#) is no smaller than P*, but
since such a condition cannot be met for any » without restricting the values of
0, the formal requirement for a selection procedure R = R(n) is that it satisfy
the condition

(.n inf,. P() = P*

where Q is partitioned into a preference zone Q* and an indifference zone Qx*,
Thus the determination of n depends on the particular choice of Q* or its com-
plement Q*, We let Q* = Q, n Q,, where

(1.2) Ql = {0 e Q: 1 —_ 0[k—t] ; 5(1 _ 0[k—t+l])} Py
(1.3) Q ={0eQ:0y_1y = 1040}

and 6 > 1 and y > 1 are specified constants.
The preference zone specified in [5] is Q, = Q/ n Q,, where

(1.4) Q/ ={0eQ: 011y — Oy = 6,0 <3, < 1}.

A diagram in the Cartesian (0;,_,, 0;,_,,,7)-plane readily brings out the difference
between Q* and Q. It is observed that for a given value of 7, Q* c Q, for 4, =
(r — 1)@ — 1)/(y0 — 1) and Q, c Q* for 6 = 1/(1 — 4,).

The natural selection procedure R proposed here is the same as in [5]. To be
explicit, take a random sample of size n (n = p + 2) from each of the k distri-
butions and compute the sample squared multiple correlation coefficient Y, i =
1, ---, k. Rank the Y,’s, breaking ties, if any, with appropriate randomization
and select the distributions corresponding to the ¢ largest Y,’s.

Section 2 shows that P(f) is minimized over Q* at a boundary point of Q* for
all n = p + 2. Section 3 contains some remarks about properties of the given
procedure and the relationship of this paper with some other work in the
literature.

2. Main result on minimization of P(6). As preliminaries, a few results con-
cerning the distribution of a typical sample squared multiple correlation coefficient
Y based on a random sample of size n (= p -+ 2) and having population squared
multiple correlation coefficient ¢ are given. Let

Fa, b ¢; x) = Dz, @0k X0

(©,
denote the hypergeometric function, where (a), = 1 and
(@,=a(a+1).--(a+r—1), r=1,2,...

The probability density function (pdf) of Y is given by
2.0 9,a, ¢, 0) = (1 — 0)*B,(c, a — ¢)F(a, a; c; 0y), o<y<i,
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where

(2.2) B, b) = %y%‘(l — ),

a=m—D2, c=(p—1)2.

The formula for the derivative of a hypergeometric function, namely

(2.3) d" F(a, b; ¢; x) = (Dn(O)n F(a + m, b + m; c 4+ m; x)
dx™ (©)m

yields

2.4) d% 0,0 ¢.0) = [ga + Le+ 1,0) — g,(a ¢, 0)],

(2.5) 3‘% G,(a ¢, 0) = - £ 6@+ 1+ 1,0) = G (a, ¢, 0)],

where G (a, ¢, 0) denotes the cumulative distribution function (cdf) of Y; (2.4)
and (2.5) will be used later for proving the theorem of this section.

A well-known lemma, to be used repeatedly in the sequel, is stated below
without proof; two other lemmas are proved.

LemMa 2.1. Let H(z) = (X052, b, 2) (205, a,2%), where the constants a,, b, are
nonnegative, and Y, a;z* and Y, b,z' converge for all z > 0. If the sequence {b,/a;}
is monotone then H(z) is a monotone function of z in the same direction.

LemMA 2.2, The distribution of Y is stochastically increasing in 6.

Proor. Lety’ >y > 0. Then F(a, a; c; 6y')/F(a, a; c; fy) is nonincreasing in
6 by Lemma 2.1. The pdf of Y, therefore, has a monotone likelihood ratio in
y for 6, from which it follows that the cdf G (a, c, 6) of Y is nonincreasing in ¢
for each y.

LeMMA 2.3. Function

(2.6) ul) = [Gya, c,0) — Ga+ 1,c+ 1, 60)]/9,a,c, 6)
is nonincreasing in 0, and
2.7 v(0) = du(6)/(1 — 6)

is nondecreasing in 0.

Proor. Write fy as y — (1 — 6)y in F(a, a; c; 0y), expand it in a Taylor series
and use (2.3) to obtain

(28) Fla, a0y = Do, (—1y U _r'e)ryr (“325“” Fla+r,atrictry).

From (2.1), (2.8) and the formula (see Erdélyi [2], 2.8(26))

(2.9) ex* (1 — x)*=°~'F(a, b; ¢; x) = di [x*(1 — x)*=°F(a + 1, b; ¢ + 1; x)],
x
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one obtains after simplification

¢G (@, ¢, ) = y(1 — y)B,(c,a — c)(1 — o) 31z, (=0 = 0))" (@).(2),

r! (c+ 1),
XFa+4+r+1l,a+rc+r+1;y)
and
acG(a+ 1,¢ + 1,0) = y(1 — y)B,(c,a — c)(1 — 6)* Tz, (—1)(*+1(1 1;' )y
r—1)!
XEM@*—F(aq—r—f— La+rc+r+1;y).
(c+ 1),
Hence,
c(Gya,c,0) —Gya+ 1,c+ 1,0))
_1 r 1 . 0 ryr
(2.10) =y = PBye.a — (1 — 0y Tz, =0

r!

x(_‘l)’(a—_l_l)’F(a+r+1,a+r;c+r+l;y)
(c+ 1),
=y(1 — y)B,(c,a — c)(1 — 0)*F(a + 1,a;c + 1;0y).

In view of (2.1) and (2.10), u(¢) given by (2.6) becomes

(2.11) @y = Y4 =2  Flatlact 1;0y)
¢ F(a, a; c; 6y)
Apply Lemma 2.1 to the right side of (2.11) to conclude that u(8) is nonincreas-
ing in 4.
Also,

e 1igyy = = @+ D@ (O))
(2.12) OyFla + 1,a;¢ + 15 0y) = Z‘.—(C—jr—l)’_-w r — 1!
o (@@, @)

- (¢, (=1

<
a
and
(1 — 6y)F(a, a; c; 0y)

213 — 1 o (a)r(a)r — (a)r—l(a)r—l (0.y)r
19 R i s Fra

1 o (@)(a),.(0y)  (a—1 a—c .

MR (o), (F — 1) < PR 1>

Comparing the coefficients of 67 in the series on the right sides of (2.12) and

(2.13), and applying Lemma 2.1, one finds that v(#) given by (2.7) is non-
decreasing in 6.

THEOREM. The probability P(0) of a correct selection for the selection procedure
R is minimized over Q* for any @ whose components satisfy

(2.14) 0= (0 — 1)/(0r — 1), i=1, ..., k—t
=70 — Doy — 1), i=k—t4+1, ...k,
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and
infg, P(0) = t {{ G, **(a, ¢, (6 — 1)/(dy — 1))
(2.15) X [1—Gya, ¢, 7(6 — /@y — )]
X gy(@s ¢, 7(0 — D)/(or — 1)) dy,
where a = (n — 1)[2 and ¢ = (p — 1)/2.
Proor. The Pr {CS|R} is given by
(2.16) P(O) = Ztoimen $5 11628 G (@) €5 Opa) Tl imimtinpne {1 — Gy(as €, 1)}
X 9,(a; ¢, Oy) dy .
Given 6,_,; = 0 (say), Lemma 2.2 and Lemma 2.1 of Alam and Rizvi [1] imply
that P() is minimized over Q, for
(2.17) Oy =0 for i=1,...,k—1t
=@ +0—1)o for i=k—t+1,...,k.
Therefore,
(2.18) P, = inf, o P(0)
= inf,,., 1 3G *~ (a, ¢, O)[1 — G (a, c, A(0))]'"9,(a, ¢, A()) dy ,
where 2(0) = (6 + 6 — 1)/6. Similarly, P(#) is minimized over Q,, given
Oy = 0, for
(2.19) =10 for i=1,.---,k—1t
= 70 for i=k—t+1,...,k.
Therefore,
(2.20) P, = inf,.o P(6)
= infg,q,,, t 3G (a, ¢, O)[1 — G (a,c, y0)]'g,(a, c, rb) dy .

Let A4(f) and B(#) denote respectively the integrals on the right side of (2.18)
and (2.20). Differentiating A4(6) with respect to # and using (2.4) and (2.5) yields

a0y = K= D561 a e, 0)[1 - Gyfa e AO)]
X [G,(a+ 1,¢ + 1,0) — G(a, ¢, 0)]g,(a, ¢, (0)) dy
(2.21) — #(t—__l(%)—) (4G, (a, c, O)[1 — G (a, c, 4(0))]*

X [Ga + 1,¢c + 1, X(0)) — G (a, c, X0))]9,(a, ¢, A(0)) dy

- 0 ket t—1
t 5T 0) 1G5 (a, ¢, O)[1 — G(a, c, 4(0))]

X [0,(@ + 1, ¢ + 1, 20)) — g,(a, ¢, 40)] dy .
Integrate by parts the third integral on the right side of (2.21) to obtain after
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simplification

& 40) = alk — 1) §1G,a, ¢, O1 — Gyfa, ¢, AB)]

% {[Gy(a + 1,¢+ 1,60) — Gy(a, c,0)]
(1 —6)g,(a,c,0)
(2.22) _ Ga +51(,1c +2:é)2)(0)] — iy[a, ¢ x(a)]}
- 9,(a, ¢, A(0))
X 9,(a, ¢, 2(9))9,(a; ¢, 0) dy

= A= 036,50, ¢, O)[1 — G, (@ ¢, AONI~Tu(A)) — u(t)]

X 9,(a, ¢, 4(0))9,(a, c, ) dy .

Since u(f) = u(4(¢)) by Lemma 2.3, A(f) is nonincreasing in 6. Similarly, using
Lemma 2.3 again, B(0) is nondecreasing in 6.

From the monotonic natures of A(f) and B(f) as demonstrated above, one
concludes that P(#) is minimized over Q* = Q, n Q, by any value of 8 for which
(2.14) holds. The infimum of P(6) over Q* is thus given by (2.15).

3. Concluding remarks. The preference zone Q* covers a portion of the upper
left corner of the unit square in the (f(,_,, 0,_,,,;) plane, and is designed to
exclude the points (0, 0) and (1, 1) in that plane. If the values of y and § are
close to 1 then Q* includes most of the region 0\4—t411 = Oy On the other
hand, if the values of y and 4 are large, then Q* includes only a small neighbor-
hood of the point (0, 1). Therefore, for large P* and small n the preference zone
might be quite restrictive.

The parameter space specified by (2.14) is called the least favorable configu-
ration (LFC). The comparable LFC in [5] is given by

Oy = 0,)(r — 1), i=1, .. k—1t
=0r/r—1), i=k—t4+1,..., k.

The requirement in [5] for 4, to be 0(1/n) somewhat limits the scope of appli-
cability of the results in [5]. The present paper, in a way, complements [5] and
enlarges the scope for use of the procedure R. For motivation, applications
and reference to some formulations as alternatives to the present treatment, the
reader is referred to [5]. Important problems arising in applications where the
k multiple correlation coefficients are not independent do not receive conside-
ration here. Frischtak [3] and Ramberg [4] consider some aspects of this latter
problem within the framework of an indifference zone selection formulation like
the one used here. Frischtak [3] also considers the problem of selecting the
smallest vector coefficient of alienation (a generalization of multiple correlation
coefficient) between two sets of components among k independent multivariate
normal distributions. However, he employs preference zones different from
those of [5] and this paper. Also, he only uses the asymptotic theory. The
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specific problem treated in the present paper thus has no direct bearing to his
work and any meaningful comparisons are precluded.
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