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EMPIRICAL BAYES ESTIMATION OF A DISTRIBUTION FUNCTION!

By RaAMESH M. KORWAR AND MYLES HOLLANDER
University of Massachusetts and Florida State University

A sequence of empirical Bayes estimators is defined for estimating a
distribution function. The sequence is shown to be asymptotically optimal
relative to a Ferguson Dirichlet process prior. Exact risk expressions are
derived and the rate, at which the overall expected loss approaches the
minimum Bayes risk, is exhibited. The empirical Bayes approach, based
on the Dirichlet process, is also applied to the problem of estimating the
mean of a distribution.

1. Introduction. Let (P, X,),i =1, 2, ... be a sequence of pairs of independ-
ent random elements. The P, are probability measures which are taken to have
a common prior distribution given by a Dirichlet process on (&2, &%), where
(2, <) is the measurable space of the real line and the o-field <2 of Borel
subsets of 2. Given P, = P, X, = (X, - -+, X,,,) is random sample of size m
from P. Throughout this paper, the parameter () of the Dirichlet process is taken
to be a g-additive nonnull finite measure on (%, <8). [We assume the reader is
familiar with Ferguson’s basic paper [10] that introduces the Dirichlet process.
Related work includes that of Antoniak [2], Blackwell [3], Blackwell and
MacQueen [4], Doksum [6], Ferguson [11], Ferguson and Klass [12], Goldstein
[13], [14], Korwar and Hollander [16] and Savage [20].]

In this empirical Bayes framework, we consider the problem of estimating
F,.(t) = P, ,((— oo, t]) on the basis of X, ..., X,,;. Assume a(Z2) is known.
Let the loss function be L(P, F) = |, (F(f) — F(t))* dW(t), where W is a given
finite measure (a weight function) on (<%, &), F(t) = P((— o, t]), and F' is an
estimator of F. Let the parameter and action spaces be the set of all distri-
butions P on (&%, &£). Define, for n =1, 2, - .., the sequence of estimators
G, by

(1'1) Gn+1(t) = Pm 2ii=1 Fi(t)/n + (1 - Pm)Fn+l(t) s
where
(1.2) Pn = A(FZ)((F) + m),

and F, is the sample distribution functionof X;, i =1, ..., n 4 1. We propose
G, as a sequence of empirical Bayes estimators of F, ;.
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In Section 2 the asymptotic optimality of G = {G,,,} is established. Thus
even though one need only specify a(2), the procedure is asymptotically as
good as though a were known exactly. Exact risk expressions are given. Also,
the rate at which the overall expected loss, incurred by using G, ,,, approaches
the minimum Bayes risk is exhibited.

In Section 3 we compare the performance of the empirical Bayes estimator
G, ., with that of the sample distribution function F,,, based on X,,,. We show
that for all n > 2, the Bayes risk of F,,,, with respect to the Dirichlet process
prior, is larger than the overall expected loss using G, ;.

The results in Sections 2 and 3 suggest that the empirical Bayes approach
based on the Dirichlet process can be successfully applied to other problems.
Results for such an application—to the problem of estimating the mean of a
distribution—are given in Section 4.

2. Asymptotic optimality of G,,,. Theorems 2.1 and 2.2 below are used re-
peatedly in the sequel. Theorem 2.1 is Theorem 1 of Ferguson [10]. Theorem
2.2 is a direct generalization of Ferguson’s [10] Proposition 4; its proof is
omitted.

TueoreM 2.1 (Ferguson). Let P be a Dirichlet process on (27, %) with para-
meter a, and let X, -+, X,, be a sample of size m from P. Then the conditional
distribution of P given X,, - - -, X,, is a Dirichlet process on (:Z°, .%7") with parameter
B=a+ X, 0y, where, for xe 27, Ae 57, 5,(4) =1 if xe A, 0 otherwise.

THEOREM 2.2. Let P be a Dirichlet process on (%, <%) with parameter « and
let X,, - -+, X,, be a sample of size m from P. Then

Q{X é X1s "'9Xm§ xm}
= {a(A,) -+ (@lAe,) + m — DY[a(FP) -+ ((#) +m — 1],
where x,, < +++ < X, iS an arrangement of x,, - -+, X, in increasing order of
magnitude, A, = (— oo, x], and Q denotes probability.

We now address the asymptotic optimality of G,,;. In our empirical Bayes
framework, Ferguson’s Bayes estimator ((3) of [10], page 222) of F based on
X, 18
(2.1) Fm(t) = puFo(1) + (1 '—PM)FM-I(I)’
where the dependence of F,, on n is suppressed and where p,, is given by (1.2),
Fi(r) by
(2.2) Fy(1) = a((— o0, 1]))[a(7) ,
and F,,, is the sample distribution function of X,,,. The Bayes risks R(a) and

R(G,,,, a) of the estimators (2.1) and (1.1), respectively, with respect to the
Dirichlet prior, are

(2.3) R(a) =ger R(Fm’ a) = Exnﬂ[s {EF(man(F(t) - Fm(t))z} aw(n],
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and

(2.4) R(Goins @) = Ex, [ $ {Erax, ,(F(7) — Gopa(0))}dW(D)] -

Let R,,,(G, ) be the expectation of R(G,,,, a) with respect to X,, - .-, X,, (the
past observations).

DeFinNITION 2.3. The sequence G = {G,,} is said to be asymprotically optimal
relative to « if R,,,(G, a) converges to the minimum Bayes risk R(a), as n — oo.

Definition 2.3 of asymptotic optimality is given here in the specific setting of
the problem under discussion. For a more general definition see Section 2 of
Robbins [19].

THEOREM 2.4. Let a(F7) be known. Then the sequence {G,,,} is asymptotically
optimal relative to a.

Our proof of Theorem 2.4 uses the following lemma.

LEMMA 2.5. Let the hypotheses be those of Theorem 2.2 and let F(t) = P((— oo,
1]) and E(t) be the sample distribution function of X = (X, - -+, X,.). Then, for
each t € %,

(2.5) E(F(1)|X) = F,(9),
(2.6) E(F(1)| X) = Fo()(F()8(2) + D/(B(#) + 1),
(2.7) E(F(1)) = F(1),

(2.8)  E(F(1)) = Fyt)m + (m — DF(){F()a() + 1}/{m(e(:) + 1)} ,
where F,(t) is the analog of (2.1) for X, Fy({) is given by (2.2), and B(F#) =
a(F#) + m.

SKETCH OF PROOF OF LEMMA 2.5. Results (2.5) and (2.6) follow from Theorem
2.1, the definition of a Dirichlet process, and the moments of a Dirichlet distri-
bution (cf. DeGroot [5], page 51). Results (2.7) and (2.8) follow in a straight-
forward way from Theorem 2.2 and the definition of £(¢). []

PrROOF OF THEOREM 2.4. Using (2.5) of Lemma 2.5, we can rewrite
R(G,,,, a) as

(2.9) R(G .1, a) = R(F,,, a) + Ex, IS {EF(t)IXn+1(Fm(t) — G, ())}dW(n],
where F,(¢) is given by (2.1). Now

(2.10) Fo(t) — Goi(t) = pufF(t) — Dy Ei(t)/n},
and this is independent of X, ,, and F(¢). Thus
2.11) R(Gpirs @) = R(Fpy a) + § (Fo(t) — Gppa(1)) AW .

It follows by (2.11), and the definition of R, (G, a), that
(2.12) R,i(G, ) = R(Fp, @) + § Ex .. x (Fu(t) — Gopi(1))*dW(1) .
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We evaluate each term on the right of (2.12) separately. We have, by (2.10),

(2.13)  Ex,.x,(Fult) — Gu(9))?

= Pu'Ex,,..x,(F(1) — 2F (1) Yoy E(Dn + D0oey E(OF ()0 .
Now use Lemma 2.5 to evaluate the right side of (2.13). Note that £, depends
only on X, and £, F,, are independent when i = /. Hence (2.13), after simpli-
fication, becomes

(2.14) Ex],,.,,xn(Fm(t) — G,
= pu'{(a(2) + m)[(mn(a(Z) + D)1 — Fi(t)) .
Next, let us compute R(F,, «) which is defined by (2.3). We first obtain, for

every 1€ &, Epyx,, (F(1) — Fu(1))". By specializing (2.7) and (2.8) to X,,,, it
follows that

(2.15)  Epux,, (F(t) = Fa(0)) = Fu()(1 — Fu()/(B() + 1),

(2.16) Ex,, (Fu() = Fy1),
and
Ey,  (FX1)
(2.17) = P F(t) + 2pu(1 — pu)FR(0) + (1 — pn)’

X [Fy(t) 4 (m — DEO(F(Na(2) + D)(a(Z) + 1)]/m .
Hence, from (2.15) to (2.17) we obtain, after some straightforward algebra,
(2.18) Ex ., Erwnx,,,(F(1) — Fu(1))?
= [a(@){[(a(FZ) + D)(a(F2) + m}IF()(1 — Fi(7)) -
From (2.3) and (2.18), we then have
(2.19)  R(a) = [a(Z){(a(F2) + 1)(a(FZ) + m)}] § F())(1 — Fi(0)) dW(7) .
Then by (2.12), (2.14) and (2.19), we have, after simplification,
(2.20) R,(G, @) = (1 + a(2)/mn)R(a) .
Hence lim,_, R, (G, a) = R(a). [
Note that (2.20) exhibits the rate, 1/n, at which R, ,,(G, @) converges to R(«).
REMARK 2.5. Note that if one were getting F’s from a Dirichlet process with
known «(+), the Bayes risk for estimating F without taking any sample from F
would be, from (2.19) with m = 0, § F(f)(1 — Fy()) dW(t)/{a(#) + 1}. If one
planned to take a sample of size m and then estimate F, the Bayes risk would
be decreased by the factor a(F2)/(a(F#) + m), as seen from (2.19). Now, if
instead only «a(=#) is known, but there exists one previous sample of size m from
another F chosen by the process, then the ratio of the Bayes risk of G,,, to the
Bayes risk of the no-sample estimator is, from (2.20), found to be a(2)/m.

This gives additional justification to the interpretation of a(?) as the “prior
sample size” of the process.
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3. The performance of G, relative to the sample distribution function. In
most empirical Bayes situations there exists a non-Bayesian estimator which is
better, in the sense of having a smaller Bayes risk, than the empirical Bayes
estimator for small n, but which is inferior to the empirical Bayes estimator for
all n larger than some integer n,. See, for example, Maritz [17]. Here, as a
non-Bayesian estimator, we consider the sample' distribution function. This
function is known to possess may desirable properties. For example, denoting
the sample distribution function based on X, - - -, X, by £,, the Glivenko-Cantelli
theorem states that, as n — oo, suUp_.,... |F(f) — Fn(t)| — 0 a.s. Furthermore,
consider the group " of transformations ¢, where ¢ is a continuous strictly
increasing function from the real line onto the real line. Let F be continuous.
Aggarwal [1] has shown that for the group &, the sample distribution function
F, is a minimax invariant estimator of F under the loss function L(F, £) =
§ [(F(1) — E(PIF()(1 — F(1)}] dF(r). (Also see Ferguson [9], page 191.)
Dvoretzky, Kiefer and Wolfowitz [7] have shown that the sample distribution
is asymptotically minimax for a wide class of loss functions. Phadia [18]
establishes that F, is minimax under the loss function L(F, F) = § {[F(1) —
FFJLF((1 — F(t)l) dW(r).

The following theorem shows that the empirical Bayes estimator G, is better
than the sample distribution function in the sense that for all n > 2, G, has
a smaller overall expected loss.

Tueorem 3.1. Let a(.2’) be known. Let F, ., be the sample distribution function
based on X, ., = (X411 > X, 11m). Then, for all n > 2, R(F,,,, ), the Bayes

n

risk of E,,, with respect to the Dirichlet process prior, is larger than R, (G, &), the
overall expected loss using G, .

Proor. We first compute §{Ex , (F.(1) — F,, (1))} dW(r). We find, from
(2.1) and Lemma 2.5,
(3.1) Ey  (F.(1) — F, (1)
= [a¥(2) [{m(a(22) + 1)(a(2) + mIF(1)(1 — Fy(1)) .
Hence,
R(ﬁnJrl’ a) = Ex S [Eranx, ., (F(1) — F,(0)71dw(1)]
(3.2) + V{Ex,  (Fn(t) — F, (1) dW(1)
= R(a) + [a(Z){(a(2) + 1) (a(=2) + m)}]
X §E(O)(1 — Fy(2)) dW(1) .

The second equality of (3.2) is a consequence of (3.1) and (2.3). Thus, by (3.2)
and (2.19), we obtain

(3.3) R(F, 1 @) = (1 + a(22)/m)R(a) .
Comparing (3.3) with (2.20), we conclude that
(3.4) R(Fysy @) > R,s(Gr @), n = 2. 0
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REMARK 3.2. Recall that the James-Stein estimator for simultaneous estimation
of k normal means does better, when k > 3, in terms of mean squared error,
than the classical rule which estimates each population mean by its sample mean.
(See Stein [21], James and Stein [15], and, for more recent references and results,
Efronand Morris[8].) Inequality (3.4) hasasimilar interpretation for the problem
of simultaneous estimation of k distribution functions. For example, in the case
k = 3, by symmetry, if one uses X, and X, to estimate F,, then one can use X, -
and X, to estimate F,, and similarly for F,. Inequality (3.4) shows that if there
are at least three distribution functions to be estimated, one can do better than
using, for each distribution, the corresponding sample distribution function.

4. Empirical Bayes estimation of the mean of a distribution. In this section
we define a sequence of empirical Bayes estimators of the mean of a distribution.
We assume the empirical Bayes framework of Section 2. Let the parameter space
be the set of all distributions on (%%, %) and the action space be the real line.
Take the loss function to be L(y, 2) = (¢ — £)? where # = { x dP(x) is the mean
of the distribution P and 7 is an estimator of . Assume also that { x da(x) exists

and is finite. To estimate p,,, = { xdP, ,(x) on the basis of X, ---, X, ,, we
define, for n = 1, 2, . - ., the sequence of estimators v, , by
(4'1) YVyr1 = Pm 2?:11‘71'/” + (1 _Pm)’?nﬂ’

where X,,i =1, ...,n + 1, is the mean for the sample X; = (X, - -+, X;,,),
and p,, is given by (1.2). We propose v, as an empirical Bayes estimator of
tni,- The analogues of Theorems 2.4 and 3.1 are stated, without proof, below.

THEOREM 4.1. Let a(2) be known. Suppose § x*da(x)|a(%) exists and is finite.
Let py = § xda(x)/a(F#) and 0,, = § x* da(x)|a(Z) — p. Then
(4.2) R(@) = [a(Z)[{(a(F) + 1)(a(F) + m)}]on ,
(4.3) Ry(M, a) = (1 + a(52)[mn)R(a)

where R(a) and R, (M, @) are the analogues of (2.3) and (2.12) defined for #,, .,
(the Bayes estimator of p,.,) and v,,,, respectively. In particular, M = {v,,.} is
asymptotically optimal relative to a.

THEOREM 4.2. Let the hypotheses of Theorem4.1 hold. Set X,,,, = 7, X,,, ;/m.
Then R(X,,,, a), the Bayes risk of X, ., with respect to the Dirichlet process prior, is

(4.4) R(X,.1, a) = (1 + a(F)/m)R(a) ,
where R(a) is given by (4.2). In particular, R(X,,,, &) is, for all n = 2, greater
than R, (M, a), the overall expected loss using v, ;.

REMARK 4.3. Throughout our paper, a has been a ¢-additive nonnull finite
measure on (%, <¢). In particular, in proving the asymptotic optimality of

G,,, and v,,, we did not have to impose the condition that « be nonatomic.
However, when « is nonatomic, for fixed a(<7) the distinct observations in
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a sample from a Dirichlet process are sufficient for a(— oo, t]/a(<2). This
sufficiency is a direct consequence of Theorem 2.5 of [16].) Motivated by this
fact, and noting that G, gives extra weight to duplicated observations among
the X, - - -, X,,., a referee has suggested that under the additional restriction
that « be nonatomic, estimators of F,, (and g, ;) should give equal weight to
all distinct values in the earlier samples through X, . This is an interesting
point for future investigation.
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