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ASYMPTOTIC OPTIMALITY OF THE EMPIRICAL
BAYES PROCEDURE!

By J.J. DEELY AND W. J. ZIMMER
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University of New Mexico

The purpose of this paper is to obtain weaker sufficient conditions
than those given by Robbins [6] for the asymptotic optimality of empirical
Bayes procedures. In so doing a general method for providing asymptotic
optimality is given which because of its simplicity should prove quite useful
not only for the empirical Bayes problem but for other related asymptotic
problems as well. Three areas of application are indicated herein.

0. Introduction. In a fundamental paper, Robbins [6] formulated the empiri-
cal Bayes problem and gave two basic theorems which could be used to prove
that an empirical Bayes procedure was asymptotically optimal (a.0.). One
of these theorems gave conditions under which a consistent estimater of the
Bayes procedure was indeed a.o. Unfortunately the conditions of this theorem
did not admit a quadratic loss function for an unbounded parameter space.
Rutherford and Krutchkoff [8] recognized this fact and with weaker conditions
obtained what they called “c asymptotic optimality” for the quadratic loss case.
The theorem given in Section 1 has weaker conditions than either Robbins or
Rutherford and Krutchkoff, admits the quadratic loss function and obtains the
a.o. property exactly. This result is a straightforward application of a theorem
given in Pratt [4] who subsequently (see Pratt [5]) acknowledges priority to
earlier authors, W. H. Young in 1910 and Hans Hahn and A. Rosenthal in 19438.

In Section 2 the special case of quadratic loss is treated. Using a result by
Verbeek [9] on bounds for the posterior mean and the theorem of Section 1, we
obtain the a.o. property for an empirical Bayes estimator of the mean of a
normal distribution considered by Miyasawa [3] and for all the empirical Bayes
estimators of Rutherford and Krutchkoff [7] for the location parameter case.

In Section 3 other applications of the main theorem are given, one being a
confidence interval problem of Deely and Zimmer [1] and the other concerning
asymptotic G-minimax estimators as indicated by Jackson et al. [2].

1. Notation and theorem. The usual decision theory model is assumed,
namely a state of nature, w, taking values in Q, an action « taking values in A
the set of possible actions, a loss function L(a, ®) = 0, an observable random
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variable X taking values in .27, a decision procedure ¢ which maps 22”7 into 4,
and a probability distribution G on Q. It is assumed that X has a conditional
probability density function with respect to some measure p on .2~ given by
f(x|w). The Bayes risk, simply risk, associated with a decision procedure ¢ is
given by

R(1, G) = §q Vo L((x), 0)f(x| ) dp(x) dG(w)

and the optimal Bayes decision procedure 7, is obtained by minimizing over A
for each x the function

p(a, x) = {q L(a, 0)f(x]| ©) dG(w) .
It is assumed the desired minimum can be attained with some a ¢ 4. When G
is unknown but assumed to exist, we assume past history is available in the form
of independent observations (x,, ), - - -, (x,, ®,) on X but not w, the second
element o, indicating that the conditional distribution governing the values of
x, was given by f(+ | w,), the w, itself having first been drawn from G. We will
call x; an observation of the random variable X; which is identically distributed
as X taking values in 22”and having unconditional probability density function

fo(x) = §a flx| w) dG() .
- A function ¢t,(x) = t,(x,, - - -, x,;; x) based on the past and present observations
and taking values in A is called an empirical Bayes decision procedure if ¢,(x) —,
tg(x) at each x, where p is taken with respect to the past history x;, - - -, x,.
With ¢, we associate a global risk

R(t,, G) = (o § o E[L(ts(x), ©)]f(x] ®) dpx(x) dG(w)

where E indicates the expectation with respect to 7, fy(x,), the joint uncon-
ditional distribution of X, ..., X,. If an empirical Bayes procedure has the
additional property that R(z,, G) — R(tg, G) as n— oo then ¢, is said to be
asymptotically optimal (a.0.). A more detailed explanation of the above and other
relevant material including an example of an empirical Bayes procedure which
is not a.0. can be found in Robbins [6].

We will need the following.

LEMMA. Let (Y, B, P) be a probability space and let {f,} and {g,} be two
sequences of measurable functions such that

() fa—=sfs 90— 9>
) 0 f, 9, forn=1,2, ...,
(i) lim § g, dP = § g dP < oco.

Then lim § f,dP = § fdP < co.
This lemma is contained in Theorem 1 of Pratt [4].

THEOREM. Let t, be an empirical Bayes procedure and let the loss function be
such that L(t,, @) —, L(tg, o) for each w in Q. Suppose there exists a sequence of
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functions h,(x, ) = h,(x;, -+ -, X,; X, w) such that

(i) h(x, ®) —, h(x, w) for each (x, w),
(ii) L(t,(x), ®) £ h,(x, w) for n = 1,2, ... and for each (x, v), and
(iii) lim,_, E[Ah,(x, w)] = E[lim, k,(x, ®)] < co.

n—00

Then t, is a.o0.

Proor. The proof follows from the lemma by taking f, = L(¢,(x), w) and
g, = h,(x, ). Note that the convergence in probability with respect to X,
X,, --- at each (x, ) gives convergence in probability on the product space

AT A EERY

REMARKS. (i) The appropriate measurability of all the functions above is
assumed. In practice the form of both ¢, and %, will be known by construction
and the measurability is easily verified.

(ii) The statement “for all (x, w)” can be replaced with “almost everywhere”
where the measure implied is the product probability measure on the product
space 27 x Q.

(iii) The condition on the loss function to insure that L(z,, ) —, L(t;, )
can also easily be checked in practice. For example continuity in the first argu-
ment is sufficient.

(iv) As is often the case in practice one can find a consistent estimator of the
Bayes procedure, i.e. an empirical Bayes procedure. The theorem implies that
if in addition the loss structure preserves this convergence, then one looks for
the bounding sequence 4, for which the computations of lim E[4,] and E[lim &,]
can easily be made. Ifequality obtains, the a.o. property of the empirical Bayes
procedure is then insured. It should be noted that finding a bounding sequence
is much less restrictive in practical problems than finding a bounding function,
the usual approach in applying the dominated convergence theorem. The ex-
amples in Sections 2 and 3 illustrate these ideas and indicate how a bounding
sequence may be found.

(v) Finally if § sup,., L(a, w) dG(w) < oo (Robbins’ condition, see [6], page
4), then a bounding sequence can be found by taking %, = sup L(a, ) for each
n. It is in this sense that the conditions are weaker than those of Robbins even
though we do require an additional condition on the loss function.

2. We now turn our attention to the estimation problem (4 = Q) under
quadratic loss. If the posterior mean E[w|x] exists, it is the Bayes estimator
in this case, and we assume that #,(x) is a known consistent estimator of the
posterior mean. That is, we assume the existence of an empirical Bayes esti-
mator. It has been shown by Verbeek [9] that if  is a location parameter and
fand G are unimodal and symmetric then

|E[@]|x]| = |x| + |4
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where 2 is the mean of G. From ¢, we form the estimator

L(x) = x| + [%,], if 1,(x) > |x| + |%,]
= t,(x), otherwise
= —|x| — |%,|, if (%) < —|x] — |%,]

where %, = (1/n) 33", x,. Note that %, —, .. 2 by the SLLN and hence {,(x) —,
Elw|x]. Let

ho(x, @) = (|x] + [%,0))" + 2|o|(|x] + X)) + o®.

Then
L{E,, o) = (,(x) — o) < h(x, 0).
Now
ho(x, @) —, (|x] + |2])* + 2|o|(|x] + [4]) + o
and

E[h,(x, ®)] = E[X?] 4 2E[|X|]E[|X,]] + E[X,’]
+ 2E[|X||0|] + 2E[|X,|]E[|0|] + E[«*].
Thus it follows that
E[lim &,(x, ®)] = lim E[k,(x, ®)] ,

and by the theorem we have that 7, is a.o.

REMARKS. (i) If f(x| ) is normal with mean » and known variance ¢°, then
the above method simplifies both the proof and construction of an a.o. estimator
for w as given in Miyasawa [3]. Miyasawa found a consistent estimator ¢, for
the posterior mean using the fact that

E[o|x] = x + ([ (x)/fe(x)) -

(ii) In [7] empirical Bayes estimators were derived for various families of
f(x|w) and in [8] ¢ asymptotic optimality was proved for a truncated version of
any empirical Bayes estimator. This truncation and proof required that the
prior moments of order greater than two be bounded by a known number. The
above technique for the location parameter case can be used to obtain the a.o.
precisely without knowledge of the prior moments.

3. We indicate in this section the way in which the main theorem can be
applied to related convergence problems. Deely and Zimmer [1] considered a
quality control problem and made rigorous use of past history to find a shorter
than usual confidence interval on the mean of a normal random variable. Besides
dealing with confidence intervals, they also suggested a point estimator ¢, for
the present lot mean . If w is assumed to have a normally distributed prior
with unknown mean 4 and unknown variance $? the estimator ¢,, a straight-
forward function of x,, - .., x, past observations and a present observation x,
is asymptotically optimal and has smaller mean squared error than the usual
estimator when the expectation is taken over the joint distribution of the random
variables X, - .., X,, X and w. The estimator is of the form

t(x)y=a,%, + (1 —a,)x
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where a, = 5,%/(s,? 4 rs,) < 1, r is the number of observations taken from each
lot and s, s,° are the consistent estimates of the variance within each lot and
the variance of the prior on @ respectively. The proof that z,(x) —, f,(x) was
straightforward. In this case the main theorem can be applied directly by noting
that

(1.(%) — @)’ = h,(x, ©)

for &, as given in Section 2 and thus the fact that 7, is a.o. is obtained.

Another problem related to empirical Bayes is that which arises when one
assumes only that the prior distribution belongs to a family with the same known
first two moments. Then one can seek a procedure which is minimax over such
a family, say G,. See, for example, [2]. Such a procedure, say #*, would have
a risk given by R(r*, G). If these two moments exist but are unknown then one
uses prior observations to estimate these moments and take the minimax pro-
cedure 7,* with respect to these estimates. To prove that 7,* is asymptotically
G, minimax, it is required to show that R(z,*, G) — R(t*, G) for any G € G,. In
[2] such estimators were produced and the existence of the function #, was
indicated such that

(t,* — 0) < h(x, w).

This function %, can be seen to satisfy (iii) of the theorem and thus the desired
convergence is obtained.
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