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WEAK CONVERGENCE OF SEQUENTIAL
LINEAR RANK STATISTICS!

By HENRY 1. BRAUN

Princeton University

A sequential version of Chernoff-Savage linear rank statistics is intro-
duced as a basis for inference. The principal result is an invariance prin-
ciple for two-sample rank statistics, i.e., under a fixed alternative the se-
quence of sequential linear rank statistics converges weakly to a Wiener
process. The domain of application of the theorem is quite broad and
includes score functions which tend to infinity at the end points much more
rapidly than that of the normal scores test. The method of proof involves
new results in the theory of multiparameter empirical processes as well as
some new probability bounds on the joint behavior of uniform order sta-
tistics. Applications of weak convergence are explored; in particular, the
extension of the theory of Pitman efficiency to the sequential case.

1. Introduction and summary. A sequential version of two-sample linear rank
statistics is introduced and shown to converge weakly to a Wiener process under
mild regularity conditions. The method is based on the approach of Pyke and
Shorack [14], though no use is made here of the Skorokhod construction of a.s.
convergent versions of weakly convergent sequences.

Closely related work is found in Miller and Sen [10], who established the
weak convergence to a Wiener process of a sequential version of U-statistics.
Another approach to this problem is through a.s. invariance principles. See
Sen and Ghosh [17], [18] and Sen [16] for details.

In Section 2, after a brief review of the Pyke-Shorack approach, weak con-
vergence for rank statistics with bounded score functions is demonstrated. In
Section 3, the hypotheses are weakened to allow most unbounded score functions.
The proof requires estimates on the behavior of a sequence of empirical processes
which are of independent interest. Section 4 deals with potential applications to
sequential analysis. Related work is alluded to in Hall [8]. A Pitman efficiency
result for sequential nonparametric procedures is heuristically derived.

2. Bounded score functions.

2.A. Preliminaries. Let X, X, .- be i.i.d. random variables with continuous
df Fand Y,, Y,, - .. be i.i.d. random variables with continuous df G. Assume
that a sample of N observations consists of mX’s and nY’s. Let 1, = m/N. It
is assumed throughout that 0 < 2 < 4, < 1 — 1 < 1 for some fixed 4 > 0.
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The empirical df based on X;, - .., X,, (Y,, - - -, Y,) is denoted by F,(G,). The
corresponding one-sample empirical processes are defined by

U.(t) = miF,F(t) — 1] 0<r<l
V.(t) = n{{G,G7Y(t) — 1] 0<r<l
Inverse functions are taken to be left continuous. Let
Hy = A,F, + (1 — 2,)G,; H, =AF + (1 — G ; H=H,, .

For a triangular array of constants (cy,)<icy.isy<es the corresponding se-
quence of linear rank statistics is defined by

Ty* = YV i Fu Hy '(iIN)y = m 1% ¢y Ry, 1< N<oo,

where R, = the number of observations among X,, X,, - - -, X,, which do not
exceed the ith order statistic (0.s.) of the combined sample. Let v, denote the
signed measure that places mass c,,; on the point i/N (1 < i < N) and no mass
elsewhere. Then define
@.1) Ty = N(Ty* — S FH dvy) = 3 Lydvy, 1< N<oo,
where

Ly(t) = NA[F, H, (1) — FH\(1)] 0<:r<1

is the two-sample empirical process introduced in [14] in analogy to the one-
sample empirical process.

Equation (2.1) gives an integral representation of the normalized linear rank
statistic T'y. The following lemma, due to Pyke and Shorack, expresses Ly(+)
as a random linear combination of U, (+) and V,(+).

LemMa. (Pyke-Shorack). With probability one
(2.2)  Ly() = (1 = 2x){A "t By()Un(FHy (1))

= (1 = 2y)" Ay ()Vy(GHy (1))} + (1) forall te(0,1)
where
oy(1) = Ay(NHHy HyY(t) — 1]

Ax(t) = [FH™(w) — FHZ(0]/[u, — 1], u, = HH,™\(1)
and B, is defined to satisfy
2y Ay(t) + (1 = 2,)By(t) = 1.
In (2.2) Ly(+) is defined by left continuity at otherwise undefined points.
REMARK 2.1. Following Pyke and Shorack we define a process L, () related

to Ly(+).
LyP(t)y =Ly(t), N'<r<1
=0, 0 r< N,
It is clear that
SoLyVdvy = \{Lydvy =T,y
so that one may use L, in the representation for T, without changing the value
of the statistic. For technical reasons it is more convenient to work with L,®.
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In the usual formulation of the problem, observations, either X’s or Y’s, ar-
rive sequentially. After each new observation we are allowed to decide whether
to stop or continue sampling. The decision is based on the value of the linear
rank statistic computed on the totality of the data available. To derive the
analytic properties of the procedure, a sequential statistic is defined in a form
that is suitable for weak convergence arguments; later on the result is transformed
into a form more amenable to statistical applications.

Define a sequence of stochastic processes {T'y(+)} by

T,(0)=0
Ty(s) = ([Ns]/N)%go_lT[Ns]
= ([Ns]/N)to,™" §§ Liya(1) dvpya() 0<s=1,

where [x] denotes the greatest integer in x, and ¢,® is the variance of the normal
distribution to which T, converges in distribution.

With probability one, T,(-) € D[0, 1]. In Theorem 2.1 it is shown that T(+)
converges weakly to a Wiener process on [0, 1] as N — oo, relative to the
Skorokhod topology. This is equivalent to convergence in the uniform topology
since the Wiener process is (a.s.) continuous. The key is to express T,(+) as a
continuous function of a single stochastic process—essentially a two-parameter
two-sample empirical process constructed from L,*, L,”, ..., L. Having
shown that this new process converges weakly, the desired result is obtained by
an application of the continuous mapping theorem (see [3], Theorem 5.1).

We now make two key assumptions which will apply throughout this paper.

AssuMpTIiON 2.1. The functions FH,~! have derivatives a, with respect to ¢
for all 7 € (0, 1) and for some 4’ € (0, 1), a,, is continuous on (0, 1) and has one-
sided limits at 0 and 1.

DiscussioN. This is assumption 4.1 of Pyke and Shorack [14]. They show
that it holds under rather wide conditions. (See, for example, their Corollary
4.1.) Now assume that 1, — 4, (fixed) as N — oo. Recall that 4, and B, are
the difference quotients of FH-' and GH~' respectively. FH-' and GH™' are
absolutely continuous and so have derivatives, a, and b, say, which exist a.e.
on [0, 1]. The natural limit functions then are the derivatives of FH,~'(r) and
GH, (), where H, = 4,F + (1 — 2,))G. Denote these derivatives by a,(r) and
by(7) respectively. Pyke and Shorack show in their Lemmas 4.1 and 4.2 that
under Assumption 2.1, a, and b, are continuous on [0, 1], p(4,, a;) — 0 (a.s.),
and o(By, b)) — 0 (a.s.) as N — oo.

AssUMPTION 2.2. There exists a signed Lebesgue-Stieltjes measure v on (0, 1)
for which |v|([¢, ] — ¢]) < oo for all ¢ > 0, such that
S Ly dyvy —v)—>0 (a.s.).

DiscussioN. Condition (b)(i) of Theorem 4.1 of Pyke and Shorack demands

only convergence in probability to zero. Though our Assumption 2.2 is stronger,
it is satisfied in many important cases.
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For example, suppose J,(i/N) is the expectation of the ith o.s. in a sample of
size N from a population whose cumulative distribution function is the inverse
function of J and

[JO@u)| < K[u(l — u)]-i-4+e i=0,1,2.

Pyke and Shorack state ([14], page 769) that Theorem 2 of Chernoff and
Savage [5] shows that the above hypotheses are sufficient to imply the conditions
of their Corollary 5.1. A close look at the proof of Proposition 5.1(b) ([14],
page 768) reveals that it yields the result {} L, d(v, — v) = o(1) a.s. under these
same hypotheses. This shows that Assumption 2.2 is not unduly restrictive.

We are now ready to state the main result of this section.

THEOREM 2.1. Let Assumptions 2.1 and 2.2 hold and assume also that (i) 4, —
4y (a.s.) and (ii) {§d|y| — oo. Then

T\(+) —, standard Wiener process.

REMARK 2.2. In Theorem 3.2 below we weaken assumption (ii). There it is
only required that {j g dy| < oo where ¢(r) is a function that tends to zero suf-
ficiently rapidly as ¢ tends to zero or one. See Section 3 for details.

2.B. Multiparameter processes. Extensive use is made of multiparameter pro-
cesses. The weak convergence of such processes has been investigated; see Bickel
and Wichura [2] for details. Our interest focusses on the so-called two-parameter
one-sample empirical process, based on a set of observations Xj, - .., X,,, which
is defined by

Z,(s,6)=0 0s<1I/m0<tr< ]
Z,.(s, 1) = ([ms]/m)U¢,,(?) Im<s<1,05r <1

In place of Z,(s, ), the more suggestive notation stU,(s, f) will often be used.
The analogous process for the “Y-sample” is denoted by Q,(s, 1) = stV (s, 7).

Note that E[Z,,(s,, t,)Z,,(s,, t,)] = min (s, s,) - min (¢, t,)[1 — max (1, t,)]. Thus
Z,(+, +) has a covariance structure like a Wiener process in the s-scale and like
a tied-down Wiener process in the r-scale. In [2] it is shown that Z,(., +) con-
verges weakly to a two-parameter Gaussian process having the same covariance
structure and hence continuous sample paths.

REMARK 2.3. For later convenience, we develop notation for some important
function spaces. D-[0, 1] denotes the space of left continuous real-valued func-
tions having no discontinuities of the second kind; C[0, 1]* denotes the space of
continuous real-valued functions defined on [0, 1]>. The definitions of D[O0, 1]?
and D-[0, 1]* are immediate.

Now define a modified two-parameter two-sample empirical process by

Ly®(s,t) =0; s=0; 0l
=0; s=1/N,.--,N/N; 01t <[Ns]?
= SHLY() — 0y(0)]; s=1/N,---,N/N; [Ns]'<t<1
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and, in general,
L,®(s,t) = Ly?([Ns]/N, t) 0s<1,0 <1,

where Ns, written as a subscript, is meant to denote [Ns]. Also define two pro-
cesses which approximate T(+).
Ty®(s) = (INs)/N)tag™ §5 Livy(t) dv(2) 0<s=<1,
and
Ty® = 0,71 §3 Ly®(s, 1) du(r) 0<s<1.

It will be shown that L,*(., +) converges weakly and hence so does T,?(-).
The weak convergence of T,(+) then follows easily. The first result is obtained
in an indirect fashion. First define two-parameter analogs of the processes that
appear in the decomposition of L,(+). For (s, t) € [0, 1]* let

By(s, 1) = By, (1), Ay(s, 1) = Ay(1), Au(s) = Ay,
Also let ¢(+, +) and ¢,(+, +) be random mappings of the unit square into itself
given by
Du(s, 1) = (Ay,s, FHZ (1))
du(s, 1) = (1 — 2y,)s, GHRZN1)) .

Thus, on the set where it is not defined to be 0,

Ly®(s, 1) = (1 — A5(8))[Ay~1(8)By(s, 1)Ay () Zy(P (5, 1))
— (1 = 2y(5)) 7 4y(s, (1 — 2x(8)) 7 Qu(¢n(s, )] -
With this representation it is clear what the appropriate limit for {L,®(., +)}
must be. For (s, 1) € [0, 1]%, define
¢o(5’ t) = ('205’ FHO_I(I)) s 9[’0(51 t) = ((1 - '20)31 GHo_l(t)) s
b(s; ) = by(t),  as: 1) = a(t),  As) = 4.

The natural limit is then given by

Lys, 1) = (1 — Ao(S)[ A2 (8)bq(s, 1) A7H(8) Zy(Po(s, 1)
— (1 = 4(9))Hay(s, )(1 — 2o()2Qu(¢u(s, )]
where Zy(+, +) and Q,(-, +) are the two-parameter Gaussian processes with con-
tinuous sample paths to which Z,(., «) and Q,(-, ), respectively, converge.
Z,and Q, are taken independent of each other. Now formally rewrite the above
equation as
Lo = hl(ZOs O, bo’ Gy, ¢o’ ¢os '20)

where the function #, is defined implicitly by the above correspondence.

The mechanics of the proof require a third two-parameter process which is
intermediate, in some sense, between L,®(., +) and L(., ). Setf, = N—*-¢
where 0 > 0. Let

(2'3) Ly* = hl(ZN’ QN’ By*, Ay*, ¢N*’ s XN*)
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where
Pu*(s, 1) = do(s, 1), on [0,0,) x[0,1]
= ou(s, 1), on [f,,1]x [0, 1],
By*(s, t) = by(s, 1), on [0,6,) x [0, 1]
= by(s, 1), on [Oy, 1]x ][0, 1],
2*(8) = A(5) , on [0,8,) x [0, 1]
= 2y(s) , on [f,,1]x[0,1].
The definitions of 4,* and ¢,* are similar.
2.C. Proof of Theorem 2.1. The proof of the theorem requires three lemmas.
LEmMA 2.1. Assume Ay — A, Then o(FH,™', FH;™") — 0 (a.s.) and o(GH,™,
GH,™) — 0 (a.s.).
Proor. Immediate. See [14] for details.
LEMMA 2.2. Assume A, — A, and that Assumption 2.1 holds. Then
(2.4) Ly*(es ¢) = Lo(+s +) -

Proor. Recall that Ly* = h(Z,, Qy, By*, Ay*, o4*, &y*, 43*) and L, =
h(Zys Qos by gy Doy o 4). We show first that the vector of arguments for L,*
converges to the vector of arguments for L,. The first step is the demonstration
of (a) p(dy*, ¢,) — 0 (a.s.) and (b) p(By*, b)) — 0 (a.s.).

To prove (a) note that

Sup(s,t)e[o.1]2|¢1v*(s’ t) - ¢0(s’ t){
é SquN,l] ]'zzvss - XOS] + Sup[oN,l]x[O,l] |FH1;§(Z) - FHO_I(I)I .

The result now follows since N¢, — oo as N — oo and 4, — 4, (a.s.), and from
Lemma 2.1. To prove (b) note that

SUP(s, 00,112 [ B (85 1) — by(S, 1) = SUPpy . 11x10,11 [Buwa(t) — b4(7)] -

Since N#, — co as N — oo, (b) follows from the discussion after Assumption
2.1. Of course, similar results hold for A4,*, ¢,*, and 2,*.

Recall now that Z, —, Z,, Q, —, Z,, and that Z, and Q, are independent
for each N. Now apply Theorem 4.4 of Billingsley [3] to assert that

(ZN’ QN’ BN*’ AN*’ ¢N*’ ¢N*7 '21\}*) 2w (Zo’ QO’ bo, aoa ¢0’ ¢]0’ '20)

relative to the appropriate product topology. Equation (2.4) will then follow
immediately from the continuous mapping theorem (cf. [3], Theorem 5.1) if it
can be shown that 4, is indeed continuous with probability 1 (w.p. 1) under the
limiting measure. The proof is cumbersome but straightforward. The key is
that the limit processes are all continuous w.p. 1, and Z,and Q, the only random
limit processes are independent, so that the operations involved in &, (composi-
tion, multiplication, and addition) are continuous although we are working in
the Skorokhod topology. Details are omitted. []
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LemMMA 2.3. Under the hypotheses of Lemma 2.2,
(2.5) Ly@(e, o) = Ly(e, #) .
Proor. First note that L, and L,* are identical except on the set

Ay ={(50):0<s5<0,,,0<t<JU{(s,8):0,<5=<1,0<1t<[Ns]}.
As a result the finite dimensional distributions of L, have the same limit as
those of L,*. To demonstrate tightness it suffices to show that L, and L,*
are both o,(1) on A,.

Since L,* does converge weakly, we can use the fact that L *(s,0) =,0 to
conclude that L,* = o,(1) on the set {(s,#): 0, <5 <1,0 <t <[Ns]"'}. On
this same set L,® is identically zero. On the set {(s,7): 0 < s < 6,,0 <t < 1}
the suprema of both processes are o(1). To see this note for example that both
By Z(¢y) and By*Z, (¢,*) are bounded above in absolute value on [0, 6] x
[0, 1] by

2[(1 — DN — Doy < 2(1 — HN /2 = o(1) .
We have used the facts that [By(f)| £ (1 — 2,),0< A<, <1 —41< 1,and
|Uy(f)] < Ni. This completes the proof. []

Proor oF THEOREM 2.1. Recall that
Ty®(s) = 0y~ {3 Ly®(s, ) dy(7) 0<s<l1.
This may be formally rewritten
Ty(e) = h(Ly™(e, +)) -
The operator 4, is implicitly defined by the correspondence between the two
definitions of T,®(.). Since {jd|v| < oo, it is clear that &, is continuous. By

Lemma 2.3 L,'® —,, L, and so an application of the continuous mapping theorem
([3], Theorem 5.1) shows that

(2.6) Ty®(e) = hy(Ly™ (5 *)) = ha(Lo(+5 +)) -
It is easy to establish that the latter is indeed a standard Wiener process.
We now show that 7, and 7',® have the same weak limits. First,

o(Ty®, Ty'™) = max, ., oy |(k/N)%U0—1 §i-10,(0) dv(t)]

since T,V and T,® are step functions with discontinuities at common time points.
Recall that |0,(f)] < 4,7k~% and § d|v| < oo ([14], page 762). Hence

o(Ty ™, Ty®) < [§ dpy]] - max,g,cy (4,7 HkIN 07 = o(1)

and. 7, and T,'® have the same weak limits.
Finally, employing Assumption 2.2,

o(Ty, TyV) = max oy |(k/N)to, (3 L,V d(v, — v) — 0 (a.s.).

Hence T, T,", and T,"® have the same weak limits. Applying (2.6), the
theorem follows. []
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Before proceeding to Section 3, we present an immediate consequence of our
theorem. First, it would be of use in statistical applications to have our result
available for processes defined on [0, co0). That is, suppose we defined T'y(+) by

Ty(k[N) = (k[N)to,™" §5 L, (1) dv(1) 1<k <o
and in general,
Ty(s) = Ty([Ns]/N) 0<s<oo.

Then 7'y(+) is a process on [0, co) and we would like to show that it converges
weakly to a Wiener process on [0, oo), in the extended Skorokhod topology.
Now the work of Stone [20] and others has shown that, in this case, weak con-
vergence on [0, co) is implied by weak convergence on every compact subinterval
of [0, c0). A little thought shows the latter follows directly from the proof of
Theorem 2.1. []

3. Unbounded score functions.

3.A. Preliminaries. The aim is to weaken condition (ii) of Theorem 2.1 so
that the measure v(+) induced by the score function —J(+) satisfies {} |dv| < oo.
This is achieved by demonstrating the weak convergence of L,®(., +) in the
so-called o, metric (see [14] for details), where ¢ is an element of the class of
functions specified below. O’Reilly [11] gives necessary and sufficient conditions
on a function ¢(r): 0 < ¢ < 1 in order that Z,(1, #)/¢(f) converge weakly to the
appropriate Gaussian process. Let Q denote the class of such functions. Then
we have

THEOREM 3.1. Let ge Q. Then

3.1 Zy(s D), Zos,1)
q(7) q(t)

Proor?. Bickel and Wichura showed

Zy(8,8) >, Zy(s, 1) .

Thus, this proof requires only checking that division by ¢(¢) does not cause things
to “blow up” near 0 or 1. Formally we must show that

(3.2) plim, ,limsup,_., SUPoss<1o<ese [Zy(s, t)|/q(r) = O,

where ¢ appears in the definition of g. A similar condition for ¢ near 1 is also
required, but the proof would be the same as for (3.2). Applying the Banach
space version of Skorokhod’s inequality [7], it suffices to prove

(3.3 plim, o lim supy_, supy.,c. [Zy(1, £)|/g(r) = 0.
But (3.3) follows directly from O’Reilly’s result. []

* The present proof is due to a referee. It is much simpler than the author’s own proof which
only applied to a subclass of Q.
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In the demonstration that the introduction of the random time transformation
&y(e, ¢)into Z,(+, +) does not alter the conclusion of Theorem 3.1, the follow-
ing result on the behavior of uniform order statistics is crucial.

3.8. Inequalities for uniform order statistics.

LemMMA 3.1. Let {Z, y}icu<n De the order statistics from a sample of size N from
the uniform distribution on [0, 1], with0 < Z, y £ Z, vy < -+ S Zyy < 1. Let
Zy = Zyy — E(Z,y). Then{Zj /(N — k + D)} <p<y is a martingale sequence.

Proor.
E[Z;ck-l-l,N | Z;ckN] = [Zk+1 N l Zk N] - E[Zk+1,1v]
1 —-2Z ) _ k+1
-7 ( oy .
e oy N—k+1 N+1
Therefore
E[Z;:H,N Ziy J: Zow k
N—kIN—-—k+1 N—k+1 N+ 1DHN—-k+1)
_ Ziy
C N—k+1°

Since {Z yh<i<y form a Markov process, this suffices to prove the martingale
property. []

LEMMA 3.2. Letc>0,0< a=<1and0 < p <% Givene > 0, there exists
N(e, ¢, a, p) such that

P{|Z¥y| < c(kIN), 1 <k < [Na]+ 1, forall N> N(,c,a,p)} >1—c¢.

Proor. Let A, denote the event

1 /NY
maxlgkg[lva]+l?<7> |Zinl > 1.

Let
= P{A,}
N—k+1 N\ Z¥
= P{ MaX;<p<iyal+1 <—*—*c + ><7€—> N kil ';(’N_*_ I \ > 1}
< Z[Na]+l (08 — a8 )E ‘ Z;ck,N s
k,N k+1,N. N _ k + 1
where
ey = < _k+1><?>, 1 £k <[Na]+ 1
=0, [Na] +2 < k< N.

The inequality follows from applying Theorem 2.1 of Birnbaum and Marshall
[4] to the martingale sequence {Z} /(N — k + 1)},
It is well known that Z,  is distributed as Beta (k, N — k + 1). A long and
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tedious calculation shows that

E[Z ] = Tk Zisirivis,isnisn 400 )Nk

s7,9s

N+ 1NN + 8)(N +7) --- (N + 2)

where i and j are integers and d(i, J) are constants depending on i and j.
Therefore,

E’ Z;ck,N s
TUIN Kk F 1
N8 kN7

75) N“)

ast [NV 1 ko=
Z;c=l]+l <—“> W W) 0 < 7] < 2

o
IA
gl
wo

al+1 8
14

(
(

:0(1 ggi) if 80—6+7<1
(

Hence 3| Py < oo and so by the Borel-Cantelli lemma, P{A,, infinitely often} = 0.
It follows that given ¢ > 0, there exists N(e, ¢, a, p) satisfying the conditions of
the theorem. Note that the restriction 80 — 6 + 7 < 1 reduces to requiring
p < § since 5 was arbitrary. []

REMARK 3.1. Wellner [21] has given excellent approximations to the central
moments of the Beta distribution. He shows that
E|Zg y|" < Co(k[N?)

where C, is a constant depending only on r. These bounds, when combined
with the method above, yield the result of Lemma 3.2 for all p < 1. We will
feel free therefore to use this more general result.

Now define two processes that will be needed in the proof of Theorem 3.2. Let

L, ®(s, 1) = Ly*(s, 1), 0<s<1, [Ns]'<Zt<1— [Ns]?

=0, elsewhere
-3
WAgozzﬂéﬁ%Q“», 0<s<1, [N]'<t1=1—[Ns]"
q
=0, elsewhere.

Thus on the set where it is not defined to be zero,
Wi(s, 1) = A33[(Ay, )2 Uy (Ay, s, FH3X(1))]/q(t) -

3.C. Main result. It seems appropriate at this point to note that in order to
prove that a sequence of measures {P,} on our function space is tight, it is nec-
essary and sufficient to show (see [2]):

For each positive 7 there exists a K such that

(3-4) PN{X: SUP, e fo,172 ]x('v)| > K} < 7 -
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For each positive ¢ and 7 there exists a positive # and an integer N, such that

(3.5) Pylx:w/(1) = ¢} < 9, N = N,
where

© w,/(¢) = inf, maxg., sup, , cq |X(v) — x(v')|

and where the infimum extends over all partitions A of [0, 1]? formed by finitely
many lines parallel to the coordinate axes, and such that each cell of the grid
has diameter at least . Such a grid is called a p-grid. G denotes (the closure
of) an arbitrary cell of A. Note that the diameter of a rectangle is defined as
the length of its shortest side.

Finally define

Q*={feQ: f(t)y Zmin (*, (1 —1)’) 0 <t <1 for some de(0,1)}.

Though our results apply more generally, the family Q* is broad enough to
cover most cases of interest.

THEOREM 3.2. Assume that (i) 2, — 2, (a.s.), (ii) {} g d|v| — co for some g ¢ Q*
and that Assumptions 2.1 and 2.2 hold. Then

Ty(+) —, standard Wiener process.
The proof of the theorem requires three preliminary lemmas.
LeEMMA 3.3. Suppose that in the definition of Wy(s, 1), ¢(f) = min (£, (1 — 7)%),

for some 6¢(0,%). Then (3.4) holds when P, denotes the measure induced by
Wy(s, o).

Proor. Proving (3.4) requires showing that given » > 0, there exists K such
that

(3.6) P(Wy(s, )] < K, (5, 1) €[0, 17} > 1 — 5 for N> 1.
Let 6y, = N-*and 0 < @ < 4. Define regions R, = [0, 6,] x [0, 1], R, = [0,,
1] x [a, 1 — a] and R, = [0y, 1] x {[0, a] U [1 — a, 1]}. Then [0, 1]* = R, U

R, U R;and (3.6) will follow from showing P{|W (s, )] < K, (s, ) e R;}} > 1 — 3
forN>=1(=1,2,3). For (s,f)eR,

SUP[xvs1-1t=<1-[vs]—1 |'21_V$[('2Nss)QUN('2NsS’ FH;J:(t))]/‘](t)l = Sé(Ns'st)é(Ns)é
. < G, INEFS < NG-DA

Thus |Wy(s, )] = o(1) on R,. Next, the weak convergence of 13:Z,,(¢6 (s, 1)) and
the fact that ¢(f) is bounded away from 0 on R, together imply that |W (s, )| is
bounded in probability on R,. R, will require more work.

Noting the symmetry about + = { and that it suffices to work with N suffi-
ciently large, the problem can be reduced to showing

3.7) P(Wy(s,0)| < K, (s, 0)e[0y 1] % [0,a} > 1 —75, N=N,.
Let g(f) = min (¢°, (1 — ¢)’) where d < 6 < 4. Then (3.7) is implied by the
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following two inequalities to be established:

¢.8 P S*UN(%;};’ fzf)’)ﬁ:(’)) <KOy<s<L[NJ' <t Zaf
§(FHy,
d > 1 — 77/23 N Z No
an

(3.9)  PE(FHF(D) < q(), 0y S s< L [Ns|" <t < a) > 1 — 92,

We first prove (3.8).

In Theorem 3.1 it was shown that

U (s, 0/G(1) =, SPU(s, 0/G(1)  on [0, 1T

It follows that
(3.10) StU y(Ay, 8, 1)]q(t) —,, $2U(A,8, 1)[G(1) on [0,17?,
since the transformation (s, ) — (4y,s, r) does not affect tightness. But (3.10)
implies that
(3.11) P{sUy(2s, /G0 < K5 (5,0 € [0, 1] > 1 — 92, N2 N,,
when N, is chosen sufficiently large. (3.8) is an immediate consequence of
(3.11). We now prove (3.9).

The statement: G(FHy(t)) < q(t) for [Ns]™* < t < a, is implied by the state-
ment: FH3i(t) — t < cr®’ for [Ns]' <t < a, if ¢ is a constant chosen to be
suitably (depending on a, 4, 0) smaller than one. Since Hy!(?) is left continuous
and constant between points of jump, in order to prove (3.9) it suffices to show

P{FH¥1/Ns) — 1/Ns < ¢(1/Ns)*,
(3.12) FHy(k[Ns) — ((k — 1)/Ns) < c((k — 1)/Ns)"3;
2<k<Z|[Nsa]+1,5eDy}>1— 792 for N=N,,
where Dy = {k/N: k an integer; 6, < k/N < 1}. Note that in (3.12) the cases

k = 2 are treated differently from the case k = 1 because of the left-continuity
of the inverse function which implies that

lim, | _yws (FH7Xt) — 1) = FHy(k/Ns) — (k — 1))Ns ~ k>2.

The strategy is to modify (3.12) so that Lemma 3.2 can be brought to bear.
Note that Hyj(k/Ns) < F,ly,(k/m(Ns)),'l <k < m(Ns), and FF,},, (k/m(Ns)) =
Z,, mvs) = kth 0.s. in a sample of size m(Ns) from a uniform [0, 1] distribution
and that

A/m(Ns) < 1/Ns < (1 — 2)/m(Ns) .
Thus to prove (3.12) it suffices to show
PZ, ey — 1/m(Ns) < ¢'(1/m(Ns))*?,
(3.13) Ziman — (k= 1)fm(Ns) < ¢'((k — 1)/m(Ns))*”;
2<k<mNs),seDy}>1— /2 for N=N,,
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where ¢’ is a constant chosen suitably smaller than ¢4*?. But (3.13), in turn,
is implied by
(3.14)  P{Zy vy — K[(m(Ns) + 1) < ¢"(k[m(Ns))";

1 <k <m(Ns),seDy} >1— 92 for N =N,,

where ¢ 1s a constant chosen suitably smaller than ¢’. Finally, noting that
m(N@ ) — co as N — oo, it is clear that (3.14) is certainly implied by

P{Z, v — k(N + 1) < ¢"(kJN)*3; 1 <k <N forall N> N(y,c", 8/5)}
>1—9/2.

This last statement, though, follows from Lemma 3.2 with d/6 here replaced by

p there. Note that §/d < 1, so that p < 1 is required. See Remark 3.1. We
have thus proven (3.9) and so the lemma. []

REeMARK 3.2. This method of handling the introduction of ¢,(-, «) applies
to a more general class of random time transformations.

REMARK 3.3. In the next lemma, we will have occasion to use the following
result: Given », ¢ > 0 there exists @ > 0 such that

(3.15) P{{Wu(s, )] <& (s,0)€e[0,1]x ([0, a] Ul —a, 1))} > 1 —19
for N = N(s, 1, a) .

The proof is essentially the same as that of (3.6) except that the proof of the
analog of (3.8) does not hold unless a can be chosen suitably small. Then the
weak convergence of Z,(s, t)/g(t) together with a continuity argument can be
used to prove the analog of (3.11) with K replaced by a fixed ¢ > 0. The proof
of (3.9) carries over unchanged.

LEMMA 3.4. Suppose that in the definition of W (s, t), q(t) = min (¢£°, (1 — ¢)°),
for some 0 (0,%). Then (3.5) holds where P, denotes the measure induced by
Wy(ss +).

Proor. Equation (3.15) implies that given ¢, 7 > 0 there exists a(e, 7) and
N(e, 3, a) such that

(3.16) P{{Wy(s, )] < ¢/2; (s, )e[0, 1] x ([0, a] U [l —a, 1)} > 1 — 7
for N = N(e, 1, a) .

For such an a, consider the parameter set [0, 1] x [a, | — a]. The proof of
Lemma 2.3 can be applied to show that Z,(¢,) converges weakly and hence the
corresponding sequence of distributions must be tight. Thus the distribution of
W, restricted to the domain [0, 1] x [a, ] — a] must also be tight. But this
tightness implies the analog of (3.5) on the domain [0, 1] x [a, 1 — a] with x
replaced by W,. Choose ¢ < a and let A be any p-grid on [0, 1] x [a, 1 — a].
Then A can be extended in the obvious way to be a p-grid on [0, 1] x [0, 1],
by simply adjoining the lines # = 0 and # = 1. Call the extended grid A*. Let
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x denote the process W,. Then
(3.17) MaXge, SUP, 4 cq [X(V) — x(V')] < €
implies

maxg. A* supv,v'GG |‘x('U) - X(U,)l < €
if x lies in the set displayed in (3.16) which has probability greater than 1 — 7.
Since the probability of the set of x’s satisfying (3.17) is also greater than 1 — 7
for N sufficiently large, therefore given ¢, 7 > 0 there exists a ¢ > 0 such that

Pyfx:w/*(p) > ¢} < 29 for N sufficiently large,

where w,'*(y) = inf,, max,. . sup, ,.eq [X(¥) — x(v')]. This proves (3.5) since
w, *(¢) = w,’(¢) where the latter term denotes the infimum taken over all pu-
grids on [0, 1] x [0, 1]. [

LeMMA 3.5. Under the hypotheses of Theorem 3.2,
Ly®(s, 0[9(t) =4 Lo(s, )[9(7) -

Proor. The proof of Lemma 2.3 implies that the finite dimensional distri-
butions of Wy(+, ) converge to those of stUy(4,s, FH,"\(1))/4(f). Lemmas 3.3 and
3.4 together imply that the sequence {I¥,} is tight. Hence

Wy(s, t) —,, stU\(A,s, FH,™\(1))[4(2) .
It is now relatively easy to show (using methods developed in Section 2)
(1 — ) AiBy(s, OW (s, 1) =, (1 — A)A)72by(s, 1)stU(A,s, FHy (1)) /q(t) -

A similar result naturally holds for the analogous term involving 4, and V,.
Although addition is in general not a continuous operation in the Skorokhod
topology, the two summands in L, are both a.s. continuous and Skorokhod con-
vergence to continuous limits is equivalent to convergence in the supremum
metric. This fact together with the convergence results implies that

Ly¥(e,+) - Ly(+, ) ‘ 0
9(+) q(+)
ProoF oF THEOREM 3.2. The proof follows the lines established in Theorem
2.1. Define a new process by

Ty®(s) = 007" §a [Ly™(s, )/q()]q(7) du(?) 0=s=1,

which may be formally rewritten as

Ty®(e) = h(Ly®(e5 +)/q(+))

where the argument of ¢g(+) corresponds to the second argument of L, (., .).
The operator A, is implicitly defined. Since the measure “g dv” has finite abso-

lute variation on [0, 1], it is clear that &, is continuous. Using the result of
Lemma 3.5 and the continuous mapping theorem, we have

(3.18) Ty®(e) = h(Ly®(e5 *)/q(+)) = Ho(Lo(+5 +)/q(+)) -
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The latter is, of course, a standard Wiener process. We now show that 7,(+)
and 7,®(.) have the same weak limits.

o(TyM(), Ty'P(+)) = maX,gcy

KNP 1ot 000 g,

I g 2 (r)d(r)l

CISTNRZGp
$tms 20 400 (1)

+ maX, <y

Using the assumption that § ¢ djv| < oo, and the results that

SUP,-1<r 511 [0k(1)/9(1)| = o(1) and SUPy_i-1ges [Li(1)/9(0)] = o(1)

(see [14], page 763), apply the result that ¢, = o(1) implies that sup,_,_, [(k/
N)ic,] = o(1), to conclude that

Ty (), TyO()) >0 (as.).

Finally, near the end of the proof of Theorem 2.1 we established under As-
sumption 2.2, that o(Ty(+), Ty*(+)) — 0 (a.s.). Hence T,(+) and T,®(+) have
the same weak limits. Together with (3.18) this proves the theorem. []

REMARK 3.4. We note that in both Theorems 2.1 and 3.2, the crucial step
was to prove that a certain two-parameter process, L,®(., «) in the first case,
L,®(+, +)/q(+) in the second case, converged weakly to the appropriate limit
process. The methods used, however, were quite different. In the latter case
the proof was more difficult because it required rather sharp bounds on the be-
havior of the order statistics from a uniform [0, 1] sample. Our particular result
in this area, Lemma 3.2, should be of some interest in its own light.

4. Sequential applications.

4.A. Introduction. We now examine some applications of Theorem 3.2. In
particular, we investigate the selection and evaluation of procedures to be used
in conjunction with a sequential linear rank statistic and present a heuristic
approach to determining the asymptotic relative efficiency of two competing
statistics.

Let T, denote a linear rank statistic calculated on k& observations. As data
accumulate, plot T, against k. It follows from Theorem 3.2 that, when properly
rescaled, the resulting process converges weakly to a Wiener process. In fact
we propose to act as if the observed graph were actually a realization of such a
process, and thus select sequential procedures analogous to those appropriate
to the related Wiener process problem. Theorem 3.2 can be used to find ap-
proximations to the operating characteristics of this or other procedures based
on T,. One caution: we shall treat the observed graph as a process with known
variance, although this is not actually the case; that is, we shall replace o%#)
by ¢*(0) when testing H,: 6 = 0 against H,: § < 0. For large sample sizes, the
relevant range of the parameter is small and the range of the variance is corre-

spondingly so. Nevertheless, we may be losing valuable information on the
unknown parameter.
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4.B. Sequential analysis for the Wiener process. Here we consider the related
Wiener process problem in detail. Suppose ¢ is an unknown parameter and we
wish to discriminate between the hypothesis H,: § > 0 and H,: 6§ < 0. The
usual loss structure involves two components: a cost ¢ per unit time of sampling
and a loss /|f], incurred by making a wrong decision when 6 is the true parame-
ter. Since we are interested primarily in values of # near 0, choosing the loss
to be proportional to the magnitude of # seems reasonable. For a given proce-
dure g, the risk function is given by

@1 R(9, 8) = cE,(T,) + 1|60]¢,(6) ,

where T'; is the sampling time for d and ¢,(6) is the probability of accepting the
wrong hypothesis when ¢ is the true parameter value and 4 is used.

Suppose the data consists of a Wiener process & with mean drift x(9), variance
o*(0) and that p(6) is approximately proportional to 6 for 4 in a neighborhood
of 0. We can then consider the restricted version of the problem for which the
procedures ¢ are confined to the use of £. Here the aim would be to test H,:
#(0) = 0 against H,: p(f) < 0 with reparameterized risk function,

(42) (i, 0) = cE,(T,) + e (s)

By choosing I = 1/4/(0), R(y, 9) is nearly equal to R(6, §) and the approximation
is good in the relevant range of #. The restricted setup is closely related to the
transformed problem of testing

(4.3) H:p>0 against H:p<O0,

using the risk function R(yx, §) with the Wiener process &, mean y and variance
0%0), as data. _ '

For simplicity, the choice of a stopping rule for the transformed problem is
made from the class of Wald strategies. These involve a pair of straight line
barriers, parallel to the time axis and at heights +a, for some constant a. The
process is observed until it crosses one of the barriers, and a decision is made
in favor of H, or H, according as the upper or lower barrier is hit. Denote the
above scheme by d,.

Let

g(u) = [e* + 1] u>0
and
h(u) = e* — 1 u>0.
Then (cf. DeGroot [6])

(4.4) R(p, 0,) = g(2palo®)[cap—h(2palo®) + Ip|] .
Making the transformations
a = (le7'o%)ix and v = (IFea)ty
we obtain
R(pr, 3) = (cl'o*)g(2x)[xy~h(2xy) + y] >0
=, (cBa®iR(y, x),
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where R(., «) is the risk function in the normalized problem for which the pa-
rameters ¢, [and ¢® are equal to 1. Thus (c/’6?) is a key parameter in the study
of R(u, é,).

It is of some interest to investigate the minimax symmetric Wald procedure.
DeGroot [6] has shown it exists and is in fact minimax among all decision pro-
cedures. Let a* denote the height of the minimax barrier and p* the least
favorable value of p. Then a* = p(lo*/c)t and p* = +p'(ca?/l)}, where p and
p’ are constants with approximate values 0.426 and 1.38 respectively. A simple
calculation shows that

(4.5) R(p*, 6,2) = 0.488(cka?)t .
Further, R(0, 3,) = lim,_, R(y, 3,) = ca?/a?, so that
R(0, 5,) = 0.181(clts?)3 .

Note that if ¢ — 0, then p* = O(ct) and a* = O(c#).

A second approach is to obtain the Wald procedure which is Bayes against a
suitable prior. Specifically, assume a symmetric normal prior for the parameter
p; that is, p ~ N(0, 6,%). This implies that y ~ N(0, ¢,?) where o, = g,(lc'o7?)3.
Set v = 2xy and @ = (80,2x%)~". The Bayes risk is given by

r(a, o,) = (cla?)ir(x, a)),
where
F(x, 0,) = 2(210,) {35 xy'g(2xy)h(2xy) exp(—y*[20,%) dy

(4-6) + 7 y9(2xy) exp(—y*[20,%) dy}

= 2(2r0,%)Hx (& v'g(V)h(v)e~*" dv + Lx? (& vg(v)e *** dv}

= 2(2n0’)~¥xH, + 1x~*H,} .
The quantities H, and H, are implicitly defined by the final equality. Since a
closed form solution seems difficult to obtain for finite ¢,, we find an approxi-

mation to the Bayes procedure as ¢, — oo (¢ — 0).
It is clear that lim, , H, = {7 vg(v) dv. After dividing the region of integra-

a—0 2

tion and expanding the integrand we find that
lim,_, H, = {§v7'g(v)h(v) dv + lim,_, {7 v-le~*’ dv — 2 {7 v-'g(v) dv .
The second integral requires separate consideration. Setting w = av?, we have
{2 vte gy = L{{Lwle v dw 4 (¢ wle ™ dw) .
The final integral is finite, whilst
fawle ™ dw = (L wlh(—w)dw + (L wldw.

The first integral on the RHS converges as @ — 0 and the second integral equals
—log a. We have thus shown that

4.7 xH, + }x*H, =~ x[K, — } log a] + 1x7K,
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where
K, = (i v7ig(v)h(v) dv — 2 {2 vg(v) dv + L[§5 wrh(—w) dw + (¢ wle ™ dw]
and
K, = (¢ vg(v)dv.

The approximation is valid for @ = (8¢,2x?)~* close to 0.
Substitute (4.7) into (4.6), differentiate the resulting approximation to r(x, o,)
with respect to x, and set equal to O to obtain

K, + $log2 + logo, + logx + 1 — 1K, x*=0.
An approximate solution is given by
X = (K,/2 log a,)} (valid as o, — o0) .

The form of the solution justifies neglecting the log x term. The corresponding
Bayes risk r(a,, 0,) can be shown to be approximately proportional to

_(cPa?)t 1=y
oo(zc_lo'—z)é [log ao(lc 7))

(4.8)

and hence is O(—c log ¢)t.

Whilst one might ordinarily prefer to use procedures which do not employ
Wald barriers, they do not appear amenable to the present analysis. The re-
mainder of the paper is thus confined to examining some features of the Bayes
and minimax Wald procedures as they apply to the sequence of nonparametric
statistics.

4.C. Connection with sequential rank tests. Consider the two-sample location
shift problem. Let x;, x,, - -+ and y,, y,, - - - be independent observations drawn
sequentially from two populations with continuous distributions F and G, re-
spectively. Suppose that G(x) = F(x 4 ¢). In order to test H,: § = 0 against
H,: 8 < 0, employ a sequential version of a linear rank statistic 7. Let J be the
limiting score function of T and assume 2, — 4,. Set

m(0) = 3I[AF(x) + (1 — 2)F(x + 0)]F(dx) .

Writing T'(6) = k¥ T,* — m(6)], Theorem 3.2 implies that, when 6 is the true
value of the parameter, the sequential statistic based on T',(¢) converges weakly
to a standard Wiener process. Since 7,(f) can not be observed because 6 is
unknown, it is customary to use the statistic 7', = T(0) = k}[T,* — m(0)]. Thus
when 6 = 0, the observed graph is approximated by a Wiener process with mean
drift p(f) = m(f) — m(0) and variance ¢*%(f) ~ ¢%0). The sense of the approxi-
mation can be made rigorous by considering a sequence of problems, indexed
by N, in which § = O(N-*) and time is scaled by a factor of N-1. It seems rea-
sonable therefore, to act as if the sequential statistic actually were a Wiener
process with mean p(#) and variance ¢*(0), and to employ sequential procedures
appropriate to Wiener process problems.
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In order to make use of the discussion around equations (4.1) to (4.3), we must
first show that x(0) is indeed proportional to # near 0. Assume that J(+) can be
expanded by Taylor’s formula up to the second derivative, that J'(x) = 0 for
x€ (0, 1), that F has a first derivative and that there exists a function D(x)
satisfying

(i) |(F(x 4+ 60) — F(x))/6] < D(x) for @ sufficiently small, and all x, and
(1) §o D(x)J'(F(x))F(dx) < oo.
Then
“m(0) = GIF(x) + (1 — 2)[F(x + 0) — F(x)]]F(dx)
= WUIF] + (1 — [F(x + 0) — F(x)'[F(x)]
+ 3(1 — A)[F(x + 0) — F()IV'[F(x) + ¢(1 — 4)
X [F(x + 6) — F(x)]]}F(dx) for some ¢ (0,1).
Therefore under the present assumptions, as ¢ tends 0,
1(0) = m(0) — m(0) = 0 3 (1 — Z)F'(x)J'[F(x)}F(dx) .

Since () has the same sign as ¢, tests for the sign of x(6) are also tests for the
sign of 4.

The principal aim of this section is to compare the performance of two se-
quential statistics based on different linear rank statistics. It seems reasonable
to mimic the approach taken in computing the Pitman efficiency of two non-
parametric tests in the fixed-sample situation. It has already been shown that
the location shift problem, for a distribution F, with risk structure given by
(4.1), can be transformed into an equivalent one involving a test for the sign
of the drift of a sequential statistic. Furthermore, for small values of ¢, the
risk structure of the transformed problem, with parameter y(6), is approximately
equivalent to that of the original problem involving 6 (cf. (4.2)).

We now indulge in some heuristics. In the transformed problem, regarding
the observed sequential statistic as the realization of a Wiener process, compute
the maximum risk incurred by employing the minimax procedure. To compare
two different statistics, carry out the above calculation for each of them, and
then compute the limiting ratio of the maximum risks as the cost of sampling
tends to 0. Suppressing functional dependence on the cost ¢ and employing
(4.2) and (4.5), yields

RE (b 5«171)) T Ry 5«;'(1))

im, ,———— "
R (1) 5«1;2)) Ry (pd)s 0ar)

(4.9) = lim,_, [cz?l)"%)(o)/(cz}?z)"%2)(0)]&
— |: I'at,)(0) [ ’at,(0) jlé
[0 [4)(0)]*
= [E,/E]*,

lim

¢—0

where E; = [p/;,(0)/o,,(0)]? is the efficacy of the linear rank statistic underlying
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the ith sequential statistic (i = 1, 2). E,/E, is the Pitman asymptotic relative
efficiency (a.r.e.) of the two statistics.

Now, it is hoped that (4.9) gives a reasonable approximation to the ratio of
“maximum risks”’ incurred when 5%) is used, the data are the acrual sequential
statistics (i = 1, 2) and the cost of sampling is small. A similar, though simpler,
problem arises in computing the Pitman a.r.e. in the fixed sample case. There,
in order to show that the ratio of efficacies corresponds to the limiting ratio of
sample sizes, one must establish a uniformity of convergence to normality.
Here, even more is required.

Briefly, in the present setup the cost of sampling ¢ indexes the sequence of
problems much as N did in Sections 2 and 3. The result required is that the
sequential statistics converge weakly to the Wiener process as ¢ — 0 (and so
6 — 0 at an appropriate rate). This would follow from showing that the weak
convergence in Theorem 3.2 was uniform in a set of pairs of distributions {(F(x),
F(x 4 0)): 6 € [0, A]} (cf. [15]). Convergence of the relevant boundary crossing
probabilities and convergence in distribution of the sampling time would be im-
mediate consequences. However, the risk function also involves the expected
sampling time and in order to show that (4.9) is meaningful for the original
problem, the convergence of the expected sampling times is required. Unfortu-
nately, neither this latter result nor the uniformity of weak convergence have
been obtained as yet in general.

A calculation similar to that in (4.9) may be made when considering Bayes
procedures. The heuristic approximation does not yield nearly as neat an an-
swer. Assume a zero-mean, normal prior on the unknown parameter 6. This
in turn induces prior distributions on the parameter g ,, and g, the mean drifts
of the Wiener processes approximating the sequential statistics being compared.
In the relevant range of the parameters, these priors should be nearly normal
with zero means and variances (say) o5 ;, and a; ), respectively. After applying
the results obtained in (4.8) for the related Wiener process problems (but neg-
lecting the logarithmic factor entirely), the limiting ratio of Bayes risks of two
competing statistics can be computed to be

; r(ag?, o
hmceo(—B(#&)— = [021(1)afl)(0)/c2l(2)o‘§2)(0)]500,(2)/00,(1)
r(az®, o,,)

lo,(0) /1o, (0)
(4.10) = [ﬁo—} #)((0))‘} [01)(0)00,3)/0 5,(0)4,1)]
= [E2/E1]*[0'(1)(0)00,(2)/0'(2)(0)0'0’(1)] .
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Note added in proof. Since the completion of this paper, an excellent related
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article by T. L. Lai (Ann. Statist. 3 825-845) has appeared. Professor Lai, among
other things, refines the Chernoff-Savage analysis to obtain an invariance prin-
ciple and a law of the iterated logarithm for linear rank statistics. The chief
advantage of this approach is that the result is uniform in F and G. A minor
drawback is that the score function J must have a second derivative satisfying
certain regularity conditions.

On the other hand, the weak convergence approach does not in principle re-
quire J to have even a first derivative. In practice, this means that score func-
tions for which the first derivative fails to exist at a finite number of points can
be dealt with. Such functions often arise in testing for scale alternatives. Ex-
amples are the tests of Ansari-Freund and Siegel-Tukey.

Both Lai’s paper and this one involve careful study of the tails of the empirical
process. The results obtained are, however, not equivalent and will undoubtedly
find different uses in future work. The applications to sequential analysis also
have quite a different flavor.
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