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EMPIRICAL BAYES ESTIMATION WITH CONVERGENCE
RATES IN NONCONTINUOUS LEBESGUE
EXPONENTIAL FAMILIES

By R. S. SiNGH!
Michigan State University

Empirical Bayes estimators, asymptotically optimal with rates, are
proposed. In the component problem there is a pair (X, ») of real valued
random variables. The Lebesgue density of X, conditional on w, is of the
form u(x)C(w)e»#. Based on a realization of X, the problem is squared
error loss estimation of . Let G be a prior distribution on w, and R(G) be
the Bayes optimal risk wrt G.

Using (X, -+, Xa), the observations in the past n such problems, mean
square consistent estimators of the derivative of log (S C(w)ev® dG(w)) are
proposed. Then these statistics and the present observation X are used to
exhibit estimators ¢ for the present problem whose risks R, converge to
the Bayes optimal risk R(G) as n — co. In particular, with no assumption
on the smoothness or on the form of u, a ¢, for each 7 in [0,2) is exhibited.
Sufficient conditions are given under which ¢;n—44+31) < R, — R(G) £
can=2r/(4+30) where ¢, and c; are positive constants. The rhs inequality
holds uniformly in G with support in a bounded interval of the real line,
while the other holds for a G degenerate at a point and for all » sufficiently
large. (Thus with 7 close to 2, ¢, achieves almost the exact rate.) Examples
of families, including one whose u function has infinitely many disconti-
nuities, are given where conditions for the above inequalities are satisfied
for y arbitrarily close to 2.

1. Introduction. Empirical Bayes (EB) problems have been described and dis-
cussed in great detail in the literature; for examples see Robbins [12], [13], Johns
[5], andJohns and Van Ryzin [6]. (Examples where EB solutions are applicable are
discussed in the highly illustrative paper by Neyman [10].) Johns [5], Robbins
[13], Samuel [14] and Hannan and Macky [3] have exhibited EB procedures for
certain problems which are asymprotically optimal (a.o.) in the sense that the
risk for the nth decision problem converges to the Bayes optimal risk (which
would have been obtained if the prior distribution involved were known and the
best procedure based on this knowledge were used). If the rate of such convergence
is of order O(n~?) for a & > 0 we will say that the EB procedure is a.0. with a rate
d. The usefulness of an EB procedure clearly depends on the rate of the asymp-
totic optimality of the procedure. With this view in mind, in some of the recent
papers on the subject attention has been paid to the problem of exhibiting EB
procedures a.o. with rates (e.g., see Johns and Van Ryzin ([6], [7]) and Yu
([17], Chapters 1 and 2)).
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432 R. S. SINGH

Yu ([17], Chapter 2) exhibited EB estimators in squared error loss estimation
(SELE) of the natural parameter in Lebesgue-exponential families. His esti-
mators are a.0. with a rate. But his rate depends on what order of the derivative
of the Lebesgue-density involved exists, and is less than § no matter how smooth
is this density. Moreover, in the absence of the existence of the second order
derivative of this density, his estimators may not even be a.o. Very recently,
O’Bryan and Susarla [11] exhibited estimators in EB SELE (with varying sample
size) of the mean in the normal family with variance unity, which are a.o. with
rates less than § under the assumption that the support of the prior distribution
is in [0, 1]. No EB estimator a.o. with a rate { as yet is exhibited in a SELE
problem even in a very special family of Lebesgue-densities.

The object of this paper is to exhibit EB estimators in SELE in Lebesgue-
exponential families, and to show, with no assumption on the smoothness of
the Lebesgue-density involved, that the estimators are a.o. with a rate arbitrarily
close to 2. In particular, for each 0 < y < 2 an EB estimator is exhibited. Theo-
rem 4.1 gives sufficient conditions under which the estimator is a.o. with a rate
2y/(4 + 3y) uniformly over the class of all priors whose supports are in a bounded
interval of the real line R. Examples of families, including one whose Lebesgue-
density has infinitely many discontinuity points, are given where conditions of
the theorem are satisfied for y arbitrarily close to 2. Theorem 5.1 shows that
the best possible rate of the asymptotic optimality of the estimator is 4/(4 4 37).

The model we will be considering is the following. Let p be a o-finite
measure dominated by the Lebesgue measure on R. With Q = {0 € R| C(v) =
(§ e dp(x))™ > 0}, let &= {P,|w e Q} be a family of probability measures on
Borel subsets of R such that Z#« p. For P, e &7, let

(1.1) f(x) = C(w)e”®

be a fixed determination of dP,/dy. With G (an unknown) prior distribution on
Q, let the component problem be SELE of w ~ G based on a realization of a
random variable X ~ P, e & Hence the unconditional x-density of X is

(1.2) J(x) = § fu(x) dG()
and the Bayes estimate against G is

{ of,(X) dG _
fX)

2. The empirical Bayes approach. In the EB estimation case an estimator
¢, for the present problem is based on a sequence of past observations X, =
(Xy, - -+, X,) and the present observation X,,, = X, where X; ~ P, e .9 are
independent and w; are i.i.d. according to G. (Thus the present problem is
essentially the (n 4 1)st problem. Note that X; are i.i.d. with p-density f(x).)
Abbreviating o, ,, to o, let P stand for the product measure on (X, »,), -- -,
(Xp» @,), (X, ®). For a measure &, denote § - d§ by &+ or £(+). Then the risk

(1.3) ' Po(X) =
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of ¢, (i.e. the risk in the (n 4 1)st problem) is
For a function g(»), we note that Py ,(g9(w)) = P(9(®)), where P(g(w))
stands for the conditional (on X) expectation of g(w). Thus ¢, continues to be

Bayes in the EB problem, and if ¢, — ¢, € L,(P), then P(¢, — ¢p)(¢g — @) =0
and

(2.2) _ 0 = R, — R(G) = P(¢u(X) — $o(X))"

where R(G) is the Bayes risk (against G) in the component problem. Thus the
problem of exhibiting an a.o. EB estimator is equivalent to the problem of
exhibiting a ¢, such that P(¢, — ¢;)* — 0.

Hereinafter, we restrict p by requiring that 3 a determination u of dy/dx and
an a = — oo such that

(2.3) u(x) >0 iff x>a.

For a < p finite numbers in Q (note that the log convexity of { e“” dy(x) implies
that [a, B] < Q), let & be the class of all priors on Q with supports in [a, f].
We restrict G by requiring that Ge ©. Since P[X; < da] = 0 = P{w; ¢ [a, 8]}
arguments of fand u below are in [x > a] and ; € [a, B].

3. The proposed EB estimator. For brevity in writing, the indicator function
of a set 4 will be denoted by A itself. Let0 < h="h, < 1bea sequence of
numbers such that #, | 0. Define a real valued function Q on the space of all
real valued nonnegative functions # on R by

3.1) Q(1)(x) = h- <log %’2) [t(x + k) + 1(x) > 0] .

Let 0;(+) = [+ = X; = ++h]/u(X;). Note that §,(y) are well defined with pro-
bability one, and are i.i.d. rv’s with expectation d(y) = {¥** f.

Let (b),,; = @, b or B according as b < @, a < b < B or b > 8. Also, for
a; € R, define @ = n=' 3} a;. Our proposed EB estimator in the first problem
is an arbitrary function of X, (with values in [«, ]), and in the present problem
(which is in fact the (n + 1)st problem) is

3.2) 9u(X) = (Q()(X))a.s

Intuitively one expects ¢, to be an estimator of ¢, = (log f). We confirm
this in the next section by showing that, under certain conditions, P(¢, —
¢¢)* — 0 with a rate.

Estimator ¢, is similar to the compound estimator in the (n 4 1)st problem
exhibited by Singh in [15] and in Chapter 2 of [16], which in turn is (partially)
motivated by Gilliland ([1], Chapter 3), Yu ([17], Section 2 of the appendix)
and Hannan and Macky [3].

4. An upper bound for R, — R(G) and rates of asymptotic optimality of the
estimator. We will obtain an explicit upper bound for the excess risk R, — R(G)
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and give sufficient conditions under which this bound is arbitrarily close to
O(n—%). Examples of families (including one whose Lebesgue-density has infi-
nitely many discontinuity points) are given where such rates are achieved.

Let ¢ = |a| Vv || and 7 = . Abbreviate Q(d)(+) and Q(3)(+) to O(+) and
Q(+) respectively. Further, for x > a, let u,(x) and u*(x) be respectively Lebesgue-
inf and Lebesgue-sup of the restriction to [x, x 4+ 24) of u. In Lemmas 4.1, 4.2
and 4.3 below and in their proofs 0,0, u,, u* and f all are evaluated at a fixed
point x > a.

LemMMA 4.1. For every y > 0,
(4.1) P(IQ — Q| A 20) < ky(y)(nhifu,fu*)1,
where ky(7) = 1T (7/2){87%(1 + 7%)/3k*}7* with k = 1 — hyu*f.
Proor. The lhs of (4.1) is
(4.2) §i PIQ — Q| > v]d(v7) = §i* (pu(v) + pa(v) d(v7) ,

where p,(v) = P[(Q — Q) > v] and p,(v) = P[(Q — Q) > v]. Our method of
the proof involves obtaining an exponential bound for p,(v) 4 p,(v) with 0 <
v < 2c.

Fix 0 < v < 2c until stated otherwise. Withr = d(x + h)/d(x), Y; = 0,(x +
h) — re*o,(x) and v = P(Y)), we get
4.3) —0(x +h) <v=(1 —e")o(x + k) < —hvd(x + k).
Also, since ¢? = Var (Y)) < P(Y}?), 6, = 0 and P(9,%(y)) < o(y)/u, for y = x,
x + h,
#.4) w0t = (14 r7)o(x + k) = ((0(x 4 B)™" + 7%(3(x)) ) (x + ) -
But, since for y = x, x + A,
(4.5) Byt S 3(y) = §3 § C(o)e” dG(w) dt < hyf
the first inequality in (4.5), and (4.4) lead to hu, fo* < (1 + p*)3d*(x + h). This
and the second inequality in (4.3) give
(4.6) (=) 5 _Roju,

o? (1 + 7

Next observe that for y = x, x 4 k&, Var (0,(y)) = {¥*(f/u) — 0*(y) = o(y)(1 —
u*d(y))*/u*. Thus by the second inequality in (4.5) u* Var (d,(y)) = d(y)(1 —
hypu* f)* = 6(y)k*, where k is as given in the lemma. Consequently, since §, =
0 and d,(x)0,(x + k) = 0,

4.7 0 = Var (0(x + h)) + r* Var (6,(x))
= {(6(x + k) + rPo(x))k*[u*} = (1 + r)o(x + h)k*[u* .

Thus, since Y, = —re*d(x) = —ry/u, implies —v < rpfu,, and since
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Y; < 0;(x + k) < 1/u,, by (4.3)and (4.7) (Y; — v)(—v/o?) < {(1 + pr)pu* /(1 +
Nu, k*)} < pu*(u, k*)='. This leads to

27,% 2
4.8 Y, —y< 1% <—G_>.
(*-8) iTr= u kt v

Finally, since the event in p,(v) is [Y > 0], (4.8) and the Bernstein inequality
given in (2.13) of Hoeffding [4] give

(4.9)  p(v)=P[Y —v > —v] < exp { —”(—“)2/<2"2<1 + ﬂ»}

3k*u,
< exp {_ 3nk*B*vulf } ,
8*(1 + nP)u*

where the last inequality follows from (4.6) and from the fact that (1 4
Pu*[(3ktuy)) < 43k*u,)'np'u*, since p = 1, k* < 1 and u* = u,.

By interchanging x and x 4 % in the definition of Y; and by the technique
leading to the bound (4.9) for p,(v) we get the same bound for p,(v).

Now substituting p,(v) 4 py(v) in (4.2) by its bound just obtained and then
performing the integration there after extending the range of integration from
(0, 2¢) to (0, oo) we get the desired conclusion. []

LEMMA 4.2. Let t'9 denote the jth derivative of t. Then
(4.10) sup, [(Q(3) — (log f)™)(x)| < 3¢*h/2 .

Proor. Since d(tr) = {1} f — (“, f, by the Cauchy-mean value theorem ([2],
page 81) for some ¢ in (0, 1)

(.11 o(x + h) :f(x—|—h-{—eh).

o(x) J(x + ¢h)
Thus by the Taylor expansion with integral form of the remainder,
(4.12) hQ(d)(x) = log f(x + h + eh) — log f(x + ¢h)

= (zthtek (log YV (r) dr .
But, again by similar expansion, (log f)®(r) — (log f)¥(x) = | (log f)®(v) dv.
This and (4.12) give
(4.13) (Q(9) — (log f)¥)(x) = h~* {18 i (log f)*(v) dv dt .
Notice that (log f)®(v) = Var,_,(0) < Py_,(o*) < ¢*. Thus, the rhs of (4.13)
is positive and is at most 3¢*/2 uniformly in x. []

Notice that (4.11) implies e="* < (3(x + k)/d(x)) < e** which in turn implies
|Q(9)| < ¢. Consequently, from the definition of ¢, in (3.2) |¢, — Q(9)| <
|Q(0) — Q(8)| A 2¢. Thus, triangle inequality followed by c,-inequality ([9],
page 155) gives

27 — (log )" < |w — Q)I* + |Q(0) — (log f)™[?
= (207719 — Q)] A 2¢)7 + (3ch[2)?
by (4.10), and V0 < y < 2. This last inequality and Lemma 4.1 lead to
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LemMa 4.3, If ¢, is given by (3.2), then ¥ y €0, 2],
@14y P, — (log )V = 2{(2c)*Tko(y)(nh’fu,’[u*)~1" 4 (3¢h[2)%} .

Thus ¢, is a mean square consistent point-estimator of (log f)*, and (4.14) gives
the rate of convergence.

LemMaA 4.4. Let ki(y) = k(y) in Lemma 4.1 with k there replaced by 1 —
hy sup,.,, (u* f)(x). If ¢, is given by (3.2), then ¥V y € [0, 2),

(4.15) R, — R(G) < 2(Q@ey~rk, () 1y (:_)) + (31

Proor. By (2.2)
(4.16) R, — R(G) = P(Py|¢n(X) — (X)) -
Thus, since ¢, = (log f)®, (4.15) follows from (4.16) and (4.14). ]

Theorem 4.1 below is the first of the main results of this paper. It gives suf-
ficient conditions under which our EB estimator is a.0. with rates. Let ¢, ¢;, - - -
below be absolute constants.

THEOREM 4.1. Let

(A.0) SUP,s, #¥(X) f(X) < ¢,
and y be a number in [0, 2) for which

_ u* \1/2
o ()} <o

*

Let ¢, be given by (3.2) with h = c¢,(n=7/**)[(c,e%) for some 0 < ¢, < 1 A (c,€°).
Then 3 a ¢, = c,(y) such that

(4.17) R, — R(G) < c,n /s |

Proor. Since (A.0) and the hypothesis on & implies k() in (4.15) is finite,
(4.17) follows by (4.15), (A.1) and the hypothesis on 4. []

Note that no assumptions on the smoothness or on the form of u are made
for (4.17). We now give examples where (4.17) holds for y arbitrarily close to 2.

ExaMPLE 4.1 (Normal N(w, 1)-family). Let u(x) = (27) te="[—c0 < x <
oo]. (Thus @ = —oco and C(w) = e ") Let 0 < —a = B = ¢. Considering
the upper and lower bounds for the ratio u(f)/u(x) for x < t < x + 2k, we get

(4.18) u*(x) < u(x)e! and Uy (x) = u(x)e-dstth
Therefore,

(4.19)  wf(x) < (27)* exp{— (x| — wsign x)* — 4hx))
< exp{2h(h + wsign x)} < exp{2h(h + c)} ae. G.
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Thus sup, u*(x) f(x) < co and (A.0) holds. Moreover, since (4.18) implies
(4.20) (X5)' = @n) exp( + 3hlx] + 20,
Uy

and since f(x) < e?, (A.1) holds V0 < y < 2.

ExAMPLE 4.2. Letu(x) = x[x > O]foraz = 0. (Thusa =0, Q = (— 0, 0)
and C(w) = (—o)™*/T'(r + 1).) Let —co < a < < 0. Then ¢ = —a. By
c,-inequality ([9], page 155) wu*(x) < 2¢-v*(x* 4 (2h)7)[x > 0] and hence
u*(x)f,(x) < 2¢9%(x7 4 (2h)7)(—a) *+ef*[x > 0] a.e. G. Consequently, since <
0, (A.0) holds. Moreover, since by c,-inequality (u* /u,?)7/3(x) < 2-D¥1/3(x=1/2 |
(2h) 2~ [x > 0]V 0 < y < 2, and since f(x) < (—a) e, (A.1) holds V y ¢
[0,2)if z =0, and V y [0, 2) with y < (1 4 7)/z if = > 0.

ExampLE 4.3. Let u(x)= 0+ DHi<x<i+1]. (Thus a=0, Q=
(—o0, 0) and C(w) = w(e® — 1).) Let —oo < @ < < 0. In this example
verification of (A.0) and (A.1) for any y [0, 2) is easy.

In Examples 4.1 and 4.3, ¢, is a.0. with rates arbitrarily close to 2. The
same is true in Example 4.2 with 0 <z < 1 (for = > 1, rates depend on the
magnitude of 7). In the next section we will obtain the best possible rate of
the asymptotic optimality of ¢, which is, in these examples, arbitrarily close to
(from above) 2.

5. A lower bound for R, — R(G) and the best possible rate of asymptotic
optimality of the estimator. Throughout this section, let G be degenerate at an
arbitrary but a fixed point w € Q with « < @ < 8. (Thus f here is f,.) Let c,,
¢, - -+ denote absolute constants (c; here are not necessarily the same as c; in
Section 4). We will show that, with # as in Theorem 4.1, R, — R(G) =
¢,(w)n=v+30 for all sufficiently large n.

THEOREM 5.1. Let ¢ > 0 and 1> a be finite numbers > Lebesgue-inf and
Lebesgue-sup of the restriction to (I, | + €) of u are, respectively, positive and finite.
Let h be as given in Theorem 4.1 (i.e. for a y €[0, 2), h = h, = c,n~7/4+*0). Then

(5.1 R, — R(G) = ¢ n¥/4+3) V sufficiently large n.
Proor. By our hypothesis, there are ¢, and ¢, such that

(5.2) G<pl<x<lte=c,

and since a < w < B,

(5:3) ¢ = inf ey fl1) < sUp s f1) < ¢4

Since G is degenerate at o, ¢, = w, and by (2.2) R, — R(G) = P(¢,(X) —
) = PY¢,(X) — o|. Thus, since ® < g and by (3.2) ¢, is the retraction of
Q(9) to [a, ],

(-4 (Ry = R(G)) = P(Px|¢n(X) — @) Z P57 Py[$n(X) — @ > v] dv)
= P < X <1+ ¢/2] §5- P{OG)(X) > v + ] dv} .
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Fix Xe(,! + (¢/2)) and v¢ (0, 8 — w) until stated otherwise. Recall from
Section 3 that d,(+) = [ < X; < « + k]/u(X;)and d(y) = {¥™* f. (Thus é(y) =
f(y)(e** — 1).) As in the second paragraph of the proof of Lemma 4.1, let Y; =
0;(X + k) — e**+9g,(X). Let nbe large enough to make & < ¢/4. Since (d(+ +
h)[o(+)) = et, with v = P(Y,) = d(X + h) — e"+§(X), we have

(5.5) y = d(X)eho(l — ety = —hvd(X)eho+v > —c k%

where the last inequality follows by (5.3). Since r in (4.7) is (here) e, (4.7)
followed by the hypothesis of the theorem and (5.3) gives

(5.6) Var (Y)) = 6> = ¢,0(X + h) = ¢,k

Notice that in view of our hypothesis, Y are uniformly bounded. Thus, since

PylQ(O)(X) > v + @] = Po[ 31 ¥; > 0] Z Po[ X1 (Y; — ») > ¢nk™v] by (5.5),
Lemma 3 on page 47 of Lamperty [8] gives, for n sufficiently large and for a

£>0,

(57) PIOG)(X) > v + 0] > exp { - HAGL)

(a+ 0}
= exp {—csnh3’v2}

by (5.6). Thus making the transformation (c,nk®)}v = ¢ we get from (5.4) and
5.7
(R, — R(G))} Z c(nk)*P([1 < X < I+ ¢[2] o™t e~ di}
= ¢ tnm¥uED

by (5.2), (5.3) and the hypothesis that 4 = c,n=7/*+, []

6. Remarks. If it is known that u is twice differentiable on (a, co), then
taking
6.1) $.5(X) = (Q(F*)(X)), 5
(in place of ¢,(X)), where 6,*(X) = [X < X; < X + h], it is expected that the
analysis would become simpler; and perhaps (A.0) could be eliminated (provided
a suitable lower bound for “o*’ in (4.7) is used), and (A.1) could be weakened
(to § (uf)'=7* < ). Nevertheless, the rate of asymptotic optimality with ¢, *
is the same as with ¢,.

Hannan and Macky [3] treat a little'more general problem (in the sense that
the support of their prior G could be the whole real line), and deal with an
estimator of the type (6.1). Under certain conditions (e.g. G(v?) < o) they
have proved the asymptotic optimality of their estimator without asserting any
rate. The importance of our estimator is clear since for most of the practical
problems parameter spaces are not unbounded and the usefulness of an EB
estimator depends on the rate of its asymptotic optimality.
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