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ON THE ASYMPTOTIC NORMALITY OF RANK STATISTICS
FOR THE TWO-SAMPLE PROBLEM

By SHINGO SHIRAHATA
Kyushu University

Conditions to ensure the asymptotic normality of rank statistics hav-
ing a scores generating function with finitely many jumps are obtained.
These conditions are derived by studying rank statistics with a scores
generating function J such that J(u) = 1 or 0 as u = s or u < s for a fixed
5,0 < s < 1. No differentiability conditions are imposed on the underly-
ing distribution functions at the jump points of the scores generating
function.

1. Introduction. Let X, ---, X,, and Y,, ..., Y, be two independent random
samples from populations with continuous distribution functions F(x) and G(x)
respectively. Assume that there exists a real number 4; such that 0 < 4, < 42 =
m|N <1 — 2, where N = m + n. Denote by H, and F,, the empirical distri-
bution functions of the combined sample and of X’s respectively and put H =
AF 4+ (1 — 2)G.

The purpose of this paper is to show the asymptotic normality of a rank
statistic

(1.1) Sy = NA[§ Ky(N(N + 1)"*H,) dF,, — \ K(H) dF

where K(u) is a piecewise continuous function on (0, 1), while K, is a function
whichisconstantinZ, = ((i — 1)/(N + 1), i/(N + 1)] and satisfies lim,,_, K, (¥) =
K(u). In order to study S, the statistic

(1.2) Ty = N§ Jy(N(N + 1)7'Hy) dF,, — § J(H) dF ]

plays an essential role where J(u) = 1 or O as u = s or u < s for a fixed 5, 0 <
s < 1 with J, constant in each I; such that lim,__, Jy(x) = J(u). This is because
Sy can be represented as a sum of a rank statistic with a continuous scores
generating function and a linear combination of a finite number of statistics of
the form (1.2).

Rank statistics with discontinuous scores generating function will appear, for
instance, for censored samples. In the censored sample problem, the recom-
mended scores generating function has the form L(u) 4 ¢J(u), where L is the
optimal scores generating function for the uncensored case for u < sand L(u) =
L(s) for u > s (see Gastwirth (1965) or Johnson and Mehrotra (1972)).

If the scores generating function is continuous and satisfies suitable regularity
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conditions, the asymptotic normality of rank statistics has been investigated by
Chernoff and Savage (1958) and Hajek (1968) among others under fixed alterna-
tives. Under the hypothesis of randomness and its contiguous alternatives,
Hajek and Sidak (1967) proved the asymptotic normality for quite a wide class
of scores generating functions. But they did not deal with fixed alternatives.

Dupa¢ and Hajek (1969) showed the asymptotic normality of rank statistics
with not necessarily continuous scores generating function, and its simple proof
was given by Koul and Staudte (1972). Although their results are general, they
imposed almost everywhere differentiability on the distribution functions (or
condition (2.39) in [2]). However, the condition does not hold when F and G
are uniform distributions over (0, }) U (, 1) and (%, 2) respectively and s = 1.
Neither does it hold when F has a density function f(x) = 1|x|* for [x| < 1 and
f(x) = Ofor |x| = 1and G is a uniform distribution over (—1, 1). By the result
in Section 2, the asymptotic normality of the rank statistic holds when it has
a scores generating function with a jumpatu = 1. This fact can not be derived
from known results as far as the author is aware.

2. Main theorem. Let us begin with the following assumptions.
ASSUMPTION 2.1.
(2.1) By, = N} { [Jy(N(N + 1)7*Hy) — J(N(N + 1)"'H,)]dF,, —, 0
as N— oo .

The assumption is automatically satisfied when J,(u) = J(i/(N + 1)) for
uel,.

AsSUMPTION 2.2. There exist j(s) and k(s), 0 < j(s), k(s) < oo, such that for
any M > 0

(2.2) MaX.,<yy- NHF'FHY(s) — HF-(FH7Y(s) — ) — tj(s)| = o(1)
and
(2.3) Max_yy—4 oo NHHF(FH(s)+) — HF\FH™(s) — t) — tk(s)|
=o(l).
The case j(s) = co is to mean that the left-hand side of (2.2) with #j(s) deleted

diverges to infinity; the case k(s) = co has a similar meaning. The inverse
functions in (2.2) and (2.3) are defined by

(2.4 F~Yu) = inf {x: F(x) = u}
and
(2.5) FYu+) = inf {x: F(x) > u} .

From (2.4) and (2.5), obviously
(2.6) HFZ'FH™'(s) < s < HF(FH Y(s)4) .
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Therefore the pair (F, G) can be classified into one of the four classes defined by
c¢1={(F, G): HF'FH(s) = s = HF~(FH(s)+)},
oty = {(F, G): HFT'FH™\(s) < s = HF-{(FH(s)+)},
oty ={(F, G): HF7'FH(s) = s < HF"(FH~(s)+)}
and ¢y ={(F, G): HF'FH(s) < s < HFY(FH-'(s)+)} .
The main result in this paper is the following theorem.

THEOREM 2.1. Let Sy have a scores generating function K which satisfies K =
L + ¢J for ¢ + 0 such that L is continuous in (0, 1). Suppose that S, — cT is
asymptotically equivalent to a sum

@.7) Dimd D, [B(X) — EB(X)] + Dynt i, [C(Y,) — EC(Y,)]

for some constants D, and D, where EBX,) < oo and EC*Y,) < co; and suppose
that (F, G) satisfies Assumptions 2.1 and 2.2 and one of the following set of
conditions:

(1) (F, G) belongs to 27, and 0 < j(s) = k(s) < co.
(2) (F, G) belongs to 27, and 0 < j(s) < oo, k(s) = co.
(3) (F, G) belongs to 57, and j(s) = oo, 0 < k(s) < oo.
(4) (F, G) belongs to 57,
(5) J(s) = k(s) = co.

Then Sy is asymptotically normal.

REMARK. If S — ¢Ty and L satisfy the assumptions of Theorem 1 in [1] or
the weaker forms in Govindarajulu, Le Cam and Raghavachari (1965) or the
assumptions of theorems in [6], Sy — ¢T, can be asymptotically written in the
form (2.7). When K is discontinuous at finitely many points, Theorem 2.1 also
holds if (F, G) satisfies the above-mentioned assumptions at each discontinuity
point.

3. Proof of the theorem. The statistic 7y can be decomposed into T, =
Ty, + Ty, + By, + By, where

(3.1) Ty, = Nt § J(H)d(F, — F),
(3.2) Ty = N*§ NN + 1)'H,) — J(H)] dF
(3-3) By, = N} [J(N(N + 1)7'Hy) — J(H)]d(F, — F)

and where B, is given by (2.1). It is easy to show that B,, = 0,(1). In view
of Assumption 2.1, it is sufficient to consider only Ty, + T,. The term T,
can be rewritten as

(3:4) Ty, = (dm)=t 3, [J(H(X,)) — § J(H) dF]

which is a sum of i.i.d. random variables with finite variance.
To deal with T,, we need the following lemma.
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LeMmMA 3.1. It holds that
(3.5) Tyy = NFH(s) — F(W,)]

where W, is the vth order statistic in the combined sample and v is the smallest

v

integer not smaller than (N + 1)s.

Proor. The integrand in (3.2) takes value one if N(N + [)7'H, = s > H,
minus one if N(N + 1)"'H, < s < H and zero otherwise. The relation W, < x
holds if and only if N(N + 1)*H,(x) = s. Combining these facts, we have
(3.5).

Next, let us define
(3.6) Uy = (A/m)} T, [I(F(X;) < FH7(s)) — FH™(s)]

+ [(1 = 2)n}t Ty I(F(Y,) < FH(s)) — GFFH(s)]
and
(3.7) V= @A/m) X, [I(F(X;) < FH7(s)) — FH7(s)]

+ [(1 = A/n) T UE(Y;) £ FH7(s)) — GFT(FH(s)+)]

where I denotes the indicator function.

LEmMA 3.2. If Assumption 2.2 holds for 0 < j(s), k(s) < oo, then Ty, is asymp-
totically equivalent to Uyl(Uy = 0)/j(s) + VyI(Vy < 0)/k(s), VyI(Vy < 0)/k(s),
UyI(Uy = 0)/j(s) and zero according as (F, G) belongs to 52,, 5, 5%, and 2.

Proor. Let us denote by Hj, the empirical distribution function of the com-
bined sample of F(X;)’s and F(Y,)’s and put Hy(u) = Au 4 (1 — )GF ' (u+).
From Lemma 3.1, theevent T, < wisequivalent to Hy((FH7(s) — N~tu)—) <
N-'(v — 1) which is also equivalent to

(3.8)  NY[Hpy(FH(s) — N~*u)—) — Hy((FH™(s) — N-u)—)
< NN — 1) — Hy(FH(s) — N~)—)] .

When u > 0, the left-hand side of (3.8) is asymptotically equivalent in pro-
bability to Ni[H(FH™'(s)—) — Hy(FH™'(s)—)] which is identical with U,.
This fact can be proved by the same arguments as in Ghosh (1971, pages 1958—
1959). Similarly, it is asymptotically equivalent in probability to ¥, when
u < 0. On the other hand, the right-hand side of (3.8) is

(3.9) Ni[s + O(N-Y) — HF-Y(FH™(s) — N-tu)—)].

Since H,(s) = HF~'(s+), Assumption 2.2 implies that, when # = 0, (3.9) con-
verges to uj(s) for 27, and 27, and diverges to infinity for 57, and 57,. When
u < 0, the same assumption entails that (3.9) converges to uk(s) for 5#] and

5%, and diverges to minus infinity for £, and 577,. From these facts follows
the conclusion of the lemma.

LemMa 3.3. If Assumption 2.2 holds, then a statistic to which T, is asymp-
totically equivalent is given in the table where the expression 57, — E means that
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if (F, G) belongs to £, Ty, diverges with positive probability, whereas 5¢, — 57
means that if (F, G) belongs to 5, Ty, is asymptotically equivalent to the same
statistic as for 2 in Lemma 3.2. i

k(s) = oo 0 < k(s) < oo k(s) =0
J(s) = oo Gy G gy G5, G, Gy — I, o, %, — E
S — 5P, Gy Gy — G, Gy T3 — FF
0 < j(s) < o0 GE L, G — S Lemma 3.2 G, Sy — E
Gy GG — FF G — Gy,
GG — S,
Jjis)y=0 5, 55— E G, 5 — E G, Gy S
Gy TR — T S — 575, — E
SE, — S, GE — 55,

ProoF. Now we need no further arguments. For example if j(s) = 0 and
0 < k(s) < oo, then from the proof of Lemma 3.2 it holds that for 57
limy ., P(Ty, < u) = % for each 0 < u < co. Thus for 57, T,, diverges to

infinity with probability . All other cases can be shown similarly.

Proor ofF THEOREM 2.1. If one of the conditions (2)—(5) holds, then by
Lemma 3.3, Ty, —, 0 as N— co. On the other hand, if (1) holds, then U, =
Vy with probability one and Lemma 3.2 implies that T, is asymptotically a
sum of i.i.d. random variables. Combining these facts with (2.7) and (3.4), we
obtain the asymptotic normality of S.
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