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ASYMPTOTIC RESULTS FOR GOODNESS-OF-FIT
STATISTICS WITH UNKNOWN PARAMETERS

By M. A. STEPHENS
McMaster University

Percentage points are given for the asymptotic distributions of the
goodness-of-fit statistics W2, U2 and A2, for the cases where the distribution
tested is

(a) normal, with mean or variance, or both, unknown;

(b) exponential, with scale parameter unknown.

Some exact means and variances are also given. The distributions can
be expressed as a sum of weighted chi-square variables; the weights are
calculated, and the higher cumulants can then be found. The first four
cumulants are used to approximate the distributions and give the percent-
age points.

1. Introduction. Let x,, x,, - - -, x,, be independent random variables from a
continuous distribution G(x), and let F,(x) be the empirical distribution function.
A well-known goodness-of-fit test, to test the null hypothesis

H,: G(x) = F(x; 6),

where F(x; 6) contains a parameter 6 of several components, is based on the
Cramér-von Mises statistic

W2 = n =, {F,(x) — F(x; 6)} dF(x; 6) .

Two other goodness-of-fit statistics similar to W2 are U2, introduced by Watson
(1961) and 4%, introduced by Anderson and Darling (1952, 1954):

U2 = n {2, {Fu(x) — F(x; 0) — (=, [F,(1) — F(t; 6)] dF(t; )} dF(x; 6)
and
A* = n {2, {F,(x) — F(x; 0)}*¥(x; 0) dF(x; 6)
with
1/¥(x; ) = F(x; 0){1 — F(x; 6)} .

The statistic U* was introduced for observations on a circle, since its value is
independent of the choice of origin, but it can also be used for observations on
a line. The statistic 42 modifies W2 by giving greater weight to the tails of the
distribution, and so can be expected to detect discrepancies in the tails better
than W2, These statistics are often written with a subscript n, which will here
be omitted.

2. Contents of this paper. Most of the distribution theory hitherto found for
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these statistics is for the situation (which we call Case 0) when F(x; ) is com-
pletely speciﬁed. In many practical situations, however, some or all of the com-
ponents of & will be unknown, and must be estimated from the sample of x-
values. The following important examples, arising in tests for normality or
exponentiality, will be called Cases 1, 2, 3 and 4.

Casg 1. F(x; ) is the normal distribution, with @ = (x, ¢*); ¢* is known and
# is to be estimated by %;

CaSE 2. F(x; ) is normal, z is known, and ¢* is to be estimated by 3, (x; —
1) [n;

Case 3. F(x; 0) is normal, and ¢ and ¢* are to be estimated by x and s* =
e (% — X)(n — 1);

CASE 4. F(x; 0) is the exponential distribution, 8 = 6; thus F(x; §) = 1 —
exp(—0x), x = 0, and 6 is to be estimated by 1/x.

For all these cases, the asymptotic distributions of W2, U?, and 4* can be ex-
pressed as the weighted sum of y,? variables. In this paper the weights are found
for Cases 1 to 4; the cumulants of the asymptotic distributions can then be
calculated, and they are used, with curve-fitting techniques, to provide tables
of asymptotic percentage points for the different statistics. Exact values are
also found for the means and variances of W2 and U2 It is found that the null
distributions of W2, U?, and 4% in Cases | to 4, are drastically changed from
those obtained in Case 0, and reliance on the published tables for Case 0 will
introduce serious errors into the significance levels of the test statistics.

For finite n, Monte Carlo studies show that, as for Case 0, the percentage
points converge rapidly to the asymptotic points. A slight modification of the
calculated statistic enables a goodness-of-fit test to be made with finite samples,
using only the asymptotic points. Details of these practical aspects of the tests,
including power studies which show the statistics to be very effective in goodness-
of-fit tests, are given in Stephens (1974).

3. Basic results. In this section we give results which will be needed in the
sequel. Basic asymptotic theory was given by Anderson and Darling (1952) for
W? and 4% and by Watson (1961) for U2 Darling (1955) considered problems
with one parameter to be estimated; this was extended to multiparameter situ-
ations by Sukhatme (1972), and, for Case 3, by Stephens (1971). Case 3 was
also examined, from a different point of view, by Kac, Kiefer, and Wolfowitz
(1955). A comprehensive treatment of the basic theory has recently been given
by Durbin (1973). The results following are taken from these references. For
any of the three statistics, the asymptotic distribution is that of {; Y*(r) dt, where
Y(r) is an appropriate Gaussian process; Y(0) = Y(1) = 0, the mean is zero,
and the covariance function p(s, r) depends on the statistic, on F(x, #), and on
the parameter(s) to be estimated. When p(s, 7) is known, the characteristic
function of the distribution (the word asymprotic will be dropped) is given by
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(D(2ir))~*, where D(2) is the Fredholm determinant associated with o(s, t). The
eigenvalues 2, of the integral equation
(1) J(x) = 255 0(x, y)f(y) dy

are the solutions of D(2) = 0. Given a statistic and the case considered, the A
must be found for the appropriate p(s, 7). The asymptotic distribution is then
the same as that of

@) S =, z/2,

i=1“1

where the z, are independent y,* variables. Further, the cumulants of the dis-
tribution are given by

3) K; = s17(j — 1)! §ip,(s, 5) ds

where p,(s, t), the jth iterate of p(s, ), is given by

v
[\

(s, 1) = §§ p,_4(s, u)o(u, t) du , J
ou(s, 1) = p(s, 1)

From the representation (2) we have also the cumulants in the form

4) K; =27%(j — I)! e, (1/4)7 .

In order to use these results, we must find p(s, 7). Let p(s, r) be the covari-
ance of the Gaussian process, for the statistic considered, in the Case 0 situation.
If only one parameter ¢ is unknown, and maximum likelihood is used to give
an efficient estimator, p(s, ) becomes

(5) (8, 1) = 05, 1) — B(5)p(1)

where ¢(s) is a function found as follows.
Let s = F(x; 0) define x implicitly in terms of s. Let f(x; §) = (9/0x)F(x; 0);
9(s) = (9/30)F(x; 0); and let k* be defined by

1 - [0 NS

&= 1% {?ie' In f(x; 0)} f(x; 0) dx .

Then ¢(s) = kg(s). If 6 is a location or scale parameter, ¢(s) is independent of
0. In Case 3 there are location and scale parameters, both unknown. If ?4(5)
and ¢,(s) are the ¢(s) for Cases 1 and 2 respectively, the covariance for Case 3
becomes

(6) 0(5, 1) = 0o(S, 1) — Pu()(1) — Pol8)Pul?) -

4. Solution for D(2). When o(s, 7) is known, equation (1) must be solved;
the fact that the covariance, for Cases 1 to 4, is obtained from that for Case 0
by subtracting terms which factor into two parts, one containing only s and the
other only 7, enables a straightforward solution based on that for Case 0.

Suppose first that (s, /) has Fredholm determinant Dy2), roots 0 < 4, < 4, - -,
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and corresponding eigenfunctions fi(x), f,(x), - - -. Define
a; = §ofi(x)py(x) dx;
b; = §ofi(x)Pa(x) dx ;
Si(A) =1+ 257,67 (1 — 2/4);
Sy (D) =1+ 232,621 — 4/4);
Sa() = A iy a:bif(1 — 2/4;) .
Further, let c(9) = (s 9(x)pi(x)dx, i = 1,2. When p(s, 1) takes the form p(s, 1) —

&.(s)¢,(1), i.e., when a location parameter only is estimated, Darling shows that
the Fredholm determinant is

™) Dy(2) = Dy(A)S.(4) ;

when a scale parameter is estimated, ¢,(s) is replaced by ¢,(s), and the new
determinant is

(8) Dy(2) = Dy(A)Sy(2) -

For the kernel of equation (6), the determinant is (Sukhatme (1972) with k = 2;
or Stephens (1971))

©) Dy(2) = D AS(A)Si(4) — Ses(4)} -
5. Two useful lemmas. Suppose C,() is the characteristic function, for Case

r, of the asymptotic distribution of one of the statistics, and let K,; be the jth
cumulant of the distribution.

LemMma 1. If §,,(2) = O, then
Dy(2)Dy(2) = D (2)Sa(2)Ss(2) = Dy(2)Dy(2)

and

Cy(1)Cy(1) = Cy(1)Ci(7) -
Also
(10) Koj + K3j = Kl;; + Kz;;

and equivalently
Ky — Ky; = Ky — Ki; + Ky — Ky

Proor. Follows immediately from (7), (8), and (9).

The condition S,,(4) = 0 will be satisfied if ¢,(s), ¢,(s) are such that either q,
or b, is zero for all i; this can easily be shown to occur in Cases 1 to 3. Then
we have the interesting result that the decrease in value of any cumulant in
proceeding from Case 0 to Case 3 is the sum of the decreases between Case 0
and Case | and between Case 0 and Case 2. Lemma 1 applies also to nonnormal
distributions containing location and/or scale parameters to be estimated; then,
even if S,,(4) is not zero, a weaker result may nevertheless hold.

LEMMA 2. If the functions ¢,(x), ¢,(x) are orthogonal, i.e., {3 ¢,(x)P,(x)dx = 0,
the means and variances of Cases 0-3 satisfy (10) for j = 1 and 2.
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Proor. Follows from the cumulant formulae in (3). The proof is obvious
for the mean; for the more difficult variance,

Ko + Ky = $5 $o {oo(s; OF + {o(s; 1) — $u()pu(1) — du(5)ba(1)}* ds it
§o $o {ouls, 1) — du(s)d:(1)}* ds dt
+ §0 So {oul(s, 8) — du(s)u(0)}" ds dr
=K, + K, if 5 6.(s)pu(s)ds = 0.
Note that the orthogonality condition implies only 33, a;6, = 0, not a,b, = 0
for all i. The weaker result is that Lemma 2 holds only for two cumulants.

om om

I

6. Related results. In this paragraph we use the notation of Kac, Kiefer and
Wolfowitz (1955). They solve (1) above for W? by solving the related differ-
ential equation, in their Section 2.6. They point out that the Fredholm deter-
minant for Case 3, there called D(x), can be factored: D(p) = —2D,(¢)Dy(1),
where D,(y), Dy(¢) are given by their (2.18) and (2.19), and where #? is 4 in the
present paper. D,(y) and D,(x) are not the Case 1 and Case 2 Fredholm deter-
minants, but are closely related to them. If the Case 1 and Case 2 integral
equations are solved by the method of Kac et al., to give Fredholm determinants
D,*(y), and D,*(p), we obtain

D) = 2sin D)
Dy*(pr) = —2(cos $u)Dy(p2)

The solution follows their Section 2.6, and the long algebraic details will be
omitted. The product D *(x)D,*(x) is then (sin p)D(x)/pe. Since Dy(p), for W2,
is (sin g)/pe, we have

D*(p1)Dy* (1) = Do(£)D(12) »

which is Lemma 1 above, in the notation of Kac et al. for the particular ex-
ample of the normal distribution.

In order to find the zeros of D(y), those of D,(x) and D,() are required.
Expressions for these functions are given by Kac et al., but the techniques for
finding the zeros were computationally difficult, and so only the first eight g,
were found; the first four were used in an approximation of the form of equation
(2), to be discussed in Section 10.

Returning to the notation of Section 4, we find weights 4, by finding the zeros
of Dy(4) for Case k. This can be done, from (7), (8) and (9), very quickly, and
to a large order i: values of g, and b, involve only single integrals and the so-
lutions of S,(4) = 0, S§,(2) = 0 are straightforward. This will be done for Cases
1 to 3 in Section 8 and Case 4 in Section 9.

7. Cases 1, 2, 3; covariance functions, and means and variances.

Notation. The following notation will be used in the calculations. Let d =
(27)7%; n(x) = dexp(—x*/2); N(x) = {*. n()dt. When s = N(x), let x = J(s),
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i.e., J(+) is the inverse of N(.). Define functions:

r(s, t) = min (s, ) — st

B(s) = dexp(—J%s)/2); b(s, t) = — B(s)B(¢)

C(s) = d(J(5)/2}) exp(=J*(9)[2) 5 (s, 1) = —C(s)C(2)

ws, 1) = {(s — )t — A5 as, 1) = 75 — {(s = 5") + (1 — )}/2

E(s) = B(s) — 1/(2=%); e(s, 1) = —E(5)E(1) .
When no ambiguity can arise, the arguments s, ¢ will be omitted. To express
the value of a double integral, with limits 0 and 1, capital letters will denote
the functions in the integrand; e.g.

R = (3 §irs, f)dsdt;  RB = \}ir(s, £)b(s, t)dsdt .

Covariance functions for W*. For Case 0, py(s, ) = min (s, t) — st = r above.
For Case 1, take the known variance to be 1 (if it were ¢2, values of x/o¢ would
be tested to come from a normal distribution with variance 1). The unknown
¢ is the mean #, and ¢,(s), calculated as in Section 3, becomes — B above.
Similarly, for Case 2, take u as zero; the unknown @ is the variance, and ¢,(s)
is —C. Covariances for Cases 1 and 2 are then given by (5) and for Case 3 by
(6). They can be summarized in a table.

Case: O 1 2 3
o r r—4+b r+4c r+b6+4c¢

Equation (3) can now be used to find cumulants of W? in practice, the cal-
culations become extremely long and only the means and variances have been
calculated, as shown below.

Means and variances: W*. Case 1. Use of (3) with p equal to r 4 b gives,
for Case 1,
=K = {(s(1 —s)yds — d* {jexp(—Js))ds.
Let x = J(s); then
p=13— =on(x)dy = 3 — & = 074778 .

Terms involving r alone, such as the ﬁrst‘term in u above, arise in Case 0 and
we shall use known values for this case, taken from Anderson and Darling
(1952) or Watson (1961).
The variance is
o? =K, =2} \4(r + b)*dsdt = 2(R* + 2RB + B?),

where (from Case 0, known result) 2R* = . and 2B* = 2(z — 1)’ 4RB must
be found. The substitution x = J(s), y = J(¢) gives, after much algebra,

RB — _fg Y tan-1<ng> — —0.0092425 :
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finally we have ¢* = 0.002139. These and subsequent calculations are given in
more detail in Stephens (1971).

Case 2. For Case 2,

p=1— % 13 %(s) exp(—Jx(s))ds = } — ﬁ — 0.15135,
and
o* = 2(R* 4 2RC + C¥);
here
2R* = 5
and

C* = (r — })* = 1/(4327%) ;
considerable algebra gives
RC = 1/(32x5%) + 1/(967%) ,
and finally ¢* = .02125.
Case 3. For Case 3, the mean and variance are obtained by applying (10):
# = K; = 0.07478 4 0.15135 — 0.16667 = 0.05946, and ¢* = K, = 0.00214 +

0.02125 — 0.02222 = 0.00117. All these means and variances are recorded in
Table 1.

TABLE 1
Asymptotic means and variances of W2, U? and A2
in Cases 1, 2, 3 the test is for normality;
in Case 4 the test is for exponentiality

Case Test we v A
No. Mean Variance Mean Variance Mean Variance
0 parameters given  0.16666 0.02222 0.08333 0.002777 1.0000 0.5797
1 o2 specified .0748 .00214 .0710 .00195 .5194
4 estimated
2 1 specified .1514 .02125 .0680 .00181 .8649
o2 estimated
3 1/, o2 estimated .0595 .00116 .0557 .00097 .3843

4 0 estimated .0926 .00436 .0718 .00198 .5959

Covariance function for U*. Watson (1961) has shown that the limiting distri-
bution of U? is that of {; Q(r)dr, where Q(r) is the Gaussian process Y(r) —
§o Y(u) du; here Y(z) is the Gaussian process, for the appropriate case, used to
find the limiting distribution of W2. For a particular case, let the covariance
function of Y(#) be p(s, r) and let that of Q(r) be p*(s, ); then

*(s: 1) = p(s, 1) + §b §s 0(s, 1) dsdt — §} (s, 1) ds — §3 (s, 1) dt
=po(s, )+ E + E, + E,, say.

For each case it is necessary to find the integrals E,, E, and E,, corresponding
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to the p(s, t) given in Section 7. This again needs only straightforward algebra,
and, with the notation a(s, ) and e(s, ) introduced in Section 7, the covariance
function p*(s, 7) for U? can be tabulated as follows.

Case : 0 1 2 3

o*: r+a r+a-+e r+a-+c r+a+t+cite

Note that the Case 3 covariance is of type (6), i.e. the terms added to p* for
Case 0 are the sum of those added for Cases 1 and 2. When these covariances
are used in (3), extensive algebra (details in Stephens, 1971) gives the moments
recorded in Table 1.

Covariance functions for A*. For the Anderson-Darling statistic 4%, and for
any particular case, the Gaussian process appropriate for finding the asymptotic
distribution has a covariance function which is the function for W2, given above,
multiplied by w(s, 1) = {(s — s*)(t — *)}~%. The resulting integrals do not seem
to be tractable by analytic methods, but since this particular statistic gives good
results in goodness-of-fit testing (Stephens, 1974) the means have been calculated
numerically and are given in Table 1.

8. Calculation of weights; Cases 1, 2 and 3. In this section are found the
weights 4, in the representation of equation (2). For each case, these are the
solutions of the relevant D,(4) =0, r =1, 2, 3, 4. For each statistic let the
weights 2, obtained for Case 0, i.e. the solutions of Dy(1) = 0, be called the
standard weights; for all other cases the weights consist of a subset of the stand-
ards, plus a new set 4,* labelled with an asterisk. The standards are given below
as functions of i; the values of 1/4,* are given in Table 2, for i from 1 to 10.

W?*. Case 1. For W?, D(2) = sin A}/4}, and the standards are 1, = =%’, with
fi(x) = 2} sin wix (Anderson and Darling, 1952). For Case 1, D,(2) = Dy(4)S,(4);
the zeros 4, of Dy(2) are simple zeros, and will not be zeros of D,(1) unless, in

TABLE 2
Values of 100/2;* for Cases 1, 2 and 4;
for Case 3, the values are given by Cases 1 and 2 combined

w2 Uz A?

Casel Case2 Case4 Casel Case2 Case4 Casel Case2 Case4

1 1.834 1.344 4.202 1.573 1.345 1.626 9.836 7.206 23.130
2 .535 .436 1.712 477 .436 .488 3.593 2.897 9.964
3 252 .216 815 .230 .216 234 1.810 1.584 5.635
4 .146 129 .509 135 129 137 1.148 1.002 3.641
5 .095 .085 .333 .089 .086 .090 177 .692 2.552
6 .067 .061 242 .063 .061 .063 .561 .508 1.890
7 .049 .045 179 .047 .046 .047 424 .388 1.457
8 .038 .035 .141 .036 .035 .036 .332 .307 1.158
9 .030 .028 112 .029 .028 .029 .267 .248 .942
10 .024 .022 .092 .024 .023 .024 213 197 .782
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S,(4), the corresponding a; is zero. For Case 1, ¢,(s) = — B(s), from Section 7,
and is symmetric around s = 0.5; then the coefficients a; are zero for i even,
and the subset of the standards given by 4, = 4z%°, i =1, 2, ... are zeros of

D,(2). The other zeros 4,* are solutions of S,(4) = 0; the first twenty have been
calculated, and the reciprocals of the first ten are tabulated in Table 2. A plot
of 1/4;* against i~? is a smooth curve asymptotic to the line through the origin
with slope 1/(4z*). Values of 1/4,* for i > 20 have been found from this curve.
Since convergence is slow, many values of 4, are required to obtain the mean
from (4); thus it is important to have the exact calculation. However, higher
cumulants, calculated from (4), converge much faster, and the variance, given
in Table 3, converges exactly to the value in Table 1. This provides a check
on the values of 1/2,*. The third and fourth cumulants and values of 8, = K;?/K,?
and 8, = K,/K,* + 3 are also given in Table 3.

TABLE 3
Cumulants and shape parameters of asymptotic
distributions calculated from weights

Statistic Case o2 103K3 104K4 ﬁl [32
w2 1 .00214 .183 .253 3.418 8.528
2 .02125 8.35 50.61 7.273 14.209
3 .00117 .0709 .0705 3.170 8.186
4 .00436 .639 1.54 4.949 11.117
Uz 1 .00195 .164 .228 3.662 9.015
2 .00181 .152 214 3.957 9.580
3 .00097 .052 .045 2.966 7.795
4 .00198 .168 232 3.619 8.918
A2 1 .08560 46.2 419.3 3.407 8.723
2 .53029 1008. 30037. 6.817 13.681
3 .03616 11.3 59.1 2.693 7.521
4 .1393 109.0 1427. 4.396 10.358

W? Case 2. For Case 2, with ¢,(s) = — C(s), the b, are zero for odd i; then
in the solution of D,(4) = 0, the subset of 4, given by 2, = n*(2i — 1)}, i =1,
2, - .. are included; the other solutions are 2,* satisfying S,(4,*) = 0, and their
reciprocals are given in Table 2. For la'rge i, these are asymptotic to 1/z%(2i —
1)’. The cumulants, calculated from (4), are given in Table 3; the variances
check perfectly with the exact value given in Table 1.

W?. Case 3. For Case 3, Dy(4) = Dy(4)S,(2)S,(4), and none of the standard
4; can be a solution of Dy(4) = 0. The solutions are given by the two sets of
4;* arising in Cases 1 and 2. These weights agree with those given by Kac et
al., with a very slight numerical discrepancy in the fifth decimal place for the
largest values.

U?. Cases 1 and 2. The discussion of U? is slightly more complicated. The
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roots 4; of Dy(4) = 0 are double roots, given by 2, = 4z%* (Watson, 1961), and
the corresponding eigenfunctions are f,(x) = 2} sin 2zix and f;*(x) = 2* cos 2rix.
Suppose a, and a,*, b, and b,* are the coefficients obtained using f;(x) and f;*(x)
respectively. Then S,(4) becomes

Sy =1+2%, 1_;/z+221’*j%7

there is a similar expression for S,(4), and

Sull) = 4 D20 2/2 + Az A 2/2
When the coefficients are calculated, it is found that either a, or a,* is zero,
but not both, and b, or b,* is zero, but not both, such that @b, = a,*b,* =0
for all i. Thus S,,(1) =0 and Lemma 1 applies. In Case 1, D,(2) = Dy(4)S,(2) =0
gives 4, = 4z’ as a solution, but not repeated; similarly when D,(4) = 0. In
each case another set 4,* is found from S,(2*) = 0, or S,(4*) = 0. Values of
1/4* from these two sets are given in Table 2, Columns 4 and 5.

U?: Case 3. For Case 3, the standard set 4, = 4z%? cannot be included, and
the zeros of D,(4) are those of S,(4) and of S,(2), given already for Cases 1 and
2. For all three cases, cumulants, calculated from (4), are in Table 3; the vari-
ances agree exactly with those in Table 1.

A* Cases 1 and 2. For A, the standard 2; are i(i + 1), i=1,2, ...; the
functions f,(x) are P}(2x — 1), where P,!(r) are Ferrer associated Legendre func-
tions (Anderson and Darling (1952); note that the 2, and f;(x) are misprinted).
For Cases 1 and 2, a, = 0 for i even, and b, = O for / odd, and the solution is
similar to that of W?2. Thus in Case 1, the standard 4, = 2i(2i + 1),i=1,2, ...
are solutions, and the other solutions are those of S,(4,*) = 0; reciprocals of
these are given in Table 2, Column 7. For Case 2, 4, = 2i(2i — 1) are solutions,
and the values of 1/4;*, where S,(4,*) = 0, are in Table 2, Column 8.

A% Case 3. As with W?and U?, the weights for 4%, Case 3, are the 2;* of
Cases 1 and 2. The cumulants, calculated from the weights, are given in Table
3. The variances cannot now be checked against exact calculations; calculations
of the variance involving numerical integration of double integrals, were found
from (3), and differed only in the third decimal place. The values in Table 3
are considered more reliable since they involve only single integrals calculated
numerically (the a; and b,).

9. Tests for exponentiality. For Case 4, F(x, 0) = 1 — exp(—0x); 0 is esti-
mated by 1/X. Then ¢(s) for W?is (1 — s)In (1 — s); since the Gaussian process
is symmetrical on (0, 1) we can make calculations easier by substituting 1 — s
for s, and using ¢(s) = sIns (Darling, 1955). Covariance functions for the
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three statistics then become
for W?:. p(s,ty=r —stlnslnz,
for U?: o(s,)=r+a+m,
for A*: p(s,t) = w(r — stlnsliny),

where a and w are given in Section 3.1 and m is —(sIn s + 0.25)(z In ¢ + 0.25).
Straightforward calculations give the mean and variance for W? (first given by
Darling) and those for U?. For A4* the necessary integrals are somewhat more
complicated; details are given in Stephens (1971). The results for means and
variances are given in Table 1.

Calculation of weights. The parameter ¢ is a scale parameter, and Case 4 is
similar to Case 2. Let the Fredholm determinant be D,(2); it equals Dy(2)S,(2),
using the notation of Section 7, with the b, calculated from the appropriate ¢(s)
for Case 4. These functions are such that no b, is now zero. For W? and A4?,
this means that no standard weight is a zero of D,(1); the zeros 2,* are those of
Sy(4). For U’ the standards occur once, in addition to the 2,*. Reciprocals of
4;* are included in Table 2, and the cumulants and §,, 8, values in Table 3.
Once again the variances check perfectly with the results of Table 1.

10. Calculation of percentage points. Where possible, the first four cumu-
lants have been used to fit Pearson curves to the distributions, and to give the
uppertail percentage points. For smooth curves such as these, with long tails,
the points can be expected, from past experience, to be very accurate. A check
is provided by plotting points for finite n, found from Monte Carlo studies,

TABLE 4
Upper tail percentage points for asymptotic distributions
. a (%)
Statistic Case
15.0 10.0 5.0 2.5 1.0
w2 0 .284 .347 .461 .581 .743
1 .118 .135 .165 .196 237
2 .265 .329 .443 .562 .723
3 .091 .104 .126 .148 .178
4 .149 177 .224 .273 .337
U2 0 .131 152 .187 .221 .267
1 111 .128 157 .187 227
2 .106 .123 152 .182 .221
3 .085 .096 .116 .136 .163
4 112 .130 .160 .191 .230
A2 0 1.610 1.933 2.492 3.070 3.857
1 .784 .897 1.088 1.281 1.541
2 1.443 1.761 2.315 2.890 3.682
3 .560 .632 .751 .870 1.029
4 918 1.070 1.326 1.587 1.943
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against 1/n (or 1/nt) and extrapolating to 1/n = 0. This was done before the
Pearson curve fits were made, and the results agree extremely well. Where the
values of B,, B, are beyond the range of the Pearson curve tables (for W? and
A4?*, Cases 2 and 4), an approximation of the form a + by,* has been used; the
values of a, b, p are chosen to match the first three cumulants. These are ex-
pected also to be quite accurate. The upper 10, 5, 2.5, and 1 percent points
for all statistics, all cases, are given in Table 4. Some of these points differ
slightly from those given in Stephens (1974), where incorrect parameters were
sometimes used in fitting Pearson curves; a correction is planned.

As described in Section 6, Kac et al. used only the first four 4, in the approxi-
mation S$* = Y11_, z,/4, for the asymptotic distribution for W?, Case 3. This
gives a mean 0.0415 and a variance 0.00113; both are too low, as must be ex-
pected, and they give significance points which are too low. The $* approxi-
mation gives roughly 0.086, 0.109 and 0.153 for the 109, 5%, and 19, points.
These differ from the values in Table 4 by roughly the difference in the $* mean
and the true mean.

11. Comments on Table 4. The points for Case 0, calculated from known
asymptotic distributions, are included in Table 4 for comparison. It is clear
that when one is allowed to improve the fit by estimating one or more parame-
ters, the values of the goodness-of-fit statistics, even asymptotically, become
stochastically much smaller. In testing for normality, estimating the mean
makes a much greater improvement to the fit, in general, than estimating the
variance, particularly as measured by the statistics W? and 4°. Fuller details of
the associated tests are in Stephens (1974); in particular modifications are given
to enable the asymptotic points to be used in practical tests with » finite.
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