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2-SPRT’S AND THE MODIFIED KIEFER-WEISS PROBLEM
OF MINIMIZING AN EXPECTED SAMPLE SIZE

By GARrY LorDEN!
California Institute of Technology

A simple combination of one-sided sequential probability ratio tests,
called a 2-SPRT, is shown to approximately minimize the expected sample
size at a given point ¢ among all tests with error probabilities controlled
at two other points, #; and .. In the symmetric normal and binomial test-
ing problems, this result applies directly to the Kiefer-Weiss problem of
minimizing the maximum over ¢ of the expected sample size.

Extensive computer calculations for the normal case indicate that 2-
SPRT’s have efficiencies greater than 99 %5 regardless of the size of the error
probabilities. Accurate approximations to the error probabilities and ex-
pected sample sizes of these tests are given.

1. Introduction. A substantial part of the development of sequential analysis
has been directed toward improving the performance of the sequential prob-
ability ratio test (SPRT) by reducing the expected sample size for parameter
values between the hypotheses. Kiefer and Weiss [9] proved structure theorems
about optimal tests for several formulations, including the problem of mini-
mizing the expected sample size, Ea0 N, at a point 6, subject to error probability
bounds, @ and B, at two other points, ¢, and #,. Bechhofer [2] pointed out the
desirability of minimizing the maximum expected sample size over all possible
6, and Weiss [17] showed how that problem, the so-called Kiefer—Weiss problem,
reduces to the previous formulation in symmetric cases involving normal and
binomial distributions. Weiss used this reduction to obtain properties of the
solution of the Kiefer-Weiss problem in these cases. Recently, Lai [10] investi-
gated the Wiener process case.

The present paper is concerned with the problem of minimizing E%N, i.e.,
the modified Kiefer-Weiss problem which was shown in [9] to be equivalent to
the Bayes problem of minimizing a weighted average of E, N and the two error
probabilities. For the class of parametric families in [9], which includes the
Koopman-Darmois families, the solutions to this problem have bounded sample
size. Hence, the backwards iterative procedure for solving n-stage Bayes prob-
lems ([3], [14], [16]) is applicable. As Weiss [17] and Lai [10] point out, heavy
computational work is required to carry out this algorithm, rendering it unsuit-
able for routine use.

Anderson [1] showed, however, that in the Wiener process case with a = 8,
remarkably high efficiencies are attainable by using a pair of converging straight
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lines as boundaries. He derived formulas for the exact operating characteristics
of tests in this class and chose boundary slopes to optimize the results, which
were then compared with a highly accurate lower bound of Hoeffding [7].

In the general context of Koopman-Darmois families, a single straight-line
boundary in the plane of » and S, (the cumulative sum sufficient statistic) cor-
responds to a one-sided SPRT. Thus, Anderson’s approach can be viewed as
performing simultaneously a pair of one-sided SPRT’s, one for the (possible)
rejection of ¢, and the other for rejection of §,. The tests of the present paper,
called 2-SPRT’s, are particularly natural choices within that class of tests. A
one-sided SPRT of 6, vs. 6, is used to reject #,, while another one-sided SPRT of
0, vs. 0, is used to reject 6,, with a fixed (but arbitrary) rule for choosing between
the two in case both SPRT’s stop at the same time.

An important feature of 2-SPRT’s is the applicability of Wald’s simple error
probability bounds [13]. These bounds are particularly useful in symmetric
cases, where they can be improved by a factor of two. Generalizations of Wald’s
approach are considered in [5] and [11].

The results of extensive computer calculations for the symmetric normal case
are given in Section 3. Over the broad range of parameter values studied, the
2-SPRT minimizes EooN, and hence the maximum E; N, within 1 9} for all sample
sizes and error probabilities. These results suggest that most of the difference
between the expected sample sizes of Anderson’s tests for the Wiener process
and Hoeffding’s lower bound is due to the latter’s underestimation of the true
minimum. The high efficiencies attained by the 2-SPRT’s suggest, however,
that Anderson’s different choice of boundary slopes to minimize E, N offers no
significant savings over the 2-SPRT’s. The latter tests are especially appealing
in the symmetric normal case because of the availability of highly accurate ap-
proximations to their operating characteristics based on Wald’s approach to esti-
mating SPRT error probabilities. These approximations are given in Section 3.

2. Approximate optimality of the 2-SPRT. The modified Kiefer-Weiss prob-
lem is formulated as follows. Observations X;, X,, - - . are random variables on
a sample space (Q, .5 ) on which the true probability measure is one of three
measures, F, G, and P. Under each of these, the X’s are independent and iden-
tically distributed. Probability densities (i.e., Radon-Nikodym derivatives) of
(X,, - -+, X,) are taken with respect to a suitable ¢-finite measure (e.g., the one
induced by (F + G + P)/3)and are denoted by f,, 9,, and p,, respectively. Write
SulPus 9nlPa» €tc., for the usual likelihood ratios fi(X,) - - - fi(X,)/pi(X) -+ pi(XL),
etc., and define f, = g, = p, = 1. Let E denote expectation under P. A test,
(N, N), is a stopping rule N together with a terminal decision rule N.

To allow N = 0 and oo, it is required that N be an extended stopping variable
with respect to &, = {@, Q}, &, &7, - - -, the sigma-fields generated by the
X’s. The terminal decision N is defined on {N < o}, takes the values F and G,
and satisfies {N = n, N = F}e &, forn=0,1,.... The framework is easily
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extended to allow randomized stopping variables and decisions, but the problem
is essentially unchanged (see, for example, Theorem 5.3 of [3]). Without loss
of generality, only tests satisfying P(N < oo0) = 1 are considered. However,
F(N < c0) and G(N < o) may be less than one. It is assumed in the sequel
that F, G, and P are mutually absolutely continuous and distinct, and that

0] Elog? <_p_1> and E log? <ﬂ> are finite.
f1 9,

The distinctness of F, G, and P insures that the information numbers

I(P,F)=Elogft and IP,G)= Elog 2
h '
are positive.
The error probabilities of (N, N) are expressible in the form

(2) F(N:G):Ef_Nl{N=G} and G =F)=EWN1YN=F},
Pr Px

where 1{ } denotes the indicator function (= 1if the event occurs, 0 if it doesn’t).
These relations are proved by essentially the same argument Wald used to derive
error probability approximations for SPRT’s [13] (see the equality case of Lemma
3 of [12]).

Given 0 < 4, B < 1, not both zero, define a 2-SPRT by the stopping time
M(A, B) = smallest n = 0 (or oo if there is no n) such that

3) rca or <o,
P"‘ P’IL
with the following requirement for A7. Choose M = F if the first inequality in
(3) is not satisfied and M = G if the second inequality is not satisfied. For
Theorem 1 it is immaterial what rule is used for choosing between F and G when
both inequalities in (3) are satisfied. (In Section 3 for the symmetric normal
case, M = F was chosen whenever f,, > g,,.) Note that EM(4, B) < oo, since
I(P, F) and I(P, G) are positive.
Applying (2) and (3) with the requirement for 7,

4 FM=G) X APM =G) and GM = F)< BP(M = F).

Thus, the sum of the error probabilities is < max (4, B). In symmetric cases,
P(M = G) = P(M = F) = }, which makes the bounds in (4) more useful.

THEOREM 1. Let a(A, B) and (A, B) denote the error probabilities of the 2-
SPRT (M(A, B), M). Let n(A, B) denote the infimum of EN over all tests satisfying
a < a(A4, B) and 8 < B(A, B). Under assumption (1), if A,B > 0,

EM(A, B) — n(4, B) — 0 as min (4, B) — 0.
Proor. Following the pattern of Wald and Wolfowitz ([15]), define the
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integrated risk of (N, N) for given u, v = 0 as
(5) r(N, N) = EN 4 uF(N = G) + vG(N = F).
By (2), this can be written
(6) r(N, N) = E(N + Uy 1{N = G} + V,1{N = F})
= E(N + min Uy, V) »

where

Un:u& and Vn:qu—'”' n=20,1,....

Pa Pn

Define the Bayes risk, R(u, v), as the minimum integrated risk over all (N, N).
Since choosing N = F or N = G without sampling achieves integrated risk v or
u, respectively, evidently

) R(u, v) < min (4, v),

and sampling is called for only if strict inequality holds. It is well known ([14],
[16]) that the Bayes risk is attained and that a test attaining it, (&, N) = (N(u, v),
N(u, v)), can be defined as follows. The stopping time, N, is the smallest n > 0
(or oo if there is no n) such that

(8) R(U,, V,) = min (U,, V,)
so that further sampling is not called for. (Multiplying both sides of (7) by
Pul(Pu + Uf, + vg,) gives the usual characterization, “a posteriori risk equals
stopping risk.”) The terminal decision, N, chooses G if and only if Uy =
min (Uy, V), so that R(u, v) = E(N + min (Uy, Vy)).

Theorems 4.2 and 5.2 of [3] suffice to establish that

E[N + min (Uy, Vy)| & ,] =n+ R(U,, V,) on {N =n},

i.e., the conditional expected risk of (N, N) upon reaching (U,, V,) after n
observations equals the minimal (Bayes) risk from that point forward plus the
cost, n, of the observations already taken. Thus if another stopping time, M,
satisfiles M < N, then

E[N + min (Uy, V)| %] = M + RU,, V,) on {M=n}.
Integrating and summing over n yields .
9) R(u,v) = EM + ER(U,, V,) if M < Nu,v).

Let B
U= sup {u|u = R(u, v) for some v}
and ~
V =sup{v|v = R(u, v) for some u}.
It is easy to see that R(1, 1) = 1, so U, V > 1. Furthermore, U is finite, since
EM(}, 0) is finite and for all v

R(u,v) < EM®E,0) + fu<<u if u>2EM%,0),
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using the bounds from (4), a(}, 0) < 4 and B(3, 0) = 0. Also, U is by definition
the limit from below of a sequence {u,} such that u, = R(u,, v,) for some v,.
Since R(-, -) is clearly nondecreasing in each variable,

u, < R(U,v,) £ lim,_,R(U,v) £ U,

using (7).
Letting & go to infinity it follows that

(10) U = lim, .. R(U, v).

By similar reasoning, V is finite and
Note also that

(12)  R(u,v) — u = miny 3, {EN + w(F(N = G) — 1) + vG(N = F)} | inu,

R(u, V).

2% —00

not necessarily strictly.
Now, for 4 and B between 0 and 1, let

U= E and V= K s
A B
so that, by (3), M = M(4, B) stops the first time
(13) u,<U or V,< V.

For the remainder of the proof, u and v are chosen in this way and M denotes
M(A, B).

By the definition of U and V, (8) implies (13), so that N(u, v) = M. There-
fore, (9) applies and, using (6), it follows that

(14) H(M, M) — R(u, v) = E{(Uy — R(Uy, V)M = G}
+ (Vi = RWUy Vi))YUM = F}} .

Recall that M is required to be F if the first inequality in (3) is not satisfied at
time M. Hence, U, < U is a necessary condition for M = G and, thus, on
{M = G} the following relations hold:

u, < U, ,
Vyzmax (U, — U0, V, —V,00=Y,, say,
and, by (12) and the monotonicity of R(U, -),
(15) Uy —RU,Vy) SU—-RUVy) £U—RU,Y,.
Similarly, on {M = F}
(16) Vi—RWUy, Vy) <V — R(Y,, V).
Using the estimates (15) and (16) in (14),
(17) 0 < /M, M) — R(u, v) < E[max (U — R(T, Y,), V — R(Y,, V)],
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the first inequality by definition of R(x#, v). As an immediate consequence of
Lemma 2 below,

(18) max (U, V) — oo in probability (P)

as min (4, B) — 0. It follows at once that Y, — oo and, by (10) and (11), that
the bracketed quantity in (17) goes to zero in probability. Therefore, by the
bounded convergence theorem,

(19) r(M, M) — R(u,v) -0 as min (4, B) —0.

For fixed 4 and B, consider tests (N, N) such that F(N = G) < a(4, B) and
G(N = F) < B(4, B). By (5), evidently

(M, M) — EM = r(N, N) — EN.
Since r(N, N) is at least the minimal value, R(x, v),
r(M, M) — EM > R(u, v) — EN.

This relation holds for all tests included in the definition of the infimum, n(4, B).
Therefore, the relation holds with n(4, B) in place of EN, and the theorem fol-
lows upon letting min (4, B) — 0 and invoking (19).

Since U, = Ufy/py A and V,, = Vg, /py B, it is sufficient for (18) to prove the
following lemma.

LemMA 1. Under assumption (1), if M = M(A, B) and A, B > 0, then

(20) max(JL, ﬁM_>_+ oo in probability (P)
PuAd puB P

as min (4, B) — 0.

REeMARK. If I(P, F)/I(P, G) is not a limit point of log A~*/log B~*, (20) is an
easy consequence of the strong law of large numbers, assuming only that the
information numbers are finite, without invoking (1). Theorem 1 in this case
essentially amounts to a reaffirmation of the optimality property of the one-sided
SPRT, since, with P-probability approaching one, M = the stopping time for P
vs. F(P vs. G) when I(P, F)[I(P, G) — log A~'/log B~ is positive (resp. negative).

Proor. Consider the special case where B — 0 while A remains bounded below
by a positive number, 8. Then M < M = smallest n = 0 such that f,/p, < 4.
Hence, since (1) implies P(g, = 0) = 0,

1) _&f_g_}gmin(&,...,%>_>oo
puB B Po Pii
in probability (P) as B — 0. By similar reasoning, (20) holds in the special case
where B remains bounded below by a positive number.
It remains to prove (20) in the case where both 4 — 0 and B — 0. By standard
reasoning about subsequences, this case can be combined with those of the
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preceding paragraph to establish (20). Define

(22) S, = logp.'% and Tnzlog&', n=0,1,...,

fa n
and observe that M is the smallest n = 0 (or oo if there is no n) such that S, >
log A*or T, = log B—*. S, and T, are each cumulative sums of independent and
identically distributed random variables with positive means /(P, F) and I(P, G),
respectively. Letting M, and M, denote the first time S, = log 4! and the first
time T, = log B, respectively, it is clear that M = min (M;, M,). Now, it is
well known that

M, M,

et S— | and ———2 .1 inprobability (P)
log A-Y/I(P, F) log B-/I(P, G)

as A, B— 0. (See [4], page 127 for an elementary proof of an even stronger
a.s. result.)
It follows routinely that

M _ min (M, M) _,
C C

where C = min (log A-'/I(P, F), log B='/I(P, G)) — co as 4, B — 0.
Now, let r = I(P, F)/I(P, G), so that E(S, — rT,) = Oand let Var (S, — rT,) =
The variance ¢? cannot be zero, for this would imply S, = rT,, which yields
fi = (9,/p)"p,- Integrating this relation leads to E(g,/p,)" = 1 = 17 = (E(g9,/p))",
which can hold only if r = 1 or g,/p, is constant (= 1), both of which are con-
trary to the assumed distinctness of F, G, and P. By (1) and the Central Limit
Theorem for randomly stopped sums ([4], page 197; [18]), C~¥(S,, — rT,) —» 0 Z
in distribution, where Z is standard normal. The convergence of the distribu-
tion functions is uniform because ¢Z has a continuous distribution function.
Therefore, the probability that S, — rT), falls in an interval J = J(4, B), say,
goes to zero if the length of J is less than C? (say). Obviously, this fact carries
over+to S, — log A= — r(T,, — log B~"). Hence

(23) in probability (P)

gl

C-4Sy — log A= — r(T), — log B7")] — oo in probability (P)
and, therefore,
(24) C-*max (|S,, — log A7, |T,, — log B7}|) — co in probability (P).

Now, without the absolute value signs in (24), the result would be convergence
to zero, because the indicated maximum would then be either the excess of S,
over the boundary log A~' or the excess of T, over the boundary log B~', both
of which have proper limit distributions by virtue of the finite variances ([6],
page 355). Evidently, then, (24) holds only because

C-* max (log A — S, log B~* — T,) — oo in probability (P),

from which (20) follows immediately, proving the lemma.
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REMARK. In the case of Koopman-Darmois families (e.g., normal, gamma,
binomial) with P between F and G, there exist positive numbers 2 and # such
that 2log (fi/p,) + ¢ log(g,/p) = —1. This leads to the relation

(25) Zlog%—}-ylog%:—n—|—210gA—1—|-;z10gB‘1,

which simplifies the proof of the lemma. If max (fy/py A, 9,/pyB) < y, say,
then the relation yields M > m = [2log A~' 4 plog B! — (2 + p) logy] (inte-
ger part). Since M hasn’t stopped by time m, both terms on the left-hand side
of (25) are positive at n = m, whence

0< ,210gﬁ1Z < —m+4 Alog A7 + plog B < (A + p)logy + 1,
which places log (f,/p,) in an interval of length (1 + p/A)logy 4 A~'. As
min (4, B) — 0, m — oo and an application of the ordinary Central Limit Theo-
rem shows that the probability of this event goes to zero for every y. The
Wiener process case can also be handled in this way and the proof of Theorem
1 goes through essentially unchanged.

3. Symmetric normal case. The symmetric case of the Kiefer—Weiss problem
for testing a normal mean is the case where the error probability bounds, « and
B, at given values ¢, 6, of the mean are equal. As Weiss showed ([17]), the
problem reduces in this case to minimizing the expected sample size at ¢, =
(0, + 0,)/2. Furthermore, the class of all solutions to this problem for different
choices of a coincides with the class of solutions to the Bayes problem with
equal weights on 6, and 6,, corresponding to # = v in Section 2. A version of
the standard iterative scheme ([10], page 662) was used to compute a sequence
of Bayes solutions and their operating characteristics for each of several choices
of the parameter 6 = (6, — 6,)/20 (¢ = the known standard deviation). Operat-
ing characteristics of 2-SPRT’s were also computed. All computations were
performed in double precision on an XDS Sigma 5 computer and the results
were checked and confirmed to have a relative accuracy of 107,

The fact that ¢ characterizes the problem can be seen as follows. The distri-
butions P, F, and G are normal with variance ¢* and means 6,, §, — ¢ and
0,4 0o, respectively. Standardizing the observations in the form Y, = (X, —0y)/o
transforms P, F and G, into normal distributions with variance one and means
0, —d,and 6. (Itisalso instructive to consider the problem as one of observing
at times ¢ = 6% 20% 30% ... a Wiener process X(f) with variance one per unit
time and mean 0, —¢, or ¢.) The values 6 = .1, .2,.3, ..., 1.0 were used in
the computations. The efficiencies of the 2-SPRT’s were computed as the ratio
E, NJE, M, where N is an optimal test (Bayes solution) and M is a 2-SPRT
having the same error probability. Since the efficiencies vary insignificantly as
a function of d, only the values 6 = .1, .2, and .4 are used for illustration in
the following table.
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TABLE 1
Expected (and maximum possible) sample sizes of optimal tests and 2-SPRT’s

a=.10 a = .05 a = .01
0=.4 Optimal 7.35 ( 30) 12.27 ( 40) 25.38( 62)
2-SPRT 7.40 ( 18) 12.35 ( 26) 25.49 ( 46)
d=.2 Optimal 28.62 (153) 48.29 (194) 100.76 ( 281)
2-SPRT 28.83 ( 75) 48.61 (110) 101.19 ( 190)
d=.1 Optimal 113.70 (749) 192.42 (913) 402.25 (1263)
2-SPRT 114.57 (311) 193.66 (449) 404.00 ( 771)

Efficiencyt 99.25% 99.36 % 99.57%

t The efficiencies were obtained not from the rounded-off EN’s shown, but from more precise
expressions. The same efficiencies apply to all three cases, § = .1, .2, .4, with the exception that
for 6 = .4 actual efficiencies are .01 % higher for « = .10 and .05.

Although error probabilities larger than 10 9, are infrequently acceptable in
practice, it is interesting to note how the efficiency of the 2-SPRT varies with a.
It turns out that the minimum efficiency is attained for an a of approximately
.17 and that as « is increased past this level the efficiency actually increases.
The results in Table 2 were obtained for 6 = .1, but differ very little from those
for other values of ¢.

TABLE 2
Efficiency of the 2-SPRT

a (in %) 40 25 17 10 7 4 2 1 1 1
9% efficiency ~ 99.68 —*.25 — 19 —.25 —.30 —.40 —.49 —.57 —.63 —.67

* The digits to the left of the decimal point are 99 in all cases.

The value 99.19 9% shown for a = .17 is the lowest obtained in the computer
calculations, which covered the range from ¢ = .1 to 1.0 and from sample size
one to the size needed for a = £ 9%,.

For the problem of testing # = 6, — do against § = 6, + do based on inde-
pendent normal observations X, X,, - .. with mean # and variance ¢, the sym-
metric 2-SPRT M(A4, A) stops sampling as soon as

[Yi+ .- + Y,| =67 log A4 — Lnd,

where the Y;’s are the standardized observations (X; — 6,)/c. Two questions of
practical importance are the following. How should A be chosen to achieve a
desired error probability, a? What will be the resulting expected sample size
when 6, is true?

The answer to the first question is available to a high degree of precision as
a result of the computer calculations performed for § in the range .1to 1.0. It
turns out that the ratio of the true error probability, a(4), to 4 is constant to
within 1 part in 4 million for § = .1 and « between 109, and .19,. Similar
results were obtained for ¢ = .2, .3, and .4. For 6 = 1.0 the constancy holds
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only within 1 part in 200. By fitting a quadratic to the values of these ratios
for the given values of §, the following formula for 4 was obtained:

4 = @ .
.4996 — .286455 + .06965*

For « between 109, and .19, the choice of 4 given by this formula results in
an actual « agreeing with the desired a to within 1 part in 5000 for ¢ between
.I'and .5. For larger d (up to 1.0) the accuracy falls off, reaching 1 part in 100
for 0 = 1. This should still be sufficient for practical purpose, e.g., a desired «
of 59 would result in an actual a between 4.959, and 5.059%,.

The answer to the second question, concerning expected sample sizes, is avail-
able to a lesser degree of precision. The lower bound of Hoeffding [7] is

E, N = 2571 — log (2a) — [1 — 2log (2a)]}) = H(a, 3) .

This lower bound is remarkably sharp over a broad range of values of «. For
values of a between 59, and .19, the ratios of E, M for the 2-SPRT to H(a, 9)
are approximately as follows.

0 .1 2 .3 4 .5 .6 7 .8
E, M|H(a, 0) 1.039 1.042 1.046 1.052 1.06 1.07 1.09 1.10

A useful approximation to E, M is obtained for given a and § by multiplying
H(a, d) by the ratio indicated for & (or an interpolated value). The relative
accuracy of this approximation is at worst 1 part in 100 for ¢ < .5, falling off
to 1 part in 20 for 6 = .8. The imprecision in the actual « resulting from the
A chosen above has a relatively small effect on the accuracy of the E, M approxi-
mation. Of course, the expected sample sizes become quite small for larger g,
e.g., 3.5 for a = 59% when d = .8, so that a relative accuracy of 1 part in 20
may be sufficient. The expected sample sizes for « = .05 and .01 in Table 1 are
all within 0.4 9 of the approximations based on the tabulated ratios to H(a, 3).
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