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ON CONFIDENCE SEQUENCES!

By Tze LEUNG LAl
Columbia University

This paper is concerned with confidence sequences, i.e., sequences of
confidence regions which contain the true parameter for every sample size
simultaneously at a prescribed level of confidence. By making use of gen-
eralized likelihood ratio martingales, confidence sequences are constructed
for the unknown parameters of the binomial, Poisson, uniform, gamma
and other distributions. It is proved that for the exponential family of dis-
tributions, the method of using generalized likelihood ratio martingales
leads to a sequence of intervals which have the desirable property of even-
tually shrinking to the population parameter. The problem of nuisance
parameters is considered, and in this connection, boundary crossing prob-
abilities are obtained for the sequence of Student’s -statistics, and a limit
theorem relating to the boundary crossing probabilities for the Wiener
process is proved.

1. Introduction. Let X, X;, - .. be a sequence of independent random vari-
ables having a common distribution function F, ,, (¢, 0) € ©, and taking values
in 27 A family

Lu(xp -y x):n=1,x,e2 for i=1,...,n}

of the subsets of the space of ¢ is said to constitute a (1 — a)-level sequence of
confidence sets if

Py [0el (X, -+, X,) forall n=>1]1=>1—«a forall (0,0)e0.

If the f-space is a topological space, the confidence sequence is said to be con-
sistent if

Pa,a[aéne I'y(Xp + -+, X,) foreach n>1 such that lim, 60, =6]=1
for all (8,0)c©.

If the #-space is a metric space and p(I") denotes the diameter of a subset I' of
the #-space, then the confidence sequence is said to be degenerate in the limit if

P&,a[limn—'oo Ao(rn(Xl’ R} X’Ib)) = ,0] =1 for all (0’ 0) € ©.

Clearly if {I')(x;, .-+, x,):n=>1,x,€2} is a (1 — a)-level confidence se-
quence, then so is {I',*(x;, ---, x,):n = 1, x,€ 27}, where ', *(x;, .-+, x,) =
Mi=: Ci(xys + -5 x;), and the sequence {I',*} has the following nice property:
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I''* o Ty* o .... Such shrinking confidence sequences have applications in
selection and ranking procedures (see [10] and [13]).

In 1967, Darling and Robbins [2], [4] obtained a (1 — a)-level consistent se-
quence of confidence intervals for the mean of a normal distribution when the
variance is known and also when the variance is unknown, and these confidence
sequences are degenerate in the limit. They also constructed a consistent (1 — a)-
level sequence of upper confidence bounds for the variance of a normal distti-
bution with unknown mean, and a (1 — a)-level confidence sequence for the
median of a distribution of unknown form. Earlier in 1964, Paulson [11] con-
structed a (1 — a)-level sequence of confidence intervals for the mean of a
normal distribution, but the sequence is not degenerate in the limit.

When 6 is a real parameter, there is a well-known connection between (1 — a)-
level confidence intervals for § and tests of hypotheses of the form H: § = 6,
versus K: 6 =+ 6,. In the case of a (1 — «)-level consistent sequence, degenerate
in the limit, of confidence sets {I",(x,, - -+, x,): n = 1, x, € 27} for 6, the sequen-
tial test which stops sampling with N =inf{n > 1:6,¢ L, (X,, ---, X,)} and
rejects H is a level « test for H versus K, and this sequential test has a zero Type
IT error probability. When each T, (x,, ---, x,) is an interval, the confidence
sequence can also be used to test H: § < 6, versus H,': § > 6, Our stopping
rule is N as before and our terminal decision rule is to reject H,' if the left end-
point of the interval I'y(X;, - - -, Xy) is larger than 6, and to accept Hy if other-
wise. This is a test with error probabilities uniformly < a. Such tests and
similar tests for one-sided hypotheses H,: § < 6, versus H,: 6 > 6, have been
considered by Fabian [6], Farrell [7], Darling and Robbins [2], [3], [4], [5],
Robbins and Siegmund [13] and Robbins [12]. Performance characteristics of
such tests and the applications of confidence sequences to some detection prob-
lems are studied in [10].

In Section 3, by making use of generalized likelihood ratio martingales in-
troduced in Section 2, we construct confidence sequences for the unknown
parameters of certain important distributions. Theorem 1 of Section 4 shows
that for the exponential family, the confidence sequences constructed by our
method are always consistent and degenerate in the limit. In Section 5, we
consider invariant confidence sequences, largely in the context of r-statistics,
and show how nuisance parameters can be handled in certain situations by using
the principle of invariance. Section 6 deals with boundary crossing probabilities
and a limit theorem which arise in connection with Section 5. Throughout this
paper, we shall denote the nth sample sum by S,, i.e., S, =X, 4+ --- + X,,
where X, X,, - .. are i.i.d. observations.

2. Generalized likelihood ratio martingales. Let ¢ be some o-finite measure
on the real line and z, be the product measure induced by zon R*(n = 1,2, - - .),
ie., dp,(x;, -+, x,) =dp(x;) -+ du(x,). Let X, X,, ... be random variables
such that for eachn > 1, X}, .. -, X, have a joint density function p, with respect
to u,.
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For each n > 1, let ¢4, be an extended real-valued Borel function on R*
satisfying:

(@) 4. =0,

(b) So—ow qn+1(x1’ D] xn+1) d;u(xn+1) = qn(xl’ ct X,,‘),

(©) q.(xy -+, x,) = 0 whenever p,(x;, ---, x,) = 0.
Define

Zn = qn(Xl’ ] Xn)/pn(Xl’ MR Xn) lf Pn(Xv MR ) Xn) :ré 0 )
=0 otherwise.
Then Z,, n = 1, is a martingale (possibly with infinite expectation) and will

hereafter be referred to as a generalized likelihood ratio martingale. If in addition
to (a), (b) and (c), the sequence g, also satisfies

(d) Sangu(xp -+ -5 x,) dpe(xy) - - - dp(x,) = 1,

then Z,, n = 1, is called a proper likelihood ratio martingale.
More generally, for each n = 1, let ¢, be an extended real-valued Borel func-
tion on R” satisfying (a) and

(e) §= qn+1(x1’ Cey X)) (X)) = Gu(Xys s X,) .

Define Z, asabove. Then Z,, n = 1, is a nonnegative supermartingale, and will
be referred to as a pseudo likelihood ratio supermartingale. Our construction of
confidence sequences in this paper depends on the following inequality for Z,

(cf. [12], page 1400): For any ¢ > 0,
1 P[Z,= ¢ forsome n = m] < P[Z, =¢] + ¢! $tz,,<e1 Zm dP

eEZ, .

A TIA

Note that in the case where g, satisfies (d), we have EZ, < 1.

Let X, X, -+ be i.i.d. random variables such that ¢(f) = Eexp (6X;) < oo
for all # > 0, and let F be a measure on (0, co). It is well known that
§5° (¢(0))~" exp (0S,) dF(0), n = 1, is a martingale, and we shall call it a moment
generating function martingale. This martingale can in fact be regarded as a gen-
eralized likelihood ratio martingale, where we define p,(x) = e?*¢(x)/(6) (¢ be-
ing the density function of X; with respect to some measure (), p, (X, - - -, x,,) =
II7-1po(x)s and g, (xys -+, X,) = (& pg.a(xs «+ +, x,) dF (). Moment generating
function martingales are used in [2], [3], [4], [5], [8], [12], [13] to obtain con-
fidence sequences based on sample sums.

3. Confidence sequences for some important distributions. In this section,
we shall construct consistent confidence sequences which are degenerate in the
limit for the unknown parameters of the Bernoulli, negative binomial, uniform,
exponential, Poisson and gamma distributions,

(A) Bernoulli distribution. Suppose X}, X,, - - - arei.i.d. such that P [X,=1]=p,
P[X,=0]=1—p=gq,pe(0,1). Then writing b(n, p, x) = (?)p*q"~*, Robbins
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[12] has shown that

) Pb(n, p,S,) < aj(n 4 1) forsome n=1] < a forall pe(0,1),
O<ax<xl.

Consider the solutions p = p(x) of the equation (n + 1)b(n, p, x) = a. For fixed

x=0,1, ..., n, the function (n + 1)b(n, p, x) has a maximum at p = x/n and

the maximum valueis (n + 1)(2)(x/n)*(1 — x/n)*=*, which is larger than 1. Hence

the equation (n + 1)b(n, p, x) = a has two distinct roots p = f,(x) and p = ¢,(x)
with f,(x) > g.(x). Therefore from (2), we have

Pl9.(S,) < p < [fuS,) forall n=1]=1—a«a forall pe(0,1).

We now prove that P,[lim, . f,(S,) = p = lim,_., ¢.(S,)] = 1forallpe (0, 1).
We need only show that if x, is a sequence of natural numbers such that 0 <
x, < n and lim,_, x,/n = p,€ (0, 1), then lim, ., f.(x,) = p, = lim, o g.(x,)-
Consider the two roots p = f,(x,) and p = g,(x,) of the equation

pren(l — pYn = @l n — ) f(n - DI
Since lim,, ., x,/n = p, and the right-hand side of the above equation converges
to poPo(l — py)'~?o, it is clear that
lim, ., f,(x,) = p, = lim,_, 9,(x,) -

For each n =1, let I, = (¢.(S.), f«(S,)). We know that for all pe (0, 1),
P[p¢l,] < a,and that P [pgl,] —>0asn— oco. Itis interesting to ask how
fast P,[p ¢ I,] converges to 0. The answer is given by:

3) Pipel]~ al2p(l — p)li(nlogm= as n—oco.
To prove (3), note that P,[pgl,] = P,[b(n, p,S,) = &/(n + 1)]. Let Y, =
(S, — np)/(npq)t. Given any d € (0, 1), we can choose r, such that for alln = n,
and all k with |k — np| < n*(npq)t,
(2znpg)~4(1 — 6) exp (—(k — np)*/(2npq))
< b(n, p, k) < (27npg)~H(1 4 9) exp (—(k — np)*/(2npg)) -

Therefore for n = n,,
Pp[b(n’ p’ Sn) é 0(/(” + 1)]
= P[n* = |Y,| = {2log [(2anpg)~H(1 + d)(n + 1)/a]}]
~ (2pg)}(nlog n)~ta/(1 4 9) .
On the other hand,
P,[b(n, p, S,) < af(n + 1)] < P,[|Y,| = {2log [2znpg)~4(1 — d)(n + 1)/a]}]
~ (2pq)i(n log n)~ta/(1 — 0) .

Since § is arbitrary, (3) follows.
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(B) Negative binomial distribution. Suppose X, X,, - - - arei.i.d. with P[X| =
xX]=C¢Dpd —py", x=r,r+1,..., where 0 < p < 1 and r is a known
positive integer. Define

Z, = §07(1 — 0)= dj(pr(1 — p)*n=r)
= 1/((Ss + 1b(S,, p, nr)) -
Then Z,, n > 1, is a proper likelihood ratio martingale and by (1),
P,[6(S,, p,nr) < a/(S, + 1) forsome n=1]<a forall pe(0,1),
O<a<l.
As in (A), it can be proved that for fixed x = nr, nr + 1, ..., the equation
(x 4+ 1)b(x, p, nr) = a has two distinct roots p = f,(x) and p = g,(x) with f,(x) >
9.(x), and so for all p e (0, 1),
P[0.(S,) < p < fu(S,) forall n=1]=1—a.
Now E, X, =r + r(1 — p)/p. Given p,e (0, 1) and any sequence of positive
integers x, with x, > nr and lim,_, x,/n = r 4+ r(1 — p,)/p,, we have
lim, ., a¥*((nr)}(x — nr)!/(x, + DHH"™ = p(1 — py)ri-ro/ro.
From this it follows that lim,_., f,(x,) = p, = lim,_, 9,(x,). Therefore
P [lim,_ f.(S,) = p =lim,_,g0,(S)]=1.

(C) Uniform distribution with range parameter. Suppose X, X,, --- are i.i.d.

with uniform density
pe(x) = 1/¢ if xe(a,a+8),

=0 elsewhere,

where £ > 0 is an unknown parameter and a is a known real number. Let
X® = max (X, -+, X,), X,, = min (X, -+, X,). Define
Pon = 07" xin1_q,0)(0) - I(—oo,Xm,)(a) >
Z, = 5% Po.n 07" exp (—1/0) db/p,, -

Then Z, =1 _. x (@) - 70u(1/(X™ — a))/p; ., Where 7,,, is the incomplete
gamma function, i.e., y,.,(x) = (¢ t"e~*dr. It follows from (1) that for any

O<ax<l,
PiX™ —a <& < (ay, (1)(X™ —a)))=¥ forall n>1]=1— «a.

Obviously, P[lim,_ ., X™ =a 4 &] = 1. It is also easy to show that
P [lim, ., (a7, ,(1)(X™ — a)))"V* = &] = 1.

(D) Exponential distribution with location parameter. Suppose X, X,, - .. are
i.i.d. with density function

pe(x) = exp(=(x —§)), x=¢§,

=0, elsewhere,
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where & is an unknown parameter. Define X,, = min (X, ---, X,), psn =
exp (=S, + n0)_. x , 1(0), and let
Z, = (2m)7* {2 po,u eXp (—0°/2) dO[pe ..
= exp (/2 — nE)@(X oy — M/l i—wx ,1(5) >
where ®(x) = (2x)~* {=, exp(—13/2) dt.
From (1), it follows that for any a € (0, 1),
P.[nj2 4+ (1/n) log ®(X,, — n) + (loga)/n < § < X, forall n> 1]
=21l —a.
Obviously P,[lim,_., X, = §] = 1. Take any real number x. It is not hard to
show that for n > 2,
@ n/2 4 (1/n) log ®(x — n) + (log a)/n < x.
From (4), we have
n/2 4+ (1/n) log ®(X,,, — n) + (loga)/n < X, — & a.s. [P].
On the other hand, for all large n,
12 + (1/n) log ®(X,,, — ) + (log a)/n
= n/2 + (1/n) log {27)~H(n — X,,)
X exp (—(n — Xo)[2)[(1 + (n — X))} + (log a)/n — ¢
a.s. [P,].
Hence P[lim,_., (n/2 4 (1/n) log ®(X,,, — n) + (log a)/n) = &] = 1.
(E) Poisson distribution. Suppose X;, X,, ... are i.i.d. Poisson random varia-
bles with parameter 1. Let
Z, = (3 e ™05e? df|(e~"*A5n)
= e"(S,)A5n(n + 1)=SwtD
Since Z,, n = 1, is a proper likelihood ratio martingale, it follows from (1) that
if 0 < a < 1, then for all 2 > 0,
(5) P;[For all n > 1, either S, =0 and e < (n + 1)/a, or
S, >0 and exp (nd/S,) < V,ni/S,]=1 — «a,
where V, = (n 4 1)2*V5a(a(S,!))~"5xS,/n. Let a be any positive number and
consider solutions x = x(a) of the equation e* = ax, x > 0. Ifa > e, this equa-
tion has two distinct roots x,(a) < x,(a). If @ = e, this equation has one root,
while if a < e, there are no roots. For a < e, let us define x,(a) = 0, x,(a) = oo.
If S, > 0, define £,(S,) = xy(V,)S./n, 9u(S,) = x,(V,)Sa/n. If S, = 0, let £,(S,) =
(log (n + 1) — log a)/n, and let g,(S,) = 0. Then it follows from (5) that for

all 2> 0, Pi[g,(S,) < A< fu(S,) for alln = 1] = 1 — a. It is not hard to see
that P,[lim,_ ¢.(S,) = 2 = lim,__, f.(S,)] = 1.

(F) Gamma distribution with scale parameter. Suppose X, X;, -+ are i.i.d.
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with the gamma density f,(x), i.e., for x > 0, fj(x) = 6= x*~* exp (—x/0)/T'(B),
where $ is known. Let

Z, = ¢ 07" exp (—S,/0 — 1/0) df[(A"Pe=5n'%)
= eSS, 4+ 1)~ + 1).

Since Z,, n = 1, is a proper likelihood ratio martingale, we can apply (1) and
obtain that if 0 < a < 1, then for all 2 > 0,

6) P,[(nB2/S,) exp (S,/(nBA) < U, forall n=z1]=1—«a,

where U, = (nB/S,)(S, + 1)™+V/8(aTl\(n8 + 1))~

Let a be any positive number and consider solutions x = x(a) of the equation
xe'* = a(x > 0). If a > e, this equation has two distinct roots x,(a) < x,(a). If
a = e, this equation has one root at x = 1, while if @ < e, there are no roots.
Define x,(a) = 0 and x,(a) = oo in the latter two cases and set f,(S,) =
(S./nB)X%y(U,)s 9.(S,) = (Su/nB)x,(U,). It follows from (6) that

Pilg.(S,) < A< fu(S,) forall n=1]=1—«a.
It is easy to see that
P,[lim, ., g,(S,) = 4 = lim,_ . f,(S,)] = 1.

4. A general theorem for the exponential family. In the preceding section,
we have proved directly that the confidence sequences constructed in (A), (B),
(E), (F) all shrink to the population parameter. Actually there is the following
more general result which holds for the exponential family of distributions.

THEOREM 1. Let X, X,, - - be i.i.d. having a common density p,(x) = h(0)e’",
0 € ©, with respect to some nondegenerate measure v on the real line, where © is an
interval. Let F be a measure on © such that F(I) > 0 for any open interval I con-
tained in ©. Then given ¢ > 0, the set

Gu(S.) = {20 (o (H(0)/A(2)" exp (¢ — 2)S,) dF(0) < ¢}

is either empty or an interval. Let 2,V < 1, be the end-points of G,(S,) if it is
nonempty. Suppose P,[G,(S,) #+ O for all large n] = 1. Then P[lim,_, 2," =
lim,_, 4,® = 1] = 1.

noo'n

Proor. Let p(0) = E,; X, = (=, h(0)xe’” du(x). Then
uo) = —w@no) . 40— var, x, > 0.

Setting g(4, 0) = (h(6)/h())" exp ((6 — 4)S,), we see that
39/0R = n(pu(d) — S,Jmg(2,8),  Fglort > 0.

Hence for a fixed ¢, g(4, 0) is a strictly convex function of 2 ¢ ©, and is decreas-
ing for p(4) < §,/n and increasing for #(2) = S,/n. From this, it is clear that
either G,(S,) is empty, or G,(S,) is an interval with end-points 1, < 1,®.
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Let lim,_, S,(®)/n = E; X, = p(2) and G,(S,(w)) # @ for all large n. We
assert that lim,_, 4,"(0) = 2 = lim,_,, 2, (). Since 1,V(w) < 2,®(w), it suf-
fices to prove that liminf, . 2,"(w) = 2 = limsup, ., 4,”(»). First suppose
that 4 is an interior point of ©. Then for all large n, S,(w)/n is an interior point
of #[0], and so p~*(S,(w)/n) can be defined and 2,V (w) < p~Y(S,()/n) £ 2,P(w).
Assume that lim inf,_, 4,"(w) < 2. Then we can choose an interior point 4, of
O and a subsequence n; such that Al(w) < 4 < pH(Sy()/n;) and 4, < 2. We
note that since 2, € (2;)(), 47)(w)),

e = liminf;_., § exp {(8 — 4,)S, () + n, log (A(6)/h(%,))} dF(0)

Z Suy.ap im inf;_. exp {n;{(0 — 2))S,, (@)/[n; + log (h(0)/h(4,))]} dF (0) ,
where 4,, 4; are chosen as follows. Consider the continuous function ¢(¢, 6) =
§(0 — 4,) + log (h(0)/h(2,)). Now ¢(p(2), 0) = 0at @ = 2, and (3/00)p(x(R), ) =
#(4) — () = 0 according as 4 = ¢. Hence ¢(u(2), 0,) > 0 for any 6, e (4,, 4).
By the continuity of ¢, we can therefore choose (,, 4,) C © and a neighborhood
U of p(2) such that ¢(§, 6) > 0 for all (§, 6) e U x (4, 4;). Therefore if j is large
enough, (0 — 4,)S, (o)/n; + log (A(6)/h(2,)) > 0 for all 6 € (4,, 4;), and so using
the fact that F(4,, 4,) > 0, we have

€ = Yay,29 im;_ exp {n;[(0 — 2))S,, (0)/n; + log (h(0)/h(4,))]} dF(0) = o .
Hence we obtain a contradiction and we must have liminf,  1,%(0) > 2. A
similar argument proves that lim sup,_., 4,?(®) < 1. In the case where 1 is a

boundary point of O, we need only define p=%(S,(»)/n) = 2 if S, (w)/n¢® and
observe that 1, (w) < ¢7X(S,(®)/n) < 2, (w) still holds for all large n. []

5. Nuisance parameters and invariant confidence sequences. Suppose X,
X,, .-+ arei.i.d. random variables with a common distribution function Fy
(6,0) €O. Let X, take values in 2”7 and let G be a group of transformations on
&2 leaving the family {F, ,, (0, ¢) € ©} invariant. Let G be the induced group
on ©. We assume that if g(4, ¢) = (¢, ¢'), then ¢" depends only on g and ¢ and
notono, so that g induces a transformation on the space of §. Let {I,(x,, - - -, x,) :
n =1, x; € 27} constitute a (1 — a)-level sequence of confidence sets in the -
space, i.e.,

Py l0el (X, -+, X,) forall n>1]>1—a for all (0,0)ec®.

For each transformation g € G, denote by g* the transformation acting on subsets
I of the f-space and defined by g*/ = (gf: 6 ¢ I}. We say that {I,(x;, ---, x,):
n=1,x,e27} is invariant under G if g*I (x, .-, x,) = 1,(9x,, - -+, gx,) for
alln = 1, x,e 27 and g € G.

In the rest of this section, we shall study the problem of finding confidence
sequences for a location parameter in the presence of a nuisance scale parameter.
Suppose X, X,, - .. arei.i.d. random variables with probability density function
o7'9((x — 0))s), 6 >0, —c0 < 6 < . Let G be the group of scale changes on
the real line. For each n, this group induces a group of transformations on
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R* — ({0} x R*~') of the form (x,, - -+, x,) — (¢x,, - -+, ¢x,), ¢ > 0, and a maxi-
mal invariant is (x,*, - - -, x,*), where x,* = x,/|x,|. (Note that P, [X,=0]=0.)
The joint density of the maximal invariant (X,*, - . ., X, %) is §¢ TT2 {(1/0)g(x;* [z —
0/0)} dz/z (x,* = 1), which depends only on the maximal invariant 6o under
the group G. Define

(7 By (Xis 0y X,) = §¢ 112 {(1/)g(xi/z — 6)} de/z
5 TI3 {(1/2)g(xifo)} defe
i II2 {(1/2)g(x [z — O)}defe
§& 112 {(1/2)g(x;*[7)} de [z
Then for any 6, {, (X, ---, X,), F ,,n>=1}is a proper likelihood ratio
martingale under P,, for any ¢ > 0, where ., is the o-field generated by
Xl*’ R} Xn*'
Let F be a measure on the real line and define
(8) Bo(xy o ovyx,) = (=, by o(X1s - 05 x,) dr(f) .
Then {#,(X,, - -+, X,), & ,, n = 1} is a generalized likelihood ratio martingale
under P, , and so it follows from (1) that for any ¢ > 0,
Py [ (Xys + -+, X,) = ¢ for some n = m]
) S Po[hn(Xys - 05 X)) = €]
+ ¢ S[hm(Xl,--~,Xm)<s] P(Xys - ooy X)) dPy, .
We note that in fact, both sides of the inequality (9) do not depend ong. Given

a e (0, 1), we can choose F, ¢ and m so that the right-hand side of (9) is equal
to a. Define

L(xy, oy x,) = {0 €(—00, 00): by(x; — 0, -+, x, — 0) < e} .

Then {I,(x,, -+, x,):in=m, —co < x; < oo} constitutes a (1 — a)-level se-
quence of confidence sets for the location parameter 6 and is invariant under G.

As an example, suppose X, X,, - .. are i.i.d. normal random variables with
unknown mean g and unknown variance ¢2. In this particular case, the mar-
tingale %, ,(X,, - - -, X,) defined by (7) reduces to the following:
(10)  Z,,. = (exp (—n0"[2)[T(n[2)) {7 y*** exp {—y + 0S,(2y/ T X2)i} dy .
Let @ > 0 and define for n > m (= 2)

‘Yn - Z;" Xl/n ’ ,vnz = Z’{L (Xz - _n)Z/n ’

(11) A=mY1 4 a*/(m — )™, &, = v,((An)V» — 1)},
Setting dF(6) = (m/2m)tdf, —oco < 6 < oo, the inequality (9) gives rise to
(12) P lrel,Vnzm]=1—2(1 —F,_(a) + af,_,(a)) Yy o,

where f,, and F,, denote respectively the Student ¢ density and distribution func-
tion with m degrees of freedom, a result which was obtained by Robbins [12].
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In [10], by using invariance considerations, we construct simultaneous con-
fidence sequences for the contrasts among the unknown means of k normal
populations with a common unknown variance and obtain selection and ranking
procedures for these populations. Here we shall consider another problem in
connection with k normal populations with unknown means and a common
unknown variance. For simplicity, assume k = 2, so that we have X, X;, - -+
which are i.i.d. N(g, ¢%) and Y., Y,, - - - which are i.i.d. N(#, ¢%). The problem
is to find a confidence sequence for x in terms of X, Y,, X,, Y,, ---. Note that
although the observations Y,, Y,, - -- do not give us information about z, they
give us information about the common unknown variance o

The invariance considerations which have led to the use of the martingale (8)
in the construction of invariant confidence sequences above can now be extended
to the present situation. For each n,a maximal invariant with respect to the group
of transformations on R* — ({0} x R*"~?) of the form (x;, «+ +, X, Y15 + + +5 V) —
(cxpy - oyex3ey, + by ooes ey, + b), ¢ > 0, breal, is (x,*, -+, X, % p/s -+ s V')
where x,* = x;/|x,|, / = (ys — y)/|Ixls (i =1, - -+, n). Ingeneral, if X, ..., X,
arei.i.d. with density function 6~'g((x — 6)/o) and are independent of ¥,, - -+, Y,
which are i.i.d. with density function ¢='g((y — 6)/s), ¢ > 0, 0, 6 € (— o0, o),
then the joint density of X;*, - .-, X,*, Y/, <+, Y,/ is pg (X%, + o) 2% A
Pa7)s Where py(@y + -1y by -+, b,) =57 § 2 [T {(1/p)g(@/o— D} I {(1 /) (b0 —
wydpdo. (X;* = +1,Y/ =0). Hence for any ¢ and any measure F on
(— o0, o), if we define

Uonzpo(Xl*’ L XY L Y) L pe(X, - ,
, PO(XI*’ XY e Ynl) Po(Xv e, X Y, e, Yn)
U, = {Za Uy, dF(0)
then U, , and U, are martingales with respect to the o-fields &, (generated by
X*, -, X5, Y/, ..., Y,)) under P, ; , for any fe (—o0, 0)and ¢ > 0. Inthe
particular case where g(x) = (27)~* exp (—x*/2) and dF(0) = (m/2m)*df), —oo <
0 < co, we have

U, = (mmH{l + nX2 (T (X — X,)* + X7 (Yo = Y)po=>7,
where X, = Y7 X;/nand Y, = 37 Y,/n. Generalizing to k normal populations
with the same variance, we have the following theorem:

’X;Yl,"'9Yn)

n

THEOREM 2. Suppose X,,i=1, ..., k;n = 1,2, ..., are independent normal
random variables such that X,V is normally distributed with mean p, and variance ¢*.
Let a > 0 and define for n = m,

X0 = TpL X0, vt = Th Bia (G0 — KO kn,
t =m (1 + a¥fk(m — L)km=0+ £ = g, [(m)/ e ]
Lo = (%9 — &, X0 4+ £).
Then for each i =1, ..., k,
Pl ¢ 1, for some n=m] < 2(1 — Fypy)(@) + afiim-1)(9)) 5
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where fy ,_,, and F,,,_,, denote respectively the Student t density and distribution
function with k(m — 1) degrees of freedom.

6. Boundary crossing probabilities for the sequence of Student’s ¢-statistics.
Suppose X), X;, - - - are i.i.d. normal random variables with mean 0 and variance
1. In this section, we consider the sequence ¢, of Student’s ¢-statistics:

tn—l = (n - I)Q‘Yn/,vn

where X, and v, are defined by (11). Let F be a measure on (0, co) such that
F(0, o0) > 0 and let Z, , be defined by (10). The martingale Z, = (¢ Z, , dF(0)
can be used to study boundary crossing probabilities for the sequence #,. Define

(13) Po(x, ) = {5y~ exp (0x(2) — y — (n/2)0%) dy[T'(n[2) ,
$(x, 1) = {5 o(x, n) dF(9) .
Let m be an integer = 2. Suppose that ¢(x, m) < oo for all x. Then for n = m,

¢(x, n) < oo for all x (see Lemma 1 below) and so given ¢ > 0, the equation
¢(x, n) = ¢ has a unique solution x = Bg(n, ¢). We note that

Z, = SN XN hn) =z ¢
= 8,(27 X7t = By(n; ¢)
= S8,/Vn Z i By(n, e){1 — By(n, ¢)[n}~
=ty Z By(n, ){(n — /{1l — ByX(n, e)/n}.

Set Bp*(n, €) = By(n, e){(n — 1)/n}¥{l — By*(n, ¢)/n}~t. Then it follows from (1)
that

(14) P[t,_, = By*(n, ¢) for some n = m]

é P[tm—l 2 BF*(m’ 6)] + 8_1 S[ *(m,e)] Zm dP .

tm—1<BF

The above argument generalizes in an obvious manner to give boundary cross-
ing probabilities for the sequence |z,| if F is a symmetric measure on (— co, co)
which assigns measure 0 to {0}. In particular, for dF(0) = (m/27)df, —co <
f < co, we obtain that for any a > 0,

(15)  P[lt,_o| = (n — D¥{(n/my™(1 + @*/(m — 1))™* — 1}t for some n > m]
é 2(1 - Fm—l(a) + afm—l(a))

(cf. (12)). As shown by Robbins [12], the boundary in (15) is asymptotic to
(log n)t as n — oo.
Since v, — 1 a.s., the law of the iterated logarithm implies that

limsup,_..t,_,/(2log,n)t =1 a.s.

where log, n denotes log log n, log, n denotes log (log, n), etc. It is therefore
natural to ask whether by choosing F suitably in (13), we can obtain a boundary
of the order of magnitude (2 log, n)} as n — co. Take any 6 > 0 and choose
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the measure
dH(0) = db/{6(log |6])(log, |6])*°} , 0<l<e
=0 elsewhere.

We assert that the boundary B, *(n, ¢) corresponding to this measure H has the
following asymptotic expansion:

4BH*(”’ ) = {2 [logzn + (3 + 0) loggn + log 2(;)% + 0(1)]}* .

A proof of the above assertion can be found in [10].

We now proceed to prove a limit theorem involving the boundary crossing
probabilities of the martingale Z, = (¢ Z, ,dF(f) from which we have obtained
boundary crossing probabilities of the sequence of -statistics. First we note
that Z, can be written as ¢,(S,/(3]7 X;}/n)}, n), where we define

g.(y) = n? {5 272 exp (y(2z)t — nz) dz|I'(n/2) ,
(16) Ou(x, 1) = (& exp (—16%/2)9,(x0) dF () ,
f(x, 1) = §% exp <x0 -5 02) dF(0) .
For any m > 0, if we replace F(f) by F(6(m)*), we then obtain
(17) V5 Zy,n dF(0(m)}) = @, (m~*S, /(X1 X2 [m)t, njm) .
Let W(#), =0, be the standard Wiener process. By Lemma 2 below, 9, (x0)—e*’
as n — oo. Since for large m, the two sequences {m~1S,/((1/n) X1 X;*)}, n = wm}
and {W(n/m), n = tm} have approximately the same joint distribution, this heu-

ristic argument suggests the following theorem on the Wiener-process approxi-
mation for the boundary crossing probabilities of the sequence of r-statistics.

THEOREM 3. Suppose X, X,, - - - are i.i.d. random variables with mean O and
variance 1. Let F be any measure on (0, co) such that for some h = 0, k = 1 and
all real x,

(18) (= |z exp <x0(y)% —ky— % 02) dy dF(8) < oo .

For 6 > 0, define Z, , by (10). Lete > 0 andzt > h.

(i) Forany 2 > t, lim,, .. P[\¢ Z,,, dF(6(m)}) = e for some im = n = tm] =
P[§¢ exp (OW(1) — (1/2)6%) dF(0) = ¢ for some A = t = t].

(ii) Let Ay(t, 8) = inf {x: {7 e’*~»" dF(0) = 8}. If either X, is normal or
there exists 0 < 0 < e such that liminf,_, (2¢loglogt)=tA,(t, 0) > 1, then
lim,, ... P[\& Z,., dF(8(m)?) = ¢ for some n=tm]=P[ {7 exp(OW(1)— (1/2)6")dF (0) = ¢
for some t = 7].

LeMMA 1. Let g,, ¢, and f be as defined in (16). Assume (18). For any x e
(—o0, c0) and t > h, f(x, t) < co and

Supn>k gDn(X, t) é Sgo (Supn>k gn(xa)) exp (—t62/2) dF(a) < 0.
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Proor. The fact that f(x, f) < oo for ¢ > h follows easily from (18). To prove
the remaining part of the theorem, we note that the function exp (6x(2z)* —
(n/2)z) is decreasing in z for z > 26%x*/n*. In particular if x < n/2, this function
is decreasing in z for z = 4. Therefore if 6x < nand n > 2, we have

(o 2"t exp (0x(2z)t — nz) dz
(19) < e (bem it dz + (7 ev* exp (0x(22)F — (n/2)z) dz
é eﬁxn—n/zr(n/z) + efzs—n/t
On the other hand, if 6x > n/2 and n = 2, we have
(o> 2"/t exp (0x(2z)t — nz) dz

(20) < exp (602x2/n) 8(1)80%2/7»2 e—mizn/2=1 7

+ mane €77 €XP (0(22)} — (n[2)7) dz

< n="['(n/2) exp (60°x*[n) + e~**/*.

The last inequality above makes use of the fact that fx > n/2 and the mono-
tonicity of exp (6x(2z)} — (n/2)z). It then follows from (19) and (20) that
(21) G.(x0) < nr*(efs=m e~ T\ (n)2) + e’ + exp (66°x*|n) .
The desired conclusion follows easily from (21). []

LEMMA 2. Asn — oo, g,(y) — ¥, the convergence being uniform for y belonging
to any compact subset of the real line.

Proor. Apply Laplace’s asymptotic formula (cf. [15]). [I

LeEMMA 3. With the same assumption as in Theorem 3, in the case where the
measure F has bounded support, we have for any A > t,

MaX; iz Prmey (M Spmn /(L1 X2 [mi])}, [mt][m) — , max o, f(W(1), 1)
as m — oo, where “— ) denotes convergence in distribution.

Proor. Since n™! 37 X? — 1 a.s., given any sequence of positive numbers
m, 1 co, we can construct processes {X*'(t),t =<}, v =1,2, ..., having for
each v the same distribution as {m, =S, /(2™ X;?/[m,1])}, t = 7}, defined on
a common probability space Q, and a standard Wiener process {W(f), t = r} on
the same space, such that for any subsequence v; increasing rapidly enough,
max, <, |[X“(t) — W(f)| > 0a.s. as j — oo (cf. [1] page 279). Givenany p > 0,
we can choose j, such that if ¢ < ¢ < 2'and j = j,, |[X*9'(t, 0) — W(t, 0)] < p.
Since g,(y) is increasing in y, we have for all § = 0,

Gim, n(OW (1, ©) — 0p) =< Gpm, n(0X(1; @)
< Gim, n(OW(t, @) + 0p) .
Now F has bounded support, say F[c, o) = 0. By Lemma 2, we can choose
n, such that
n>=n, and

min ., <, <0< (OW(t, ©) — 0p) < y < MaX <423 050<0 (OW(t, w) 4 6p)

st=4,0s0=

=exp(—p+)) = 9.(y) =S exp(o +)) -
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Now choose j, = j, such that [mujT] > n, for all j = j,. Hence if t <1 < 4,
J = j,» then for all 4 €0, c],
exp (W (t, w) — (¢ + 1)p) < g[m,,j:](ﬁX‘"i’(f, )
< exp (OW(t, ) + (¢ + 1)p).

Therefore g, t](OX‘” (1, w)) — exp (0 W(t, w)) as j — oo, the convergence being
uniform for 6 e [0, c] and ¢t € [7, 4]. This implies that as j — oo,

Pim, (X7t @), [, 1][m, ) — fIW(L, @), 1),
the convergence being uniform for <t < 4. J
ProofF oF THEOREM 3. For ¢ > 0, define

(X, 1) = Y0 €XP (—10°[2)g,(x0) dF () ;

@.5(%, 1) = ([,00) €Xp (—167/2)9,(x0) dF(0) .
Define g,, ¢, and f as in (16). By Lemma 3,

Plo,(m=1S, /(23 X*/n)t, nfm) = ¢ for some Am = n = tm]
(22) = P[max. giq; Ptn(M™Spmn/ (21" X2 mi])}, [mi]/m) = ¢]
— P|:maxrsts,I § 0,00 EXP <0W(t) — _;— 62> dF(0) = s:I as m-— oo

(— P[fIW(t), f) = ¢ for some 7 <1< 2] as ¢ — o).
We shall now prove the following fact: For every y > 0,
(23) lim,_, lim sup,, ., P[@,°(m~1S, /(33 X2/n)t, njm) = 7
for some n>tm]=0.
Using (21), we obtain that on the event [|S,| < (1 — A/7)in/5 and 37 X;2/n > 1],
(24) ga(Om=1S, /(37 X2/n)t) < 2{exp (20m~3S,) + exp (3(1 — h/r)0n/m)}

for n = n,. Since P,, = P[|S,| = (1 — h/z)in/5 or 7 X?/n < L for some n >
tm] — 0 as m — oo, it then follows from (24) that for ¢ > ¢,

P[@,(m~tS, /(1 X?[n)t, njm) = 7 for some n = tm]
= P[((0,018Xp (20m=1S, — n6*/2m)dF(6) = y/4 for some n = tm] + P,
= P[g[m] exp (20W() — = %) dF(8) = 7/4 for some 1= f}
as m-— oo.

The last relation above follows from Theorem 2 of [14] (see Remark (b) on
page 1411), since A.(t, 7/4) = 4ct(1 + o(1)) as 1 — oo by Theorem 1 of [8],
where A5, y/4) = inf {x: §(, .., exp (Ox — (1/2)0°) dF(6) = 7/4}. Since

lim,_,, P[S[c,m) exp (4(/’W(t) — é_ 02) dF(0) = r/4 for some ¢ > r] =0,

we obtain (23). Using (22) and (23), it is easy to see (i).
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To prove (ii), first assume that lim inf, ., (2¢ log log £)=#A4,(t, 6) > 1 for some
0<od<e LetoZ£p< (14 n)p e Then there exists 0 < £ < I such that
(25) lim inf,_, (21 log log 1)~ AL(t, p) > 1.

Using (21), we obtain that on the event [|S,| < {n/5, (X X}/n)t > (],
(26) 9. (6m™ES, /(X7 X2 n)h) = (1 + %) {exp (9m™=1S,[C) + exp (30° - n/m)}
for n = n,. From (26), it follows that for 1 = 4,,
Plo, (m™3S, /(X1 X;2n)}, njm) = (1 + n)p for some n = Am and
IS, < Cn/S, (X2 X32[n)t > ¢ for all n = im]
< P[5 exp (Om~1S, [/l — n6*[2m) dF(6) = p for some n = im]
= P[m~%S, = {Ap(n/m, p) for some n = im]
— P[W(t) = {Ay(t, p) for some ¢ = 1] as m-— oo .
The last relation above follows from Theorem 2 of [14] since (25) holds. Since
lim,_,, P[W(t) = (Az(t, p) for some t = 4] = 0, we obtain
@7 lim,_ limsup, .. Ple,(m~3S, /(57 X2/}, njm) = (1 + 7)p

for some n>= Am] =0.
Noting that

Plo (m~%S, /(1 X)), njm) = ¢ for some n = tm]
< Plo,(m~tS, /(X XA}, nfm) = ¢ for some Am = n = tm]
+ Plp,(m~S, /(X1 X}, njm) = (1 + 9)p for some n = im],
we obtain (ii) from (i) and (27).
We now prove (ii) under the alternative assumption that X, is normal. In this
case, \¢ Z, , dF(0(m)?) is a martingale and so it follows from (1) that

Plo,(m~tS, /(35" X*/n)t, njm) = ¢ for some n = tm]
(28) = Ploemi(m™ S/ (5™ X2 [em])t, [cm][m) = e]
. + e Cippemy( r<e1 Prema( ) AP
Since ¢ (M S /(™ X2 /[em])E, [tm]/m) — . f(W(z), T), (see the proof of
Lemma 3), we obtain from (28) that
lim sup,, ., P[@,(m~tS, /(33 X2[n)}, n/m) = ¢ for some n = tm]
< PLAW(): ) 2 €] + ™ Sipapcer,mca fV(2), ) dP
= P[f(W(t), t) = ¢ for some = 7].
The last relation above is due to Robbins and Siegmund [14]. []
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